Strategies for Mitigating Mycotoxin Contamination in Food and Feed

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Mycotoxins".

Deadline for manuscript submissions: 30 June 2026 | Viewed by 3724

Special Issue Editor


E-Mail Website
Guest Editor
Department of Food Technology, University of North, 48000 Koprivnica, Croatia
Interests: food safety; food contaminants and residues; mycotoxins; food analytics; liquid chromatography/mass spectrometry; method validation; measurement uncertainty
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Mycotoxins, secondary fungal metabolites of low-dose toxicity, are unambiguous food and feed contaminants considered to be one of the most important chronic dietary risk factors, causing toxicity syndromes as a result of their intake, which is known as mycotoxicosis. The estimation of the worldwide contamination of food crops with mycotoxins is around 60%–80%, highlighting the need for constant and continuous mycotoxins control, as well as proper strategies for mitigating mycotoxin contamination in food and feed, especially when considering climate change scenarios.

Currently available methods for mycotoxin reduction and detoxification include conventional physical, chemical and biological procedures, but also innovative strategies based on the use of nanotechnology and phytochemicals, antibody-mediated technology, biotechnology and genetic engineering, or emerging non-thermal processing technology. However, complete efficiency for various matrices is still not achieved, leaving room for additional progress, emphasizing green technologies, multidimensional approaches and integrated management strategies, combining both conventional and innovative methods for better adaptability and variability.

Accordingly, the focus of this Special Issue of Toxins is to gather scientific papers, including both original research papers and review articles, on toxicology, detoxification and the degradation and prevention of mycotoxins. We hope to propose innovative methodological solutions for the characterization and determination of mycotoxins, their degradation products and the control of mycotoxigenic fungi and mycotoxins, revealing new insights in this research area.

Dr. Marija Kovač Tomas
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mycotoxins
  • mycotoxigenic fungi
  • toxicology
  • detection and occurrence
  • reduction and detoxification
  • innovative mitigation strategies
  • prevention
  • climate change

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 804 KB  
Article
Prevalence and Risk Assessment of Multiple Mycotoxins in Durum Wheat from Fields Under Different Agricultural Practices in Tunisia
by Marwa Hassine, Khouloud Ben Hassouna, Salma Tissaoui, Mokhtar Baraket, Amine Slim, Olfa Ayed Slama, Hajer Slim Amara, Ahmed Al-Amiery, Noelia Pallarés, Houda Berrada, Samir Abbès and Jalila Ben Salah-Abbès
Toxins 2025, 17(8), 410; https://doi.org/10.3390/toxins17080410 - 14 Aug 2025
Viewed by 585
Abstract
Mycotoxin contamination in wheat, a staple food critical to human nutrition, poses significant public health concerns. This study investigated the natural occurrence of 17 mycotoxins in Tunisian durum wheat, assessed the influence of soil tillage practices on mycotoxin contamination, and performed an associated [...] Read more.
Mycotoxin contamination in wheat, a staple food critical to human nutrition, poses significant public health concerns. This study investigated the natural occurrence of 17 mycotoxins in Tunisian durum wheat, assessed the influence of soil tillage practices on mycotoxin contamination, and performed an associated exposure risk assessment. A total of 167 wheat samples were randomly collected over two years (2021 and 2022) from fields managed under conventional tillage (CT) and no-tillage (NT) systems during both pre- and post-harvest periods. Mycotoxins were extracted using the QuEChERS method and quantified via UHPLC-MS/MS. The results demonstrated contamination by ZEN, DON, OTA, ENA1, ENB, and ENB1. Among regulated mycotoxins, OTA was the most prevalent, detected in 68 out of 167 samples with a mean concentration of 1.85 µg/kg. ZEN was the most abundant, detected in 65 samples with a mean concentration of 26.85 µg/kg, while DON was less frequently detected in 62 samples with a mean concentration of 0.68 µg/kg. Regarding emerging mycotoxins, ENB was the most prevalent and abundant, found in 51 samples with a mean concentration of 10.13 µg/kg; ENB1 and ENA1 were detected in 20 and 10 samples, with mean concentrations of 3.38 µg/kg and 1.69 µg/kg, respectively. Furthermore, mycotoxin concentrations varied according to agricultural practices. DON, ZEN, ENA1, ENB, and ENB1 showed higher frequencies and concentrations (ranging from 0.08 to 210.11 µg/kg) in samples collected during the 2021 pre-harvest period from NT fields. In contrast, OTA exhibited greater prevalence and higher concentrations (ranging from 2.33 to 9.78 µ/kg) in samples collected during the 2022 post-harvest period from CT fields. The Estimated Daily Intake (EDI) of mycotoxins by Tunisian adults was calculated based on contamination levels in raw durum wheat from fields under NT and CT practices, resulting in the following values (ng/kg bw/day), with the first value corresponding to NT samples and the second to CT samples: OTA (17.3; 20.8), ZEN (466.3; 194.0), DON (8.0; 7.56), ENA1 (4.30; 18.85), ENB (105.17; 121.08), and ENB1 (49.91; 40.91). Both the Margin of Exposure (MOE) values for OTA and the Hazard Quotients (HQ) for ZEN and DON exceeded established safety thresholds, indicating potential health risks for Tunisian adults. These findings highlight the urgent need to implement stricter mycotoxin regulations in Tunisia and enhance surveillance systems. Further research is warranted to elucidate the mechanisms by which soil tillage practices influence mycotoxin contamination and to develop targeted mitigation strategies to ensure food safety. Full article
(This article belongs to the Special Issue Strategies for Mitigating Mycotoxin Contamination in Food and Feed)
Show Figures

Graphical abstract

Review

Jump to: Research

24 pages, 3858 KB  
Review
Emerging Strategies for Aflatoxin Resistance in Peanuts via Precision Breeding
by Archana Khadgi, Saikrisha Lekkala, Pankaj K. Verma, Naveen Puppala and Madhusudhana R. Janga
Toxins 2025, 17(8), 394; https://doi.org/10.3390/toxins17080394 - 6 Aug 2025
Viewed by 989
Abstract
Aflatoxin contamination, primarily caused by Aspergillus flavus, poses a significant threat to peanut (Arachis hypogaea L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. [...] Read more.
Aflatoxin contamination, primarily caused by Aspergillus flavus, poses a significant threat to peanut (Arachis hypogaea L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. Although germplasm such as J11 have shown partial resistance, none of the identified lines demonstrated stable or comprehensive protection across diverse environments. Resistance involves physical barriers, biochemical defenses, and suppression of toxin biosynthesis. However, these traits typically exhibit modest effects and are strongly influenced by genotype–environment interactions. A paradigm shift is underway with increasing focus on host susceptibility (S) genes, native peanut genes exploited by A. flavus to facilitate colonization or toxin production. Recent studies have identified promising S gene candidates such as AhS5H1/2, which suppress salicylic acid-mediated defense, and ABR1, a negative regulator of ABA signaling. Disrupting such genes through gene editing holds potential for broad-spectrum resistance. To advance resistance breeding, an integrated pipeline is essential. This includes phenotyping diverse germplasm under stress conditions, mapping resistance loci using QTL and GWAS, and applying multi-omics platforms to identify candidate genes. Functional validation using CRISPR/Cas9, Cas12a, base editors, and prime editing allows precise gene targeting. Validated genes can be introgressed into elite lines through breeding by marker-assisted and genomic selection, accelerating the breeding of aflatoxin-resistant peanut varieties. This review highlights recent advances in peanut aflatoxin resistance research, emphasizing susceptibility gene targeting and genome editing. Integrating conventional breeding with multi-omics and precision biotechnology offers a promising path toward developing aflatoxin-free peanut cultivars. Full article
(This article belongs to the Special Issue Strategies for Mitigating Mycotoxin Contamination in Food and Feed)
Show Figures

Figure 1

22 pages, 685 KB  
Review
Mycotoxins in Broiler Production: Impacts on Growth, Immunity, Vaccine Efficacy, and Food Safety
by Ramona Maria Olariu, Nicodim Iosif Fiţ, Cosmina Maria Bouari and George Cosmin Nadăş
Toxins 2025, 17(6), 261; https://doi.org/10.3390/toxins17060261 - 22 May 2025
Viewed by 1708
Abstract
Mycotoxins are secondary fungal metabolites that frequently contaminate poultry feed, posing significant risks to animal health, productivity, and food safety. In broiler production, mycotoxins such as aflatoxins, trichothecenes, fumonisins, ochratoxin A, deoxynivalenol, and zearalenone have been shown to impair growth performance, damage key [...] Read more.
Mycotoxins are secondary fungal metabolites that frequently contaminate poultry feed, posing significant risks to animal health, productivity, and food safety. In broiler production, mycotoxins such as aflatoxins, trichothecenes, fumonisins, ochratoxin A, deoxynivalenol, and zearalenone have been shown to impair growth performance, damage key organs, and disrupt immune function. This review explores the multifaceted impact of mycotoxin exposure in broilers, with particular emphasis on immunosuppression, decreased vaccine efficacy, and increased vulnerability to infectious diseases, including coccidiosis, salmonellosis, E. coli, and viral infections like infectious bursal disease and infectious laryngotracheitis. Mycotoxin contamination in poultry feed can lead to direct economic losses through reduced feed conversion efficiency, increased mortality, and reproductive disorders, while also resulting in the transfer of toxic residues into meat and eggs, thereby threatening consumer health. The review further examines the synergistic interactions between mycotoxins and pathogens, the physiological and histopathological changes in exposed birds, and the implications for public health. Finally, it discusses current mitigation strategies, including mycotoxin binders, probiotics, and regulatory approaches to reduce exposure. An integrated management strategy combining feed hygiene, monitoring, and targeted nutritional interventions is essential to safeguard poultry health, enhance vaccine responses, and ensure the safety of poultry-derived food products. This review offers actionable insights for veterinarians, nutritionists, and policymakers, reinforcing the importance of mycotoxin mitigation strategies within a One Health framework. Full article
(This article belongs to the Special Issue Strategies for Mitigating Mycotoxin Contamination in Food and Feed)
Show Figures

Figure 1

Back to TopTop