Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (199)

Search Parameters:
Keywords = press drive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 2093 KiB  
Review
Enhancing Human Health Through Nutrient and Bioactive Compound Recovery from Agri-Food By-Products: A Decade of Progress
by Cinzia Ingallina, Mattia Spano, Sabrina Antonia Prencipe, Giuliana Vinci, Antonella Di Sotto, Donatella Ambroselli, Valeria Vergine, Maria Elisa Crestoni, Chiara Di Meo, Nicole Zoratto, Luana Izzo, Abel Navarré, Giuseppina Adiletta, Paola Russo, Giacomo Di Matteo, Luisa Mannina and Anna Maria Giusti
Nutrients 2025, 17(15), 2528; https://doi.org/10.3390/nu17152528 - 31 Jul 2025
Viewed by 191
Abstract
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus [...] Read more.
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus has shifted attention toward the valorization of the agri-food by-products as rich sources of bioactive compounds useful in preventing or treating chronic diseases. Agri-food by-products, often regarded as waste, actually hold great potential as they are rich in bioactive components, dietary fiber, and other beneficial nutrients from which innovative food ingredients, functional foods, and even therapeutic products are developed. This review aims to provide a comprehensive analysis of the current advances in recovering and applying such compounds from agri-food waste, with a particular focus on their roles in human health, sustainable packaging, and circular economy strategies. Methods: This review critically synthesizes recent scientific literature on the extraction, characterization, and utilization of bioactive molecules from agri-food by-products. After careful analysis of the PubMed and Scopus databases, only English-language articles from the last 10 years were included in the final narrative review. The analysis also encompasses applications in the nutraceutical, pharmaceutical, and food packaging sectors. Results: Emerging technologies have enabled the efficient and eco-friendly recovery of compounds such as polyphenols, carotenoids, and dietary fibers that demonstrate antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds support the development of functional foods and biodegradable packaging materials. Furthermore, these valorization strategies align with global health trends by promoting dietary supplements that counteract the effects of the Western diet and chronic diseases. Conclusions: Valorization of agri-food by-products offers a promising path toward sustainable development by reducing waste, enhancing public health, and driving innovation. This strategy not only minimizes waste and supports sustainability, but also promotes a more nutritious and resilient food system. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

20 pages, 8132 KiB  
Article
Spatiotemporal Evolution and Driving Force Analysis of Habitat Quality in the Beibu Gulf Urban Agglomeration
by Jing Jing, Hong Jiang, Feili Wei, Jiarui Xie, Ling Xie, Yu Jiang, Yanhong Jia and Zhantu Chen
Land 2025, 14(8), 1556; https://doi.org/10.3390/land14081556 - 29 Jul 2025
Viewed by 198
Abstract
The ecological environment is crucial for human survival and development. As ecological issues become more pressing, studying the spatiotemporal evolution of ecological quality (EQ) and its driving mechanisms is vital for sustainable development. This study, based on MODIS data from 2000 to 2022 [...] Read more.
The ecological environment is crucial for human survival and development. As ecological issues become more pressing, studying the spatiotemporal evolution of ecological quality (EQ) and its driving mechanisms is vital for sustainable development. This study, based on MODIS data from 2000 to 2022 and the Google Earth Engine platform, constructs a remote sensing ecological index for the Beibu Gulf Urban Agglomeration and analyzes its spatiotemporal evolution using Theil–Sen trend analysis, Hurst index (HI), and geographic detector. The results show the following: (1) From 2000 to 2010, EQ improved, particularly from 2005 to 2010, with a significant increase in areas of excellent and good quality due to national policies and climate improvements. From 2010 to 2015, EQ degraded, with a sharp reduction in areas of excellent quality, likely due to urban expansion and industrial pressures. After 2015, EQ rebounded with successful governance measures. (2) The HI analysis indicates that future changes will continue the past trend, especially in areas like southeastern Chongzuo and northwestern Fangchenggang, where governance efforts were effective. (3) EQ shows a positive spatial correlation, with high-quality areas in central Nanning and Fangchenggang, and low-quality areas in Nanning and Beihai. After 2015, both high–high and low–low clusters showed changes, likely due to ecological governance measures. (4) NDBSI (dryness) is the main driver of EQ changes (q = 0.806), with significant impacts from NDVI (vegetation coverage), LST (heat), and WET (humidity). Urban expansion’s increase in impervious surfaces (NDBSI rise) and vegetation loss (NDVI decline) have a synergistic effect (q = 0.856), significantly affecting EQ. Based on these findings, it is recommended to control construction land expansion, optimize land use structure, protect ecologically sensitive areas, and enhance climate adaptation strategies to ensure continuous improvement in EQ. Full article
Show Figures

Figure 1

17 pages, 2885 KiB  
Article
Silanization-Modified Lignin Nanoparticles for Paper Coating with Enhanced Liquid and Vapor Barriers, Frication Resistance, and Self-Cleaning Properties
by Wen Chen, Ren’ai Li, Yunfeng Cao, Chunjie Ye, Zhulan Liu and Huining Xiao
Polymers 2025, 17(15), 2066; https://doi.org/10.3390/polym17152066 - 29 Jul 2025
Viewed by 270
Abstract
Paper’s inherent hydrophilicity and porosity cause inadequate barrier properties, failing under high humidity/temperature. This study successfully developed a hydrophobic nanocoating agent (xLNPs-OTS) through silanization modification using D276 (lignin nanoparticles with a diameter of 276 nm) as the substrate and OTS (octadecyltrichlorosilane) as the [...] Read more.
Paper’s inherent hydrophilicity and porosity cause inadequate barrier properties, failing under high humidity/temperature. This study successfully developed a hydrophobic nanocoating agent (xLNPs-OTS) through silanization modification using D276 (lignin nanoparticles with a diameter of 276 nm) as the substrate and OTS (octadecyltrichlorosilane) as the functionalizing agent. By applying the coating to paper surfaces followed by a hot-pressing process, the paper achieved comprehensive performance enhancements, including superior water, oil, and vapor barrier properties, thermal stability, mechanical strength, frictional resistance, and self-cleaning capabilities. The Cobb 60 value of LOTSC3.5T120t30 (the coating made from the OTS silanized lignin with the coating amount of 3.5 g/m2 and a hot-pressing at 120 °C for 30 min) coated paper is as low as 3.75 g/m2, and can withstand hot water at 100 °C for 60 min. The Cobb 60 value of the LOTSC20T120t30 (the coating made from the OTS silanized lignin with the coating amount of 20 g/m2 and a hot-pressing at 120 °C for 30 min) coated paper is reduced to 0.9 g/m2, the Kit grade is 6, and all coated papers are endowed with self-cleaning features. This study advances lignin’s high-value utilization, driving sustainable packaging and supporting eco-friendly paper material development. Full article
(This article belongs to the Special Issue Advances in Lignocellulose Research and Applications)
Show Figures

Figure 1

17 pages, 2003 KiB  
Article
Effect of Caffeinated Chewing Gum on Maximal Strength, Muscular Power, and Muscle Recruitment During Bench Press and Back Squat Exercises
by Li Ding, Jue Liu, Yixuan Ma, Tze-Huan Lei, Mathew Barnes, Li Guo, Bin Chen, Yinhang Cao and Olivier Girard
Nutrients 2025, 17(15), 2455; https://doi.org/10.3390/nu17152455 - 28 Jul 2025
Viewed by 477
Abstract
Background/Objectives: This study aims to investigate the effects of caffeinated chewing gum on maximal strength, muscular power, and neural drive to the prime movers during bench press and back squat in resistance-trained men. Methods: Sixteen resistance-trained males participated in a double-blind, [...] Read more.
Background/Objectives: This study aims to investigate the effects of caffeinated chewing gum on maximal strength, muscular power, and neural drive to the prime movers during bench press and back squat in resistance-trained men. Methods: Sixteen resistance-trained males participated in a double-blind, randomized trial, chewing either caffeinated gum (4 mg/kg) or placebo gum on two separate occasions, seven days apart. After chewing for 5 min, participants performed a maximal strength test followed by muscular power assessments at 25%, 50%, 75%, and 90% of their one-repetition maximum (1RM), completing with 3, 2, 1, and 1 repetition (s), respectively, for bench press and back squat. Surface electromyography data were recorded for each repetition. Results: Caffeinated gum did not significantly improve one-repetition maximum (1RM) for bench press (p > 0.05), but increased mean frequency (MF) and median frequency (MDF) in anterior deltoid, pectoralis major, and biceps brachii (all p < 0.05) compared to placebo. For back squat, 1RM increased with caffeinated gum, along with higher MF and MDF in vastus medialis (all p < 0.05). Caffeinated gum also improved mean and peak velocities, and mean and peak power outputs at 25–75% 1RM during the bench press (all p < 0.05), along with elevated MDF in pectoralis major and biceps brachii (all p < 0.05). Similar improvements were seen in mean and peak velocities during the back squat at 25–90% 1RM (all p < 0.05), along with higher MF and MDF in vastus medialis and increased normalized root mean square activity in gluteus maximus (all p < 0.05). Conclusions: Caffeinated chewing gum (4 mg/kg) enhanced muscular power (25–75% 1RM) in the bench press and improved maximal strength and muscular power (25–90% 1RM) in the back squat by increasing muscle recruitment in resistance-trained men. Full article
(This article belongs to the Special Issue Energy Drink Effectiveness on Human Health and Exercise Performance)
Show Figures

Figure 1

12 pages, 7936 KiB  
Article
Synergistic Effects of SiCw and Ni Addition on the Densification and Mechanical Properties of (M0.2Ti0.2Ta0.2V0.2Nb0.2)B2 (M=Hf, Zr, or Cr) High-Entropy Ceramics
by Hongya Wu, Jianxin Sun, Jiaqi Zhang, Junshuai Chen, Zhigang Yang, Yubo Gong, Guoqiang Qin, Gang Yu and Shengya He
Ceramics 2025, 8(3), 89; https://doi.org/10.3390/ceramics8030089 - 18 Jul 2025
Viewed by 219
Abstract
The improvement of densification and fracture toughness in high-entropy ceramics is important to realizing their practical applications. In this study, SiC whiskers and metal Ni additions were incorporated to solve these problems of high-entropy boride ceramics. The influence of sintering temperatures (1450–1650 °C) [...] Read more.
The improvement of densification and fracture toughness in high-entropy ceramics is important to realizing their practical applications. In this study, SiC whiskers and metal Ni additions were incorporated to solve these problems of high-entropy boride ceramics. The influence of sintering temperatures (1450–1650 °C) on the densification, microstructure, hardness, fracture toughness, and bending strength of (M0.2Ti0.2Ta0.2V0.2Nb0.2)B2-SiCw-Ni (M=Hf, Zr, or Cr) composites prepared by hot-pressing technology were studied. Results showed that when SiC whiskers and metal Ni additions were used as additives, increasing sintering temperatures from 1450 to 1600 °C promoted the densification of high-entropy boride ceramics. This was mainly attributed to the high sintering driving force. However, when the temperature further increased to 1650 °C, their densification behavior decreased. At a sintering temperature of 1600 °C, these high-entropy borides ceramics all had the highest densification behavior, leading to their high hardness and fracture toughness. The highest relative density was 96.3%, the highest hardness was 22.02 GPa, and the highest fracture toughness was 13.25 MPa·m1/2, which was improved by the co-function of SiC whiskers and plastic metal Ni. Meanwhile, in the adopted sintering temperature range of 1450 to 1650 °C, the highest bending strength at room temperature of these high-entropy boride ceramics could reach 320.8 MPa. Therefore, this research offers an effective densification, strengthening, and toughening method for high-entropy boride composites at a low sintering temperature. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Engineering Ceramics)
Show Figures

Figure 1

25 pages, 468 KiB  
Review
Analysing the Factors Contributing to the Decline of Auditors Globally and Avenue for Future Research: A Scoping Review
by Thameenah Abrahams and Masibulele Phesa
J. Risk Financial Manag. 2025, 18(7), 363; https://doi.org/10.3390/jrfm18070363 - 1 Jul 2025
Viewed by 816
Abstract
Aim: This article explores the contributing factors to the decline in the number of auditors globally and aims to provide the consequences and possible recommendations. Auditors play a critical role in ensuring transparency, trust, and credibility of financial statements. However, the profession is [...] Read more.
Aim: This article explores the contributing factors to the decline in the number of auditors globally and aims to provide the consequences and possible recommendations. Auditors play a critical role in ensuring transparency, trust, and credibility of financial statements. However, the profession is experiencing a decline across the globe. The decrease in the number of registered auditors has become a pressing issue, raising concerns about the future of the assurance industry’s ability to maintain the number of registered auditors and continue providing assurance services to public and private entities or companies. Methodology: A scoping-review methodology was adopted to analyse the existing literature on the global decline in the number of auditors. This approach utilises research evidence to identify trends, challenges, and opportunities within the audit profession. Relevant studies were sourced from databases such as ScienceDirect, Google Scholar, and ResearchGate, as well as the grey literature. Main findings: This study identifies a combination of factors driving the decline of auditors globally. Economic pressures, such as cost reduction initiatives and outsourcing, have impacted the demand for traditional auditing services. Complex regulatory requirements have increased barriers to entry, while technological advancements, such as artificial intelligence, are disrupting traditional auditing roles. Additionally, the profession suffers from negative perceptions regarding workload, remuneration, and work–life balance, discouraging new entrants. Practical implications: The findings emphasise the urgent need for the auditing profession to adapt to evolving challenges. Stakeholders, including regulatory bodies and professional organisations, must address issues such as technological integration, career development pathways, and regulatory simplification. Enhanced public awareness campaigns and training initiatives are critical to attracting and retaining professional talent. Contribution: This study contributes to the limited body of knowledge on the global decline of auditors by creating a broad spectrum of evidence. It highlights actionable strategies to address the profession’s challenges and provides a foundation for future research on sustaining the relevance of auditors in a dynamic global economy. Full article
(This article belongs to the Special Issue Financial Management)
Show Figures

Figure 1

20 pages, 4795 KiB  
Article
Assessment of Crop Water Resource Utilization in Arid and Semi-Arid Regions Based on the Water Footprint Theory
by Yuqian Tang, Nan Xia, Yuxuan Xiao, Zhanjiang Xu and Yonggang Ma
Agronomy 2025, 15(7), 1529; https://doi.org/10.3390/agronomy15071529 - 24 Jun 2025
Viewed by 242
Abstract
The arid and semi-arid regions of Northwest China, as major agricultural production zones, have long faced dual challenges: increasing water resource pressure and severe supply–demand imbalances caused by the expansion of cultivated land. The crop water footprint, an effective indicator for quantifying agricultural [...] Read more.
The arid and semi-arid regions of Northwest China, as major agricultural production zones, have long faced dual challenges: increasing water resource pressure and severe supply–demand imbalances caused by the expansion of cultivated land. The crop water footprint, an effective indicator for quantifying agricultural water use, plays a crucial role in supporting sustainable development in the region. This study adopted a multi-scale spatiotemporal analysis framework, combining the CROPWAT model with Geographic Information System (GIS) techniques to investigate the spatiotemporal evolution of crop water footprints in Northwest China from 2000 to 2020. The Logarithmic Mean Divisia Index (LMDI) model was used to analyze spatial variations in the driving forces. A multidimensional evaluation system—encompassing structural, economic, ecological, and sustainability dimensions—was established to comprehensively assess agricultural water resource utilization in the region. Results indicated that the crop water footprint in Northwest China followed a “decline-increase-decline” trend, it increased from 90.97 billion m3 in 2000 to a peak of 133.49 billion m3 in 2017, before declining to 129.30 billion m3 in 2020. The center of the crop water footprint gradually shifted northward—from northern Qinghai to southern Inner Mongolia—mainly due to rapid farmland expansion and increasing water consumption in northern areas. Policy and institutional effect, together with economic development effect, were identified as the primary drivers, contributing 49% in total. Although reliance on blue water has decreased, the region continues to experience moderate water pressure, with sustainable use achieved in only half of the study years. Water scarcity remains a pressing concern. This study offers a theoretical basis and policy recommendations to enhance water use efficiency, develop effective management strategies, and promote sustainable water resource utilization in Northwest China. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

22 pages, 1664 KiB  
Article
Techno-Economic Assessment of Alternative-Fuel Bus Technologies Under Real Driving Conditions in a Developing Country Context
by Marc Haddad and Charbel Mansour
World Electr. Veh. J. 2025, 16(6), 337; https://doi.org/10.3390/wevj16060337 - 19 Jun 2025
Viewed by 742
Abstract
The long-standing need for a modern public transportation system in Lebanon, a developing country of the Middle East with an almost exclusive dependence on costly and polluting passenger cars, has become more pressing in recent years due to the worsening economic crisis and [...] Read more.
The long-standing need for a modern public transportation system in Lebanon, a developing country of the Middle East with an almost exclusive dependence on costly and polluting passenger cars, has become more pressing in recent years due to the worsening economic crisis and the onset of hyperinflation. This study investigates the potential reductions in energy use, emissions, and costs from the possible introduction of natural gas, hybrid, and battery-electric buses compared to traditional diesel buses in local real driving conditions. Four operating conditions were considered including severe congestion, peak, off-peak, and bus rapid transit (BRT) operation. Battery-electric buses are found to be the best performers in any traffic operation, conditional on having clean energy supply at the power plant and significant subsidy of bus purchase cost. Natural gas buses do not provide significant greenhouse gas emission savings compared to diesel buses but offer substantial reductions in the emission of all major pollutants harmful to human health. Results also show that accounting for additional energy consumption from the use of climate-control auxiliaries in hot and cold weather can significantly impact the performance of all bus technologies by up to 44.7% for electric buses on average. Performance of all considered bus technologies improves considerably in free-flowing traffic conditions, making BRT operation the most beneficial. A vehicle mix of diesel, natural gas, and hybrid bus technologies is found most feasible for the case of Lebanon and similar developing countries lacking necessary infrastructure for a near-term transition to battery-electric technology. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

28 pages, 2184 KiB  
Article
Advancing Sustainable Road Construction with Multiple Regression Analysis, Regression Tree Models, and Case-Based Reasoning for Environmental Load and Cost Estimation
by Joon-Soo Kim
Buildings 2025, 15(12), 2083; https://doi.org/10.3390/buildings15122083 - 17 Jun 2025
Viewed by 340
Abstract
The construction industry, particularly in road projects, faces pressing challenges related to environmental sustainability and cost management. As road construction contributes significantly to environmental degradation and demands large-scale investments, there is an urgent need for innovative solutions that balance environmental impact with economic [...] Read more.
The construction industry, particularly in road projects, faces pressing challenges related to environmental sustainability and cost management. As road construction contributes significantly to environmental degradation and demands large-scale investments, there is an urgent need for innovative solutions that balance environmental impact with economic feasibility. Despite advancements in building technologies and energy-efficient materials, accurate and reliable predictions for environmental load and construction costs during the planning and design stages remain limited due to insufficient data systems and complex project variables. This study explores the application of machine-learning techniques to predict environmental loads and construction costs in road projects, using a dataset of 100 national road construction cases in the Republic of Korea. The research employs multiple regression analysis, regression tree models, and case-based reasoning (CBR) to estimate these critical parameters at both the planning and design stages. A novel aspect of this research lies in its comparative analysis of different machine-learning models to address the challenge of limited and non-ideal data environments, offering valuable insights for enhancing predictive accuracy despite data scarcity. The results reveal that while regression models perform better in the design stage, achieving error rates of 12% for environmental load estimation and 23% for construction costs, the case-based reasoning model outperforms others in the planning stage, with a 15.9% average error rate for environmental load and 19.9% for construction costs. These findings highlight the potential of machine-learning techniques to drive environmentally conscious and economically sound decision-making in construction, despite data limitations. However, the study also identifies the need for larger, more diverse datasets and better integration of qualitative data to improve model accuracy, offering a roadmap for future research in sustainable construction management. Full article
Show Figures

Figure 1

18 pages, 1311 KiB  
Review
Nurses’ Engagement in Antimicrobial Stewardship Programmes: A Mapping Review of Influencing Factors Based on Irvine’s Theory
by Susana Filipe, Paulo Santos-Costa, Celeste Bastos and Amélia Castilho
Nurs. Rep. 2025, 15(6), 216; https://doi.org/10.3390/nursrep15060216 - 12 Jun 2025
Viewed by 596
Abstract
Antimicrobial resistance (AMR) is a pressing global health challenge, driving the need for effective antimicrobial stewardship (AMS) programmes. Despite nurses’ critical role in care delivery, their involvement in AMS remains under-recognized. Objectives: This mapping review aims to identify barriers and facilitators influencing [...] Read more.
Antimicrobial resistance (AMR) is a pressing global health challenge, driving the need for effective antimicrobial stewardship (AMS) programmes. Despite nurses’ critical role in care delivery, their involvement in AMS remains under-recognized. Objectives: This mapping review aims to identify barriers and facilitators influencing nurses’ engagement in AMS programmes and examine nursing-sensitive outcomes associated with their participation, using Irvine’s Nursing Role Effectiveness Model (NREM) as a guiding framework. Methods: A systematic mapping review was conducted following Joanna Briggs Institute (JBI) guidance and reported using the PRISMA-ScR checklist. The protocol was registered on the Open Science Framework. Searches were conducted in MEDLINE, CI-NAHL, Scopus, LILACS, Scielo, and grey literature sources. Data were extracted and categorized according to the NREM domains: structure, process, and outcomes. Results: Thirty-two studies were included. Key barriers included limited AMS knowledge, role ambiguity, hierarchical dynamics, communication gaps, and lack of standardized nursing outcomes. Facilitators encompassed targeted AMS education, participation in multidisciplinary discussions, managerial support, and defined nursing roles. Nurse-led interventions showed potential to improve infection control and antibiotic administration, although standardized outcome reporting remains scarce. Conclusions: Framed by the NREM, this review underscores the essential contribution of nurses to AMS. Addressing structural barriers, enhancing role clarity, and fostering interdisciplinary collaboration are critical to enabling nurses’ full participation. Strengthening nursing engagement in AMS not only supports effective antimicrobial use and patient safety but also reinforces health system resilience and sustainability. Full article
Show Figures

Figure 1

17 pages, 2295 KiB  
Article
The Prevalence of Antimicrobial Resistance Genes in the Environments of Small Ruminant Farms from Central Portugal
by Jaqueline T. Bento, Sara Gomes-Gonçalves, Rita Cruz, Fernando Esteves, Alexandra Lameira Baptista, Maria Aires Pereira, Pedro Caseiro, Pedro Carreira, Luís Figueira, João R. Mesquita, Adriano A. Bordalo and Ana Machado
Antibiotics 2025, 14(6), 576; https://doi.org/10.3390/antibiotics14060576 - 4 Jun 2025
Viewed by 563
Abstract
Background: Antimicrobial resistance is a pressing global concern affecting both human and animal health, with environment playing a key role in the dissemination of resistance determinants. This study aimed to investigate the presence of antimicrobial resistance genes (ARGs) associated with tetracyclines, β-lactams, macrolides, [...] Read more.
Background: Antimicrobial resistance is a pressing global concern affecting both human and animal health, with environment playing a key role in the dissemination of resistance determinants. This study aimed to investigate the presence of antimicrobial resistance genes (ARGs) associated with tetracyclines, β-lactams, macrolides, and sulfonamides in environmental matrices collected from 65 sheep and goat farms in central Portugal. Methods: Environmental samples, including water, soil, pasture, and bedding, were analyzed through qPCR for the detection of clinically relevant ARGs. Results: ARGs were detected in 83% of the samples, with over half exhibiting genes from three or more antibiotic classes, suggesting potential multidrug resistance. β-lactamase genes were the most prevalent, followed by those conferring resistance to tetracycline and sulfonamide resistance, while macrolide resistance genes were least frequent. The distribution of ARGs varied by farm type, host species, and municipality. Conclusions: These findings suggest that small ruminant farms serve as important reservoirs for ARGs. The results underscore the need for systematic surveillance and further research into the ecological and genetic factors driving ARG persistence and dissemination in extensive livestock systems, including proper waste management strategies to limit the spread and persistence of antibiotic resistance and mitigate broader public health risks. Full article
Show Figures

Figure 1

37 pages, 1338 KiB  
Article
The Actual Clinical Situation Ruthlessly Exposes the Challenge of Rational Care for Nosocomial and Community-Acquired Infections and Requires Even More Efforts for Satisfactory Antibiotic Stewardship
by Hans H. Diebner, A. Melina Wallrafen, Nina Timmesfeld, Tim Rahmel and Hartmuth Nowak
Antibiotics 2025, 14(6), 561; https://doi.org/10.3390/antibiotics14060561 - 30 May 2025
Viewed by 604
Abstract
Background: Antimicrobial resistance is one of the 10 most pressing health problems worldwide. Methods: First steps toward harnessing the complex dynamics of antibiotic resistance are presented. To accomplish this, we first shift down a gear and try to understand the actual driving dynamics [...] Read more.
Background: Antimicrobial resistance is one of the 10 most pressing health problems worldwide. Methods: First steps toward harnessing the complex dynamics of antibiotic resistance are presented. To accomplish this, we first shift down a gear and try to understand the actual driving dynamics behind the development of resistance in a specific clinical department. Analyses are based on the clinical and microbiological data of a German hospital over an observation period of more than 7 years, which we evaluate descriptively and semi-quantitatively in order to obtain a basis for informed and intelligent action in terms of antibiotic stewardship. Results: The specific results include the observed increase in the resistance rate with increasing overall consumption, while increases over time independent of consumption are fairly moderate. Vancocymin and refoximin are an exception in the development of resistance, as resistance to these substances appears to decrease with increasing consumption. However, there have been substantial dose adjustments for these substances, which are likely to be decisive here. An intra-host increase in resistance due to treatment time on the one hand and repeated treatments on the other is observed. Within the sub-cohort of ineffectively treated patients, i.e., with resistance to the antibiotic, mortality increases on average, but with ampicillin/sulbactam as a striking exception. Patients with infections caused by ampicillin-resistant bacteria have a lower mortality rate. The observed resistance rates of the eight most frequently administered antibiotics show a temporal variability that includes random fluctuations as well as decidedly regular cycles. The time series associated with the various antibiotics show pairwise time lag correlations, which indicates the existence of retardedly mediated cross-resistance. Conclusions: We conclude with an outlook on upcoming further analyses and a draft action plan on how to control and harness the complex dynamics observed by means of successful, informed, and intelligent antibiotic stewardship. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

33 pages, 610 KiB  
Review
Energy-Aware Machine Learning Models—A Review of Recent Techniques and Perspectives
by Rafał Różycki, Dorota Agnieszka Solarska and Grzegorz Waligóra
Energies 2025, 18(11), 2810; https://doi.org/10.3390/en18112810 - 28 May 2025
Cited by 1 | Viewed by 2282
Abstract
The paper explores the pressing issue of energy consumption in machine learning (ML) models and their environmental footprint. As ML technologies, especially large-scale models, continue to surge in popularity, their escalating energy demands and corresponding CO2 emissions are drawing critical attention. The [...] Read more.
The paper explores the pressing issue of energy consumption in machine learning (ML) models and their environmental footprint. As ML technologies, especially large-scale models, continue to surge in popularity, their escalating energy demands and corresponding CO2 emissions are drawing critical attention. The article dives into innovative strategies to curb energy use in ML applications without compromising—and often even enhancing—model performance. Key techniques, such as model compression, pruning, quantization, and cutting-edge hardware design, take center stage in the discussion. Beyond operational energy use, the paper spotlights a pivotal yet often overlooked factor: the substantial emissions tied to the production of ML hardware. In many cases, these emissions eclipse those from operational activities, underscoring the immense potential of optimizing manufacturing processes to drive meaningful environmental impact. The narrative reinforces the urgency of relentless advancements in energy efficiency across the IT sector, with machine learning and data science leading the charge. Furthermore, deploying ML to streamline energy use in other domains like industry and transportation amplifies these benefits, creating a ripple effect of positive environmental outcomes. The paper culminates in a compelling call to action: adopt a dual-pronged strategy that tackles both operational energy efficiency and the carbon intensity of hardware production. By embracing this holistic approach, the artificial intelligence (AI) sector can play a transformative role in global sustainability efforts, slashing its carbon footprint and driving momentum toward a greener future. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

26 pages, 3067 KiB  
Article
Mechanical Properties, Physical Properties and VOC Emissions of Three-Layer Particleboards with Recycled Automotive Plastics in the Core Layer
by Anna Darabošová, Tatiana Bubeníková, Iveta Čabalová, Miroslav Badida, Çağrı Olgun, Önder Tor and Mustafa Öncel
Polymers 2025, 17(11), 1438; https://doi.org/10.3390/polym17111438 - 22 May 2025
Viewed by 560
Abstract
The growing volume of plastic waste from end-of-life vehicles presents environmental concerns, driving efforts to integrate recycled plastics. This study investigates the possibility of using recycled plastic from automotive parts (painted and unpainted bumpers, fuel tanks) as a 10% filler in the core [...] Read more.
The growing volume of plastic waste from end-of-life vehicles presents environmental concerns, driving efforts to integrate recycled plastics. This study investigates the possibility of using recycled plastic from automotive parts (painted and unpainted bumpers, fuel tanks) as a 10% filler in the core layer of three-layer particleboards (P) and evaluates its impact on physical properties (water absorption—WA and thickness swelling—TS), mechanical properties (internal bonding strength—IB, modulus of rupture—MOR, modulus of elasticity—MOE and screw driving torque—SDT) and volatile organic compounds—VOC emissions. The boards were produced using conventional hot-pressing technology and analyzed according to applicable standards. Based on the results, the density of the reference (P) was 0.72 g·cm−3, while wood–plastic composites ranged from 0.70 g·cm−3 to 0.72 g·cm−3. After 24 h, WA reached 40% for reference (P) and from 36.9% (for (P) containing unpainted bumpers) to 41.9% (for (P) containing fuel tanks). TS reached 18% for (P) and from 16.8% (for (P) containing unpainted bumpers and fuel tanks) to 18.1% (for (P) containing painted bumpers). Plastic is a hydrophobic material and it is assumed that by increasing the proportion of plastic filler in the particleboards, the WA and TS of prepared boards will decrease. From the point of view of mechanical properties, values for (P) containing plastic filler were slightly lower compared to reference (P). The lowest value of IB (0.39 MPa) were reached for (P) containing painted bumpers. Plastic surface treatment could interfere with adhesion between the plastic and adhesive, weakening the bond in the core layer. For this reason, is preferable to use unpainted fillers, which provide better adhesive properties and higher structural integrity. VOC emissions from wood components consisted primarily of monoterpenes such as α-pinene, 3-carene and limonene. Adding 10% plastic to the particleboard did not increase overall VOC emissions. On the other hand, combining wood and plastic particles resulted in a reduction in overall VOC emissions. The findings confirm that recycled automotive plastics can be effectively incorporated into particleboards, maintaining standard performance while reducing reliance on virgin wood materials, making them a viable and sustainable alternative for furniture and interior applications. Full article
(This article belongs to the Special Issue Life Cycle and Utilization of Lignocellulosic Materials)
Show Figures

Figure 1

17 pages, 3044 KiB  
Article
Re-Resinated Wood Strand Panels: Enhancing Performance Through Waste Recycling
by Avishek Chanda, Muhammad Khusairy Bin Bakri, Rajan Adhikari and Vikram Yadama
Sustainability 2025, 17(10), 4596; https://doi.org/10.3390/su17104596 - 17 May 2025
Viewed by 557
Abstract
The construction sector’s increasing eco-consciousness is driving the need for higher-performance wood-based engineered products from underutilized timber resources, such as small-diameter trees from hazardous fuel treatments of our forests. Strand-based products, including oriented strand board (OSB) and lumber (OSL), are widely used. However, [...] Read more.
The construction sector’s increasing eco-consciousness is driving the need for higher-performance wood-based engineered products from underutilized timber resources, such as small-diameter trees from hazardous fuel treatments of our forests. Strand-based products, including oriented strand board (OSB) and lumber (OSL), are widely used. However, hot-pressing during their manufacturing generates approximately 10% waste, which includes a substantial amount of resinated strands that are landfilled. The huge potential of using strand-based products has led to many studies and growing interest in strand-based three-dimensional sandwich panels that can be used as wall, floor, or roofing panels. As the market grows, understanding the recyclability of these resinated strands becomes crucial. This study investigates the feasibility of using re-resinated waste strands that were collected during lab-scale production of strand-based panels. Results demonstrate significant improvements in dimensional stability, mechanical properties, and fire resistance. Specifically, recycling increased internal bond strength, flexural strength, time to ignition, time to flameout, mass loss, and time to peak heat release rate by 107%, 44%, 58%, 35%, 51%, and 27%, respectively, and helped decrease water absorption and thickness swell by 51% and 58%, respectively. Full article
(This article belongs to the Special Issue Sustainable Materials: Recycled Materials Toward Smart Future)
Show Figures

Figure 1

Back to TopTop