Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = precipitation during the growing period

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2261 KiB  
Article
Assessing the Changes in Precipitation Patterns and Aridity in the Danube Delta (Romania)
by Alina Bărbulescu and Cristian Ștefan Dumitriu
J. Mar. Sci. Eng. 2025, 13(8), 1529; https://doi.org/10.3390/jmse13081529 - 9 Aug 2025
Viewed by 169
Abstract
Understanding long-term precipitation variability is essential for assessing the climate’s impact on sensitive ecosystems, particularly in regions of high environmental value, such as the Danube Delta Biosphere Reserve (DDBR). This study examines the temporal dynamics of monthly precipitation in the Danube Delta, Romania, [...] Read more.
Understanding long-term precipitation variability is essential for assessing the climate’s impact on sensitive ecosystems, particularly in regions of high environmental value, such as the Danube Delta Biosphere Reserve (DDBR). This study examines the temporal dynamics of monthly precipitation in the Danube Delta, Romania, spanning the period from 1965 to 2019. Three approaches were used to analyze climatic variability: Change Point detection (CPD) to identify shifts in precipitation regimes, the De Martonne Index (IM) to assess aridity trends, and the Standardized Precipitation Index (SPI) to evaluate drought conditions across annual and monthly scales. Using robust monthly precipitation and temperature datasets from the Sulina meteorological station, CPD analysis revealed statistically significant structural breaks in precipitation trends, suggesting periods of altered climate behavior likely associated with broader regional or global climate changes. IM values indicated mostly hyper-aridity and aridity at monthly and annual scales, respectively. No monotonic trend was found in this index during the analyzed segments, as emphasized by the Mann–Kendall (MK) test. SPI values provided further evidence of variability in the precipitation regime, highlighting a transition toward more extreme hydrological conditions in the region. The combined use of these indices offers a comprehensive view of the evolution of climatic conditions in the Danube Delta. The findings underscore the growing vulnerability of this unique wetland ecosystem to climatic variability, supporting the need for adaptive water management strategies in the face of anticipated future changes. Full article
Show Figures

Figure 1

20 pages, 4135 KiB  
Article
Climate-Induced Water Management Challenges for Cabbage and Carrot in Southern Poland
by Stanisław Rolbiecki, Barbara Jagosz, Roman Rolbiecki and Renata Kuśmierek-Tomaszewska
Sustainability 2025, 17(15), 6975; https://doi.org/10.3390/su17156975 - 31 Jul 2025
Viewed by 368
Abstract
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios [...] Read more.
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios RCP 4.5 and RCP 8.5 for the period 2031–2100. The analysis was conducted for Kraków and Rzeszów Counties in southern Poland using projected monthly temperature and precipitation data from the Klimada 2.0 portal. Potential evapotranspiration (ETp) during the growing season (May–October) was estimated using Treder’s empirical model and the crop coefficient method adapted for Polish conditions. The reference period for comparison was 1951–2020. The results reveal a significant upward trend in water demand for both crops, with the highest increases under the RCP 8.5 scenario–seasonal ETp values reaching up to 517 mm for cabbage and 497 mm for carrot. Rainfall deficits are projected to intensify, especially during July and August, with greater shortages in Rzeszów County compared to Kraków County. Irrigation demand varies depending on soil type and drought severity, becoming critical in medium and very dry years. These findings underscore the necessity of adapting irrigation strategies and water resource management to ensure sustainable vegetable production under changing climate conditions. The data provide valuable guidance for farmers, advisors, and policymakers in planning effective irrigation infrastructure and optimizing water-use efficiency in southern Poland. Full article
Show Figures

Figure 1

27 pages, 31400 KiB  
Article
Multi-Scale Analysis of Land Use Transition and Its Impact on Ecological Environment Quality: A Case Study of Zhejiang, China
by Zhiyuan Xu, Fuyan Ke, Jiajie Yu and Haotian Zhang
Land 2025, 14(8), 1569; https://doi.org/10.3390/land14081569 - 31 Jul 2025
Viewed by 438
Abstract
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and [...] Read more.
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and grid scales. Therefore, this study selects Zhejiang Province—a representative rapidly transforming region in China—to establish a “type-process-ecological effect” analytical framework. Utilizing four-period (2005–2020) 30 m resolution land use data alongside natural and socio-economic factors, four spatial scales (city, county, township, and 5 km grid) were selected to systematically evaluate multi-scale impacts of land use transition on EEQ and their driving mechanisms. The research reveals that the spatial distribution, changing trends, and driving factors of EEQ all exhibit significant scale dependence. The county scale demonstrates the strongest spatial agglomeration and heterogeneity, making it the most appropriate core unit for EEQ management and planning. City and county scales generally show degradation trends, while township and grid scales reveal heterogeneous patterns of local improvement, reflecting micro-scale changes obscured at coarse resolutions. Expansive land transition including conversions of forest ecological land (FEL), water ecological land (WEL), and agricultural production land (APL) to industrial and mining land (IML) primarily drove EEQ degradation, whereas restorative ecological transition such as transformation of WEL and IML to grassland ecological land (GEL) significantly enhanced EEQ. Regarding driving mechanisms, natural factors (particularly NDVI and precipitation) dominate across all scales with significant interactive effects, while socio-economic factors primarily operate at macro scales. This study elucidates the scale complexity of land use transition impacts on ecological environments, providing theoretical and empirical support for developing scale-specific, typology-differentiated ecological governance and spatial planning policies. Full article
Show Figures

Figure 1

12 pages, 1398 KiB  
Article
Flight Phenology of Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) in Its Native Range: A Baseline for Managing an Emerging Invasive Pest
by Claudia Alzate, Eduardo Soares Calixto and Silvana V. Paula-Moraes
Insects 2025, 16(8), 779; https://doi.org/10.3390/insects16080779 - 29 Jul 2025
Viewed by 363
Abstract
Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) is an important pest with a broad host range and growing relevance due to its high dispersal capacity, recent invasions into Africa and Asia, and documented resistance to biological insecticides. Here, we assessed S. eridania flight phenology [...] Read more.
Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) is an important pest with a broad host range and growing relevance due to its high dispersal capacity, recent invasions into Africa and Asia, and documented resistance to biological insecticides. Here, we assessed S. eridania flight phenology and seasonal dynamics in the Florida Panhandle, using pheromone trapping data to evaluate population trends and environmental drivers. Moths were collected year-round, showing consistent patterns across six consecutive years, including two distinct annual flight peaks: an early crop season flight around March, and a more prominent flight peak during September–October. Moth abundance followed a negative quadratic relationship with temperature, with peak activity occurring between 15 °C and 26 °C. No significant relationship was found with precipitation or wind. These results underscore the strong influence of abiotic factors, particularly temperature, on seasonal abundance patterns of this species. Our findings offer key insights by identifying predictable periods of high pest pressure and the environmental conditions that drive population increases. Understanding the flight phenology and behavior of this species provides an ultimate contribution to the development of effective IPM and insect resistance management (IRM) programs, promoting the development of forecasting tools for more effective, timely pest management interventions. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Graphical abstract

18 pages, 3361 KiB  
Article
Model-Based Assessment of Phenological and Climate Suitability Dynamics for Winter Wheat in the 3H Plain Under Future Climate Scenarios
by Yifei Xu, Te Li, Min Xu, Shuanghe Shen and Ling Tan
Agriculture 2025, 15(15), 1606; https://doi.org/10.3390/agriculture15151606 - 25 Jul 2025
Viewed by 296
Abstract
Understanding future changes in crop phenology and climate suitability is essential for sustaining winter wheat production in the Huang-Huai-Hai (3H) Plain under climate change. This study integrates bias-corrected CMIP6 climate projections, the DSSAT CERES-Wheat crop model, and Random Forest analysis to assess spatiotemporal [...] Read more.
Understanding future changes in crop phenology and climate suitability is essential for sustaining winter wheat production in the Huang-Huai-Hai (3H) Plain under climate change. This study integrates bias-corrected CMIP6 climate projections, the DSSAT CERES-Wheat crop model, and Random Forest analysis to assess spatiotemporal shifts in winter wheat phenology and climate suitability. The assessment focuses on the mid- (2041–2060) and late 21st century (2081–2100) under the SSP2-4.5 and SSP5-8.5 scenarios. The results indicate that the vegetative and whole growing periods (VGP and WGP) will be extended in the mid-century but shorten by the late century. In contrast, the reproductive growing period (RGP) will be slightly reduced in the mid-century and extended under high emissions in the late century. Temperature suitability is projected to increase during the VGP and WGP but decline during the RGP. Precipitation suitability generally improves, except for a decrease during the reproductive period south of 32° N. Solar radiation suitability is expected to decline across all stages. Temperature is identified as the primary driver of phenological changes, with solar radiation and precipitation playing increasingly important roles in the mid- and late 21st century, respectively. Adaptive strategies, including the adoption of heat-tolerant varieties, longer reproductive periods, and earlier sowing, are recommended to enhance yield stability under future climate conditions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

22 pages, 6546 KiB  
Article
Remote Sensing-Based Assessment of Evapotranspiration Patterns in a UNESCO World Heritage Site Under Increasing Water Competition
by Maria C. Moyano, Monica Garcia, Luis Juana, Laura Recuero, Lucia Tornos, Joshua B. Fisher, Néstor Fernández and Alicia Palacios-Orueta
Remote Sens. 2025, 17(14), 2339; https://doi.org/10.3390/rs17142339 - 8 Jul 2025
Viewed by 418
Abstract
In water-scarce regions, natural ecosystems and agriculture increasingly compete for limited water resources, intensifying stress during periods of drought. To assess these competing demands, we applied a modified PT-JPL model that incorporates the thermal inertial approach as a substitute for relative humidity ( [...] Read more.
In water-scarce regions, natural ecosystems and agriculture increasingly compete for limited water resources, intensifying stress during periods of drought. To assess these competing demands, we applied a modified PT-JPL model that incorporates the thermal inertial approach as a substitute for relative humidity (RH) in estimating soil evaporation—a method that significantly outperforms the original PT-JPL formulation in Mediterranean semi-arid irrigated areas. This remote sensing framework enabled us to quantify spatial and temporal variations in water use across both natural and agricultural systems within the UNESCO World Heritage site of Doñana. Our analysis revealed an increasing evapotranspiration (ET) trend in intensified agricultural areas and rice fields surrounding the National Park (R = 0.3), contrasted by a strong negative ET trend in wetlands (R < −0.5). These opposing patterns suggest a growing diversion of water toward irrigation at the expense of natural ecosystems. The impact was especially marked during droughts, such as the 2011–2016 period, when precipitation declined by 16%. In wetlands, ET was significantly correlated with precipitation (R > 0.4), highlighting their vulnerability to reduced water inputs. These findings offer crucial insights to support sustainable water management strategies that balance agricultural productivity with the preservation of ecologically valuable systems under mounting climatic and anthropogenic pressures typical of semi-arid Mediterranean environments. Full article
Show Figures

Figure 1

15 pages, 1878 KiB  
Article
The Influence of Weather Conditions and Available Soil Water on Vitis vinifera L. Albillo Mayor in Ribera del Duero DO (Spain) and Potential Changes Under Climate Change: A Preliminary Analysis
by María Concepción Ramos
Agriculture 2025, 15(11), 1229; https://doi.org/10.3390/agriculture15111229 - 4 Jun 2025
Cited by 1 | Viewed by 640
Abstract
Climate variability and trends are of increasing concern in grape-growing areas, although each cultivar can respond differently. In order to establish appropriate adaptation measures, it is necessary to know the relationship between climate variables and grape composition for each cultivar. This research attempts [...] Read more.
Climate variability and trends are of increasing concern in grape-growing areas, although each cultivar can respond differently. In order to establish appropriate adaptation measures, it is necessary to know the relationship between climate variables and grape composition for each cultivar. This research attempts to provide information in this regard for the Albillo Mayor variety grown in the Ribera del Duero DO (Spain) and its potential changes under the shared socioeconomic pathways (SSPs) that lead to different radiative forcing targets. The response of this variety was evaluated in two plots during five seasons (2020–2024). For each year, the phenological dates and grape composition (berry weight, pH, titratable acidity, malic acid, alcoholic content, and the total polyphenol index) were evaluated and related to climate variables including maximum and minimum temperature and precipitation and the resulting water availability averaged over different periods within the growing season. Maximum and minimum temperatures in the pre-veraison period led to lower titratable acidity and malic acid, which, in addition, were favored by lower water availability in the same period. These conditions, on the contrary, led to an increase in the probable alcoholic degree, which is associated with a decrease in berry size. In addition, more available water during the ripening period increases the berry weight, which was also negatively affected by the difference between the maximum and minimum temperature in the same period. By 2050, with the predicted decrease in precipitation and increase in temperature, Albillo Mayor may undergo a decrease in acidity >14% and an increase in the probable alcoholic degree of about 5% in the SSP2-4.5 scenario (energy-balanced development, leading to a radiative forcing of 4.5 Wm−2), while changes could be up to 1.5 and 1.1 times greater, respectively, in the SSP5-8.5 scenario (heavily reliant in fossil-fueled development, leading to a radiative forcing of 8.5 Wm−2). Full article
(This article belongs to the Special Issue Sustainable Viticulture for Climate Change Adaptation)
Show Figures

Figure 1

18 pages, 2671 KiB  
Article
Evaluation of Temporal Changes in Evapotranspiration and Crop Water Requirements in the Context of Changing Climate: Case Study of the Northern Bucharest–Ilfov Development Region, Romania
by Florentina Iuliana Mincu, Daniel Constantin Diaconu, Dana Maria Oprea Constantin and Daniel Peptenatu
Agriculture 2025, 15(11), 1227; https://doi.org/10.3390/agriculture15111227 - 4 Jun 2025
Viewed by 737
Abstract
Climate change has a complex impact on the agricultural crop system, with knowledge of the processes being necessary to assist decisions that guide the adaptation of society to profound structural changes. This study aims to highlight the main changes generated by the modification [...] Read more.
Climate change has a complex impact on the agricultural crop system, with knowledge of the processes being necessary to assist decisions that guide the adaptation of society to profound structural changes. This study aims to highlight the main changes generated by the modification of climatic parameters (increasing air temperature, humidity and precipitation and decreasing wind speed) on agricultural crops in a region with important changes in its economic profile due to urban extension and land use modification. The analysis methodology is based on the Cropwat software to highlight the temporal variability of crop evapotranspiration, effective rain and water requirements for different crops—strawberry, sunflower and pea—and the possibility of using other types of crops with higher yield and lower water needs. The methodology used highlights this fact, showing that major changes are needed in the choice of crop schemes and future technological processes in the current context of climate change. The current results of the study, conducted over a period of 30 years (1991–2020), showed that the climatic, land use and economic changes in the study area have led to a decrease in evapotranspiration and crop water requirements due to the amounts of precipitation that can provide for the water needs of strawberry, sunflower and pea crops. The irrigation requirements during the analysis period 1991–2020 varied from <10 mm/year to 120 mm/year for strawberry crops, and can exceed 300 mm/year for sunflower and pea crops, having higher values in years with a precipitation deficit (effective rain less than 100 mm). Analyzing the irrigation requirements during the vegetation growing seasons shows that for pea and strawberry the trend is decreasing, but without a significance level. Only for the sunflower crop is an increasing trend recorded in the initial and late stages. The results obtained provide a methodological framework as well as concrete information for decision-makers in the field of agriculture who must build adaptation mechanisms for climate challenges. Full article
Show Figures

Figure 1

26 pages, 3355 KiB  
Article
Dendrochronology and Isotope Chronology of Juglans neotropica and Its Response to El Niño-Related Rainfall Events in Tropical Highlands of Piura, Northern Peru
by Tone Marie Ektvedt, Michael N. Evans, Donald A. Falk and Paul R. Sheppard
Plants 2025, 14(11), 1704; https://doi.org/10.3390/plants14111704 - 3 Jun 2025
Cited by 1 | Viewed by 933
Abstract
Tropical trees represent an important potential archive of climate and ecological information, but their dendrochronology based on conventional techniques has been challenging. We conducted a pilot study of the wood anatomy and dendroclimatological potential of Juglans neotropica Diels (Juglandaceae), an IUCN Red List [...] Read more.
Tropical trees represent an important potential archive of climate and ecological information, but their dendrochronology based on conventional techniques has been challenging. We conducted a pilot study of the wood anatomy and dendroclimatological potential of Juglans neotropica Diels (Juglandaceae), an IUCN Red List species, using 225 radii sampled from 57 trees in Piura (4°55′ S, 79° 56′ W), northern Peru. A total of 112 radii from 40 trees passed quality control and are included in the tree-ring width chronology for this species. J. neotropica has demonstrably annual rings, and results are consistent with reports that the species has a dormant period during the dry season, which locally is approximately June–November. Local precipitation is correlated (p = 0.10, 1-tailed test) with tree-ring growth, lagged by one year, consistent with other studies of tropical tree species. The age distribution of the sample collection of J. neotropica is young and invariant, probably because of selective cutting by local villagers. To supplement ring-width analysis, we conducted the first oxygen isotopic (δ18O) and radiocarbon (∆14C) analysis for this species on radii from two individuals; results are preliminary given sample size limitations, but consistent with dendrochronological dating, within uncertainties, in all three chronometric analyses. A two-sample composite annually-averaged δ18O anomaly data series is correlated significantly with gridded regional growing season (December–May) precipitation (1973/74–2005/06). Qualitatively consistent with simulation of ring width and δ18O, responses to El Niño events are manifested in positive ring-growth anomalies and negative isotopic anomalies following known event years. The combination of tree-ring, radiocarbon, stable isotopic analyses, and the application of sensor and chronological modeling provides a degree of confidence in the results that would not have been possible by relying on any single approach and indicates the potential for further investigation of this and other tropical tree species with uncertain ring boundaries. Full article
(This article belongs to the Special Issue New Perspectives on New World Tropical Forests)
Show Figures

Figure 1

19 pages, 4227 KiB  
Article
Integrated Effects of Climate, Topography, and Greenhouse Gas on Grassland Phenology in the Southern Slope of the Qilian Mountains
by Yi Zhang, Guangchao Cao, Meiliang Zhao, Qian Zhang and Liyuan Huang
Atmosphere 2025, 16(6), 653; https://doi.org/10.3390/atmos16060653 - 28 May 2025
Viewed by 391
Abstract
Understanding vegetation phenology dynamics is essential for evaluating ecosystem responses to environmental changes. While previous studies have primarily focused on the correlation between vegetation phenology and climate variables, the integrated effects of meteorological factors, topography, and greenhouse gas (GHG) have often been overlooked. [...] Read more.
Understanding vegetation phenology dynamics is essential for evaluating ecosystem responses to environmental changes. While previous studies have primarily focused on the correlation between vegetation phenology and climate variables, the integrated effects of meteorological factors, topography, and greenhouse gas (GHG) have often been overlooked. This study aims to analyze the spatiotemporal variations in grassland phenology on the southern slopes of the Qilian Mountains from 2002 to 2022, investigating the combined effects of these environmental factors. Our findings reveal significant spatial heterogeneity in vegetation phenology during the study period. Specifically, the start of the growing season (SOS), length of growing season (LOS), and end of the growing season (EOS) advanced, lengthened, and delayed by 0.35, 0.55, and 0.20 days per year, respectively. Climate factors were the primary drivers of phenological changes, with annual precipitation being the main determinant of SOS and LOS, while annual minimum temperature significantly influenced EOS. Topography and GHG had indirect effects on phenology, influencing both annual precipitation and temperature. Additionally, topography affected phenology through its impact on N2O and CO2 emissions. This study highlights the complex interactions between climate, topography, and GHG in shaping vegetation phenology, providing new insights into the driving mechanisms behind phenological changes in semi-arid grassland ecosystems. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

29 pages, 4015 KiB  
Article
A Study of Observed Climate Change Effects on Grapevine Suitability in Oltenia (Romania)
by Mihaela Licurici, Alina Ștefania Vlăduț and Cristina Doina Burada
Horticulturae 2025, 11(6), 591; https://doi.org/10.3390/horticulturae11060591 - 26 May 2025
Viewed by 755
Abstract
Viticulture represents an important agricultural sector in Oltenia, which is one of the Romanian regions most affected by temperature increases. The main purpose of the present study was to analyze the changes in climate suitability for grapevine and wine production against this climate [...] Read more.
Viticulture represents an important agricultural sector in Oltenia, which is one of the Romanian regions most affected by temperature increases. The main purpose of the present study was to analyze the changes in climate suitability for grapevine and wine production against this climate context in the region. Two specific bioclimatic indices were applied, namely the bioclimatic index and the oenoclimate aptitude index, both reflecting the cumulated influence of temperature, actual sunshine duration, and precipitation amounts on the grapevine during the growing season (1 April–30 September). The indices were calculated as average values for the period 1961–2020. In order to emphasize potential shifts in suitability, the mean, maximum, and minimum values were calculated for two distinct periods, 1961–1990 and 1991–2020. The results of the analysis underlined three distinct suitability changes: the area suitable for quality red wines shifting northwards (on average, about 30′ of latitude or 55.5 km), including the eastern part of the Getic Subcarpathians, which is not currently part of any winegrowing region; the emerging new areas suitable for quality white wine (the western part of the Subcarpathians); and a potentially overly hot climate developing in Southern Oltenia where grapevine varieties are currently grown. Thus, the development of adequate adaptation strategies for viticulture to climate change in the region should be considered in the near future. Full article
Show Figures

Figure 1

20 pages, 6761 KiB  
Article
Spatiotemporal Analysis of Soil Moisture Variability and Precipitation Response Across Soil Texture Classes in East Kazakhstan
by Dmitry Chernykh, Roman Biryukov, Andrey Bondarovich, Lilia Lubenets, Anatoly Pavlenko, Kamilla Rakhymbek, Denis Revenko and Zheniskul Zhantassova
Land 2025, 14(6), 1136; https://doi.org/10.3390/land14061136 - 23 May 2025
Viewed by 755
Abstract
The study of the hydrological regimes of rivers in different regions of the globe has revealed the need to include the soil moisture content in flood prediction models. This paper investigates the nature of the dependence of soil moisture content on soil texture [...] Read more.
The study of the hydrological regimes of rivers in different regions of the globe has revealed the need to include the soil moisture content in flood prediction models. This paper investigates the nature of the dependence of soil moisture content on soil texture in the East Kazakhstan region. Data from ERA-5-land reanalysis, soil maps, hydrogeological maps, and the meteorological data of Kazhydromet were used. The years for analysis were selected due to their different moisture conditions. This study analyzed soil moisture within the root zone (0–28 cm depth). A JavaScript-based algorithm was developed in Google Earth Engine to analyze soil moisture and total precipitation across five Soil Texture Index categories during the growing seasons (April–September) of 2013, 2022, and 2023. Final cartographic processing and spatial distribution analysis were conducted using ESRI ArcGIS Pro 3.3. The study of soil moisture’s relationship with different soil textures in the East Kazakhstan region has revealed several key trends. The maximum values of soil moisture for each texture class change very slightly from year to year. The minimum soil moisture values fluctuate more strongly from year to year. The regression analysis demonstrates a statistically significant relationship between precipitation and soil moisture. The best performance is achieved when using a 1-day lag for 2013 and varying optimal lags for 2022 and 2023 (ranging from 1 to 3 days) during the high-precipitation period (months 6–9), with filtering applied to remove days with negligible rainfall. Full article
Show Figures

Figure 1

20 pages, 12500 KiB  
Article
Has Climate Change Affected the Occurrence of Compound Heat Wave and Heavy Rainfall Events in Poland?
by Joanna Wibig and Joanna Jędruszkiewicz
Sustainability 2025, 17(10), 4447; https://doi.org/10.3390/su17104447 - 14 May 2025
Viewed by 1302
Abstract
In the recent decades, an ongoing increase in maximum temperature during summer has been observed in Poland, especially in the central-southern and southeastern areas. This raises the vulnerability of these regions not only to heat waves and drought but also to floods. The [...] Read more.
In the recent decades, an ongoing increase in maximum temperature during summer has been observed in Poland, especially in the central-southern and southeastern areas. This raises the vulnerability of these regions not only to heat waves and drought but also to floods. The potential effect of compound heat waves and extreme rainfall events may be more serious than the effects of these events occurring separately. This research is the first attempt in Poland to investigate whether the presence of a heat wave increases the likelihood of extreme rainfall events, if so, by how much, and whether this changes with warming. For this purpose, we used daily maximum temperature values and 6 h precipitation datasets from 44 meteorological stations in Poland for the 1966–2024 period. It was proven that compound heat wave and extreme rainfall events occurred in Poland with spatially differentiated frequency. They occurred the least frequently on the coast and the most frequently in southwestern, southeastern, and northeastern Poland. The extreme rainfall occurred most often between noon and midnight on the last heat wave day. During these hours, the likelihood of extreme rainfall is, on average, 3.5 times higher than that expected according to climatology norms. With warming, the frequency of days with these compound events increases at the rate of 1.22 days per decade, and the frequency of compound events increases at a rate of 3.75 events per decade. Although a detailed analysis of the mechanisms responsible for such events is planned for further research, the preliminary study revealed that in most cases, the approach of a cold front with a mesoscale thundercloud system was responsible for heat wave termination with extreme rainfall. Since we cannot prevent the growing number of heat waves or heavy precipitation events that terminate the heat wave events in Poland, the adaptation strategy needs to be implemented to meet the sustainable development goals regarding climate actions. This refers primarily to urban planning, agriculture (agroecosystems), social health, and well-being. Full article
Show Figures

Figure 1

21 pages, 40005 KiB  
Article
Vegetation Dynamics and Responses to Climate Variations and Human Activities in the Basin of the Yarlung Tsangpo, Lhasa, and Nianchu Rivers in the Tibetan Plateau
by Chunbo Su, Jingji Li, Ying Xiang, Shurong Yang, Xiaochao Zhang, Dinghui Xu, Shijun Wang, Tingbin Zhang, Peihao Peng and Xiaolu Tang
Land 2025, 14(5), 1027; https://doi.org/10.3390/land14051027 - 8 May 2025
Viewed by 551
Abstract
Terrestrial ecosystem vegetation are vulnerable to the joint impacts of human activities and climate change, particularly in ecologically fragile areas such as the Tibetan Plateau. Identifying vegetation cover changes and distinguishing their driving factors are crucial for ecological conservation in this region. This [...] Read more.
Terrestrial ecosystem vegetation are vulnerable to the joint impacts of human activities and climate change, particularly in ecologically fragile areas such as the Tibetan Plateau. Identifying vegetation cover changes and distinguishing their driving factors are crucial for ecological conservation in this region. This study utilized MODIS normalized difference vegetation index (NDVI) data from 2000 to 2019, combined with trend analysis (univariate linear regression and the Mann–Kendall test), partial correlation analysis, and residual analysis methods, to investigate the spatial and temporal dynamics of vegetation cover and its responses to climate change and human activities in the Yarlung Tsangpo River, Lhasa River, and Nianchu River Basin (YLN Basin) on the Tibetan Plateau. The results revealed significant differences in vegetation dynamics both in summer and the growing season: the average summer NDVI showed a significant decreasing trend during the study period, whereas the growing season NDVI exhibited no significant overall temporal trend, which highlighted the necessity of assessing vegetation dynamics seasonally to accurately capture their interannual complexity. Partial correlation analysis indicated that precipitation was the key limiting climatic factor for vegetation growth in this region, with its positive influence covering over 90% of the land area during summer and over 60% during the growing season. The residual analysis further indicated the dual and spatially heterogeneous roles of human activities: on the one hand, positive impacts, primarily from vegetation restoration projects, promoted NDVI increases in some areas; on the other hand, negative impacts, such as continuous grazing pressure, population growth, and associated land use changes, inhibited vegetation development in other areas. This study quantitatively assessed the combined effects of climate variability and complex human activities on the vegetation NDVI in the YLN Basin, emphasizing that the development of adaptive management and effective vegetation restoration strategies must fully consider seasonal differences, the key climatic limiting factor (water availability), and the spatial heterogeneity of human impacts to promote sustainable development in this ecologically fragile region. Full article
(This article belongs to the Special Issue Vegetation Cover Changes Monitoring Using Remote Sensing Data)
Show Figures

Figure 1

22 pages, 9140 KiB  
Article
Impacts of Hydrothermal Factors on the Spatiotemporal Dynamics of Alpine Grassland Aboveground Biomass During the Pre-, Mid-, and Post-COVID-19 Pandemic Periods
by Langlang Shu, Zhening Zhu, Yu Yin, Zizhi Wang, Wengui Wu, Shuqiao Zhang and Shengxi Liao
Sustainability 2025, 17(9), 3977; https://doi.org/10.3390/su17093977 - 28 Apr 2025
Viewed by 415
Abstract
Aboveground biomass (AGB) is a key parameter for studying the carbon cycle, evaluating grassland growth, and assessing the grass–livestock balance. In this study, we established an optimal inversion model for alpine grassland AGB and estimated the growing-season (July–September) AGB from 2018 to 2022 [...] Read more.
Aboveground biomass (AGB) is a key parameter for studying the carbon cycle, evaluating grassland growth, and assessing the grass–livestock balance. In this study, we established an optimal inversion model for alpine grassland AGB and estimated the growing-season (July–September) AGB from 2018 to 2022 based on field survey data and remote sensing data. We aimed to analyze the spatiotemporal dynamics of AGB in alpine grasslands and its response mechanisms to hydrothermal factors, as well as to explore the indirect impacts of changes in human activities during the COVID-19 pandemic on the grassland ecosystem. The results showed the following: (1) Alpine grassland AGB was high in the southwest and low in the northeast of the studied area, initially increasing and then decreasing over time. This pattern was largely consistent with the spatial distribution and interannual variations in precipitation and temperature, with a significant positive correlation being observed between precipitation and AGB, indicating that hydrothermal factors are key drivers of grassland AGB dynamics. (2) The grasslands demonstrated a trend of slight decrease in AGB overall, with some local areas showing a slight increase. Compared with before 2018, grasslands showed a gradual recovery trend, which may be related to grazing policies and conservation management measures. (3) An increase in grazing intensity in local areas decreased grassland AGB and vice versa, indicating that the restrictive measures led to changes in grazing intensity, which indirectly affected grassland AGB during the pandemic. This study reveals the general patterns of hydrothermal factors’ influence on alpine grassland AGB dynamics during the pre-, mid-, and post-COVID-19-pandemic periods, providing a scientific basis for formulating sustainable grassland management strategies. Full article
Show Figures

Figure 1

Back to TopTop