Integrated Effects of Climate, Topography, and Greenhouse Gas on Grassland Phenology in the Southern Slope of the Qilian Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Research Data
2.3. Research Methods
2.3.1. Methodological Framework
2.3.2. Extraction of Vegetation Phenology
2.3.3. Trend Analysis
2.3.4. Optimal Parameter Geodetic Detector
2.3.5. Partial Least Squares Structural Equation Modeling
3. Results
3.1. Analysis of Spatial and Temporal Variability of Grassland Vegetation Phenology
3.2. Inter-Annual Variability of Meteorological Data
3.3. Factor Detection and Analysis
3.4. Analysis of the Influence Mechanism of Grassland Phenology on the South Slope of Qilian Mountains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duveiller, G.; Hooker, J.; Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 2018, 9, 679. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Zhu, K.Z.; Wan, M.W. Phenology; Science Press: Beijing, China, 1973; pp. 2–6. [Google Scholar]
- Madiniyati, D.; Yusupujiang, R.; Jiang, H. Temporal and spatial variation of vegetation phenology and its driving factor analysis in the Bosten Lake Drainage Basin from 2001 to 2014. Acta Ecol. Sin. 2018, 38, 6921–6931. [Google Scholar]
- Roetzer, T.; Wittenzeller, M.; Haeckel, H.; Nekovar, J. Phenology in central europe–differences and trends of spring phenophases in urban and rural areas. Int. J. Biometeorol. 2000, 44, 60–66. [Google Scholar] [CrossRef]
- Du, Q.; Liu, H.; Li, Y.; Xu, L.; Diloksumpun, S. The effect of phenology on the carbon exchange process in grassland and maize cropland ecosystems across a semiarid area of China. Sci. Total Environ. 2019, 695, 133868. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Yuan, Y.; Wang, X.; Chen, B.; Zhang, H.; Xin, X. Estimating the impact of climate change on the carbon exchange of a temperate meadow steppe in China. Ecol. Indic. 2022, 140, 109055. [Google Scholar] [CrossRef]
- Shen, P.; Wang, X.; Zohner, C.M.; Peñelas, J.; Zhou, Y.; Tang, Z.; Xia, J.; Zheng, H.; Fu, Y.; Liang, J.; et al. Biodiversity buffers the response of spring leaf unfolding to climate warming. Nat. Clim. Change 2024, 14, 863–868. [Google Scholar] [CrossRef]
- Dong, S. Revitalizing the grassland on the Qinghai–Tibetan Plateau. Grassl. Res. 2023, 2, 241–250. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Cui, Z.; Liu, Y.; Wang, D.; Tian, F.; Wu, G. Natural grasslands maintain soil water sustainability better than planted grasslands in arid areas. Agric. Ecosyst. Environ. 2019, 286, 106683. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Li, H.; Ma, Y.; Wang, Y. Influences of climate warming on plant phenology in Qinghai plateau. J. Appl. Meteorol. Sci. 2010, 21, 500–505. [Google Scholar]
- Currier, C.M.; Sala, O.E. Precipitation versus temperature as phenology controls in drylands. Ecology 2022, 103, e3793. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Li, P.; Ren, P.; Tang, J.; Zhang, C.; Zhou, X.; Peng, C. Divergent response of vegetation phenology to extreme temperatures and precipitation of different intensities on the Tibetan Plateau. Sci. China Earth Sci. 2023, 66, 2200–2221. [Google Scholar] [CrossRef]
- Li, C.; Zou, Y.; He, J.; Zhang, W.; Gao, L.; Zhuang, D. Response of Vegetation Phenology to the Interaction of Temperature and Precipitation Changes in Qilian Mountains. Remote Sens. 2022, 14, 1248. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Zhou, L.; Zhou, G. Spatiotemporal patterns of phenological metrics and their relationships with environmental drivers in grasslands. Sci. Total Environ. 2024, 938, 173489. [Google Scholar] [CrossRef]
- Skakun, S.; Franch, B.; Vermote, E.; Roger, J.C.; Becker-Reshef, I.; Justice, C.; Kussul, N. Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sens. Environ. 2017, 195, 244–258. [Google Scholar] [CrossRef]
- Su, F.; Wang, J.; Wang, Z.; Chen, Y.; Wang, L.; Yang, K. Temporal and Spatial Changes of Vegetation Phenology and Its Response to Climate Change in Nanpan River Basin from 2001 to 2020. Res. Soil Water Conserv. 2022, 29, 220–227. [Google Scholar]
- Tang, Y.; Sun, H.; Wang, X. Using leaf area index to analyze the growth stability and influencing factors of the Mount Altai Taiga under climate change. Acta Ecol. Sin. 2024, 44, 8258–8268. [Google Scholar]
- Li, X.; Zeng, F.; Jiang, Q.; Yan, S. Remote sensing monitoring of vegetation phonological features in songnen plain of northeast China during 1999–2013. J. Nat. Resour. 2017, 32, 321–328. [Google Scholar]
- Zhang, Y.; Hong, S.; Liu, Q.; Huntingord, C.; Peñuelas, J.; Rossi, S. Autumn canopy senescence has slowed down with global warming since the 1980s in the Northern Hemisphere. Commun. Earth Environ. 2023, 4, 173. [Google Scholar] [CrossRef]
- Liu, N.; Ding, Y.; Peng, S. Temporal effects of climate on vegetation trigger the response biases of vegetation to human activities. Glob. Ecol. Conserv. 2021, 31, e01822. [Google Scholar] [CrossRef]
- Cui, H.; Chu, L.; Yin, Y.; Pan, Y.; Meng, H.; Wang, T. Spatio-temporal patterns of vegetation phenology and their evolutionary mechanisms in the Three Gorges Reservoir Area from 1990 to 2020. Acta Ecol. Sin. 2024, 44, 3775–3790. [Google Scholar]
- Ontel, I.; Avram, S.; Gheorghe, C.A.; Niculae, M.I.; Pascu, I.S.; Rodino, S. Shifting vegetation phenology in protected areas: A response to climate change. Ecol. Inform. 2025, 85, 102962. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, Y.H.; Zhu, Z.; Liu, Y.; Liu, Z.; Huang, M.; Janssens, I.A.; Piao, S. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Change Biol. 2016, 22, 3702–3711. [Google Scholar] [CrossRef]
- Linkosalmi, M.; Tuovinen, J.-P.; Nevalainen, O.; Peltoniemi, M.; Taniş, C.M.; Arslan, A.N.; Rainne, J.; Lohila, A.; Laurila, T.; Aurela, M. Tracking Vegetation Phenology of Pristine Northern Boreal Peatlands by Combining Digital Photography with CO2 Flux and Remote Sensing Data. Biogeosciences 2022, 19, 4747–4765. [Google Scholar] [CrossRef]
- Zhou, G.; Song, X.; Zhou, M.; Zhou, L.; Ji, Y. Advances in influencing mechanism and model of total climatic production factors of plant phenology change. Sci. Sin. 2023, 3, 380–389. [Google Scholar] [CrossRef]
- Delpierre, N.; Vitasse, Y.; Chuine, I.; Guillemot, J.; Bazot, S.; Rutishauser, T.; Rathgeber, C.B. Temperate and boreal forest tree phenology: Fromorgan-scale processes to terrestrial ecosystem models. Ann. For. Sci. 2016, 73, 5–25. [Google Scholar] [CrossRef]
- Chen, L.; Huang, J.G.; Ma, Q.; Hänninen, H.; Tremblay, F.; Bergeron, Y. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Glob. Change Biol. 2019, 25, 997–1004. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, Y.; Xin, Y.; Zhong, D.; Yang, C. Changes of Vegetation Phenology and Its Response to Climate Change in the West Sichuan Plateau in the Past 20 Years. Ecol. Environ. 2022, 31, 1326–1339. [Google Scholar]
- Jiang, Z.; Sun, Y.; Zhao, S.; He, W.; Li, Z. Vegetation Phenological Change and Its Response to Climate Change in Qinghai Province. J. Ecol. Rural. Environ. 2022, 38, 765–776. [Google Scholar]
- Li, D.; Wang, Z. Spatiotemporal Variation of Vegetation Phenology and Its Response to Climate in Qinling Mountains Based on MCD12Q2. Ecol. Environ. Sci. 2020, 1, 11–22. [Google Scholar]
- Liu, J.; Li, C.; Li, T.; Liu, Y. The effects of future climate change on soybean growth period and yield in Henan province under RCP scenario. Hubei Agric. Sci. 2020, 22, 81–85. [Google Scholar]
- Kong, D.; Zhang, Q.; Huang, W.; Gu, X. Vegetation phenology change in Tibetan Plateau from 1982 to 2013 and its related meteorological factors. Acta Geogr. Sin. 2017, 1, 39–52. [Google Scholar]
- Xiong, X.; Li, C.; Chen, J. Topographic regulatory role of vegetation response to climate change. Acta Geogr. Sin. 2023, 78, 2256–2270. [Google Scholar]
- Meng, F.; Hong, S.; Wang, J.; Chen, A.; Zhang, Y.; Zhang, Y.; Janssens, I.A.; Mao, J.; Myneni, R.B.; Peñuelas, J.; et al. Climate change increases carbon allocation to leaves in early leaf green-up. Ecol. Lett. 2023, 26, 816–826. [Google Scholar] [CrossRef]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.G.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Nature 2006, 437, 559–562. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- She, Y.; Zhang, Y.; Chen, C. Temporal and spatial dynamics of NDVI and its driving force analysis in Hunan Province from 2000 to 2020. J. Cent. South Univ. For. Technol. 2025, 4, 108–118. [Google Scholar]
- Luo, K.; Samat, A.; Van de Voorde, T.; Li, W.; Xu, W.; Abuduwaili, J. Assessing Ecological Quality Dynamics and Driving Factors in the Irtysh River Basin Using AWBEI and OPGD Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 1153–1173. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, F.; Zong, Q.; Jin, K.; Liu, C.; Qin, P. Spatial patterns and driving forces of urban vegetation greenness in China: A case study comprising 289 cities. Geogr. Sustain. 2024, 5, 370–381. [Google Scholar] [CrossRef]
- Tenenhaus, M.; Vinzi, W.E.; Chatelin, Y.M.; Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 2005, 48, 159–205. [Google Scholar] [CrossRef]
- Liu, Z.; Si, J.; Deng, Y.; Jia, B.; Li, X.; He, X.; Zhou, D.; Wang, C.; Zhu, X.; Qin, J.; et al. Assessment of Land Desertification and Its Drivers in Semi-Arid Alpine Mountains: A Case Study of the Qilian Mountains Region, Northwest China. Remote Sens. 2023, 15, 3836. [Google Scholar] [CrossRef]
- Wang, H.; Xiong, X.; Wang, K.; Li, X.; Hu, H.; Li, Q.; Yin, H.; Wu, C. The effects of land use on water quality of alpine rivers: A case study in Qilian Mountain, China. Sci. Total Environ. 2023, 875, 162696. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, T.; Guo, X.; Zheng, Y.; Geng, H.; Zhang, J.; Chen, Y.; Liu, W.; Lin, M. Vegetation greening mitigates the positive impacts of climate change on water availability in northwest China. J. Hydrol. 2024, 644, 132086. [Google Scholar] [CrossRef]
- Li, J.; Gong, C. Effects of terrain factors on vegetation cover change in national park of Qilian mountains. Bull. Soil Water Conserv. 2021, 41, 228–237. [Google Scholar]
- Tong, S.; Cao, G.; Yan, X.; Diao, E.; Zhang, Z. Spatial-Temporal Evolution of Vegetation Cover and its Driving Factors on the South Slope of the Qilian Mountains, China from 2000 to 2020. Mt. Res. 2022, 40, 491–503. [Google Scholar]
- Zhang, Q.; Cao, G.; Zhang, L.; Zhao, M. Spatiotemporal changes in vegetation greenness on the southern slopes of the Qilian Mountains and their responses to climate change and human activities. Arid Zone Res. 2024, 41, 2143–2153. [Google Scholar]
- Baranova, A.; Chickhoff, U.; Wang, S.; Jin, M. Mountain pastures of Qilian Shan: Plant communities, grazing impact and degradation status (Gansu province, NW China). Hacquetia 2016, 15, 21–35. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, G.; Yang, L.; Li, Z. Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecol. 2003, 165, 169–181. [Google Scholar] [CrossRef]
- Qiao, C.; Jia, D.; Cheng, C. Vegetation phenology change and response to temperature in the Qilian Mountains from 1982 to 2014. J. Beijing Norm. Univ. 2022, 1, 168–177. [Google Scholar]
- Jia, J.; Liu, H.; Lin, Z. Multi-time scale changes of vegetation NPP in six provinces of northwest China and their responses to climate change. Acta Ecol. Sin. 2019, 14, 5058–5069. [Google Scholar]
- Ge, Q.; Dai, J.; Cui, H.; Wang, H. Spatiotemporal Variability in Start and End of Growing Season in China Related to Climate Variability. Remote Sens. 2016, 8, 433. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, J. Spatio-temporal Analysis of Vegetation Phenology with Multiple Methods over the Tibetan Plateau based on MODIS NDVI Data. Remote Sens. Technol. Appl. 2018, 3, 486–498. [Google Scholar]
- Guan, Q.; Ding, M.; Zhang, H. Spatiotemporal Variation of Spring Phenology in Alpine Grassland and Response to Climate Changes on the Qinghai-Tibet, China. Mt. Res. 2019, 37, 639–648. [Google Scholar]
- Ji, Z.; Pei, T.; Chen, Y.; Hou, Q.; Xie, B.; Wu, H. Grassland phenological dynamics and its response to driving factors on the Qinghai-Tibet Plateau. Pratacultural Sci. 2023, 40, 4–14. [Google Scholar]
- Zhao, X.; Liu, Y.; Yang, S.; Zhang, Q.; Gao, F.; Liu, Y. Spatio-temporal variations of typical woodland and grassland phenology and its response to meteorological factors in Northern China. Acta Ecol. Sin. 2023, 43, 3744–3755. [Google Scholar]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Xie, H.; Li, J.; Tong, X.; Zhang, J.; Liu, P.; Yu, P.; Hu, H.; Yang, M. Spatial-temporal variations of forest and grassland phenology in the Yellow River Basin during 2000-2018. Chin. J. Appl. Ecol. 2023, 34, 647–656. [Google Scholar]
- Yuan, M.; Wen, Z.; He, L.; Li, X.; Zhao, L. Response of temperate grassland phenology to climate change and its contribution to gross primary productivity in China. Acta Ecol. Sin. 2024, 44, 354–376. [Google Scholar]
- Sen, P. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 2012, 63, 1379–1389. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, G.; Zhao, M.; Zhang, Y. kNDVI Spatiotemporal Variations and Climate Lag on Qilian Southern Slope: Sen–Mann–Kendall and Hurst Index Analyses for Ecological Insights. Forests 2025, 16, 307. [Google Scholar] [CrossRef]
- Frimpong, B.F.; Koranteng, A.; Molkenthin, F. Analysis of temperature variability utilising Mann–Kendall and Sen’s slope estimator tests in the Accra and Kumasi Metropolises in Ghana. Environ. Syst. Res. 2022, 11, 24. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Zhang, M.; Kafy, A.-A.; Ren, B.; Zhang, Y.; Tan, S.; Li, J. Application of the Optimal Parameter Geographic Detector Model in the Identification of Influencing Factors of Ecological Quality in Guangzhou, China. Land 2022, 11, 1303. [Google Scholar] [CrossRef]
- Yao, X.; Ye, B.; Lan, Y.; Lin, Z.; Zhu, Z.; Yang, F.; Zeng, X. Diurnal contrast of urban park cooling effects in a “Furnace city” using multi-source geospatial data and optimal parameters-based geographical detector model. Sustain. Cities Soc. 2024, 114, 105765. [Google Scholar] [CrossRef]
- Wang, C.; Ma, L.; Zhang, Y.; Chen, N.; Wang, W. Spatiotemporal dynamics of wetlands and their driving factors based on PLS-SEM: A case study in Wuhan. Sci. Total Environ. 2022, 806, 151310. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, P.; Liu, Y.; Tian, L.; Cao, Y.; Guo, Y.; Li, J.; Wang, Y.; Huang, J.; Jin, R.; et al. Study on spatiotemporal changes of wetlands based on PLS-SEM and PLUS model: The case of the Sanjiang Plain. Ecol. Indic. 2024, 169, 112812. [Google Scholar] [CrossRef]
- Li, Z.; Wu, Y.; Wang, R.; Liu, B.; Qian, Z.; Li, C. Assessment of climatic impact on vegetation spring phenology in Northern China. Atmosphere 2023, 14, 117. [Google Scholar] [CrossRef]
- He, X.; Liu, A.; Tian, Z.; Wu, L.; Zhou, G. Response of Vegetation Phenology to Climate Change on the Tibetan Plateau Considering Time-Lag and Cumulative Effects. Remote Sens. 2024, 16, 49. [Google Scholar] [CrossRef]
- Zelikova, T.J.; Williams, D.G.; Hoenigman, R.; Blumenthal, D.M.; Morgan, J.A.; Pendall, E. Seasonality of soil moisture mediates responses of ecosystem phenology to elevated CO2 and warming in a semi-arid grassland. J. Ecol. 2015, 103, 1119–1130. [Google Scholar] [CrossRef]
- Chen, Y.; Han, M.; Yuan, X.; Hou, Y.; Qin, W.; Zhou, H.; Zhao, X.; Klein, J.A.; Zhu, B. Warming has a minor effect on surface soil organic carbon in alpine meadow ecosystems on the Qinghai-Tibetan Plateau. Global Change Biol. 2022, 28, 1618–1629. [Google Scholar] [CrossRef] [PubMed]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Yu, X.; Millet, D.B.; Henze, D.K.; Turner, A.J.; Delgado, A.L.; Bloom, A.A.; Sheng, J. A high-resolution satellite-based map of global methane emissions reveals missing wetland, fossil fuel, and monsoon sources. Atmos. Chem. Phys. 2023, 23, 3325–3346. [Google Scholar] [CrossRef]
- Teuling, A.J.; Seneviratne, S.I.; Stöckli, R.; Reichstein, M.; Moors, E.; Ciais, P.; Luyssaert, S.; van den Hurk, B.; Ammann, C.; Bernhofer, C.; et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 2010, 3, 722–727. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Z.; Zhu, M.; Wan, J.; Wu, X.; Liu, R.; Zheng, J. Study on the response of Net Primary Productivity to vegetation phenology and its influencing factors in karst ecologically fragile regions. Atmosphere 2024, 15, 1464. [Google Scholar] [CrossRef]
- Kudo, G.; Ida, T.Y. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 2013, 94, 2311–2320. [Google Scholar] [CrossRef]
Dataset | Symbol | Source | Spatial Resolution | Time Resolution | Use Period |
---|---|---|---|---|---|
Aspect | X1 | https://www.gscloud.cn/ (accessed on 15 October 2024) | 90 m | - | - |
Altitude | X2 | 90 m | - | - | |
Slope | X3 | 90 m | - | - | |
CH4 | X4 | https://edgar.jrc.ec.europa.eu/ (accessed on 1 November 2024) | 0.1° | Year | 2002–2022 |
N2O | X5 | 0.1° | Year | 2002–2022 | |
CO2 | X6 | 0.1° | Year | 2002–2022 | |
Annual precipitation | X7 | http://data.cma.cn/ (accessed on 15 October 2024) | 0.0083333° | Year | 2002–2022 |
Mean air temperature | X8 | 0.0083333° | Year | 2002–2022 | |
Minimum air temperature | X9 | 0.0083333° | Year | 2002–2022 | |
Maximum air temperature | X10 | 0.0083333° | Year | 2002–2022 | |
Land cover dataset | http://www.ncdc.ac.cn (accessed on 15 October 2024) | 30 m | Year | 2002, 2012, 2022 | |
MOD13A2.061 NDVI | https://earthengine.google.com/ (accessed on 20 October 2024) | 1 km | 16 Days | 2001–2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Cao, G.; Zhao, M.; Zhang, Q.; Huang, L. Integrated Effects of Climate, Topography, and Greenhouse Gas on Grassland Phenology in the Southern Slope of the Qilian Mountains. Atmosphere 2025, 16, 653. https://doi.org/10.3390/atmos16060653
Zhang Y, Cao G, Zhao M, Zhang Q, Huang L. Integrated Effects of Climate, Topography, and Greenhouse Gas on Grassland Phenology in the Southern Slope of the Qilian Mountains. Atmosphere. 2025; 16(6):653. https://doi.org/10.3390/atmos16060653
Chicago/Turabian StyleZhang, Yi, Guangchao Cao, Meiliang Zhao, Qian Zhang, and Liyuan Huang. 2025. "Integrated Effects of Climate, Topography, and Greenhouse Gas on Grassland Phenology in the Southern Slope of the Qilian Mountains" Atmosphere 16, no. 6: 653. https://doi.org/10.3390/atmos16060653
APA StyleZhang, Y., Cao, G., Zhao, M., Zhang, Q., & Huang, L. (2025). Integrated Effects of Climate, Topography, and Greenhouse Gas on Grassland Phenology in the Southern Slope of the Qilian Mountains. Atmosphere, 16(6), 653. https://doi.org/10.3390/atmos16060653