Evaluation of Temporal Changes in Evapotranspiration and Crop Water Requirements in the Context of Changing Climate: Case Study of the Northern Bucharest–Ilfov Development Region, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Cropwat Model
2.4. Mann–Kendal Statistical Test
3. Results
3.1. Analysis of Hydrometeorological Parameters
3.2. Analysis of Simulated Results with the Cropwat Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ETc | crop evapotranspiration (mm) |
ETo | reference evapotranspiration (mm) |
Eff. Rain | effective rain |
FAO | Food and Agriculture Organization |
NIWR | Net Irrigation Water Requirement |
CWR | Crop Water Requirement |
Irr. Req. | Irrigation Requirement |
References
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef]
- Skakun, S.; Justice, C.O.; Vermote, E.; Roger, J.C. Transitioning from MODIS to VIIRS: An analysis of inter-consistency of NDVI data sets for agricultural monitoring. Int. J. Remote Sens. 2018, 39, 971–992. [Google Scholar] [CrossRef]
- Baloi, A.; Belean, B.; Turcu, F.; Peptenatu, D. GPU-based similarity metrics computation and machine learning approaches for string similarity evaluation in large datasets. Soft Comput. 2023, 28, 3465–3477. [Google Scholar] [CrossRef]
- Islam, N.; Rashid, M.M.; Pasandideh, F.; Ray, B.; Moore, S.; Kadel, R. A review of applications and communication technologies for internet of things (IoT) and unmanned aerial vehicle (UAV) based sustainable smart farming. Sustainability 2021, 13, 182. [Google Scholar] [CrossRef]
- Akhter, R.; Sofi, S.A. Precision agriculture using iot data analytics and machine learning. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 5602–5618. [Google Scholar] [CrossRef]
- Majeed, Y.; Fu, L.; He, L. Editorial: Artificial intelligence-of-things (AIoT) in precision agriculture. Front. Plant Sci. 2024, 15, 1369791. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.V.; Sîrodoev, I.; Bandoc, G.; Dumitraşcu, M.; Peptenatu, D. Water deficit and corn productivity during the post-socialist period. Case study: Southern Oltenia drylands. Romania Arid. Land Res. Manag. 2016, 30, 239–257. [Google Scholar] [CrossRef]
- Prăvălie, R.; Sîrodoev, I.; Patriche, C.V.; Bandoc, G.; Peptenatu, D. The analysis of the relationship between climatic water deficit and corn agricultural productivity in the Dobrogea Plateau. Carpathian J. Earth Environ. Sci. 2014, 9, 201–214. [Google Scholar]
- Yang, Z.; Diao, C.; Gao, F. Towards scalable within-season crop mapping with phenology normalization and deep learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1390–1402. [Google Scholar] [CrossRef]
- Available online: http://statistici.insse.ro:8077/tempo-online/#/pages/tables/insse-table (accessed on 7 January 2025).
- Peptenatu, D.; Draghici, C.; Merciu, C. Characteristics of entrepreneurial profile in some emergent territorial structures in Romania. Actual Probl. Econ. 2012, 12, 448–458. [Google Scholar]
- Diaconu, D.C.; Peptenatu, D.; Gruia, A.K.; Grecu, A.; Gruia, A.R.; Gruia, M.F.; Drăghici, C.C.; Băloi, A.M.; Alexandrescu, M.B.; Sibinescu, R.B. The Impact of Urban Expansion on Land Use in Emerging Territorial Systems: Case Study Bucharest-Ilfov, Romania. Agriculture 2025, 15, 406. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 Dual crop coefficient method for estimating evaporation from soil and application extensions. J. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef]
- Pereira, A.B.; Villa Nova, N.A.; Pires, L.F.; Angelocci, L.R.; Beruski, G.C. Estimation method of grass net radiation on the determination of potential evapotranspiration. Meteorol. Appl. 2014, 21, 369–375. [Google Scholar] [CrossRef]
- Mincu, F.I.; Neculau, G. An Experimental Study on Crop Evapotranspiration in Romania. Scientific Papers. Series A. Agronomy 2024, 67, 554–561. [Google Scholar]
- Neculau, G.; Stan, F. Evaporation and evapotranspiration in Romania. Forum Geogr. 2016, 15, 39–48. [Google Scholar] [CrossRef]
- Stan, F.; Neculau, G. Implementation of some calculation methods of the evaporation in the catchments of Prut and Bârlad Rivers. Air Water Compon. Environ. 2014, 2014, 219–226. [Google Scholar]
- Stan, F.; Neculau, G.; Zaharia, L.; Ioana-Toroimac, G.; Mihalache, S. Study on the evaporation andevapotranspiration measured on Căldăruşani lake. Procedia Environ. Sci. 2016, 32, 281–289. [Google Scholar] [CrossRef]
- Constantin, D.M.; Mincu, F.I.; Diaconu, D.C.; Burada, C.D.; Baltateanu, E. Water Management in Wheat Farming in Romania: Simulating the Irrigation Requirements with the CROPWAT Model. Agronomy 2024, 15, 61. [Google Scholar] [CrossRef]
- Stăncalie, G.; Marica, A.; Toulios, L. Using earth observation data and CROPWAT model to estimate the actual crop evapotranspiratiom. Phys. Chem. Earth 2010, 35, 25–30. [Google Scholar] [CrossRef]
- Stan, F.; Zaharia, L.; Neculau, G.; Ioana-Toroimac, G. Variabilité spatiale et temporelle de l’évaporation dans la Plaine roumaine. Actes Colloq. L’assoc. Int. Climatol. 2015, 28, 621–626. [Google Scholar]
- Nayak, T.R.; Choudhary, M.K.; Pandram, V.K. Modelling the Crop Water Requirement Using CROPWAT: A Case Study of Samrat Ashok Sagar (Halali) Project Command. In Proceedings of the India Water Week, New Delhi, India, 4–8 April 2016. [Google Scholar] [CrossRef]
- Stan, F.; Carmello, V.; Zaharia, L.; Ioana-Toroimac, G. Estimation de l’evapotranspiration pour differents types de cultures agricoles, par le modele Cropwat. Estudes de cas en Roumanie et au Bresil. In Proceedings of the XXX Colloque de l’Association INternationale de Climatologie, Sfax, Tunisia, 3–6 July 2017; pp. 485–490. [Google Scholar]
- Saravanan, K.; Saravanan, R. Determination of Water Requirements of Main crops in the Tank Irrigation Command area using CROPWAT 8.0. Int. J. Interdiscip. Multidiscip. Stud. 2014, 1, 266–272. [Google Scholar]
- Shah, P.V.; Mistry, R.N.; Amin, J.B.; Parmar, A.M.; Shaikh, M.R.A. Irrigation scheduling using Cropwat. Int. J. Adv. Res. Eng. Sci. Technol. 2015, 2, 192–201. [Google Scholar]
- Al-Najar, H. The Integration of FAO-Cropwat model and GIS Techiniques for Estimating Irrigation Wtaer Requirement and its Application in the Gaza Strip. Nat. Resour. 2011, 2, 146–154. [Google Scholar] [CrossRef]
- National Institute of Geography (NIG). Geography of Romania (Geografia România); Romanian Academy Publishing House: Bucharest, Romania, 2005; Volume 5. [Google Scholar]
- Available online: https://ismn.earth/en/networks/?id=RSMN (accessed on 23 January 2025).
- Doorenbos, J.; Pruitt, W.O. Guidelines for predicting crop-water requirements. In FAO Irrigation and Drainage Paper, 2nd ed.; FAO: Rome, Italy, 1977; p. 156. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guide-lines for computing crop water requirements. In FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Djaman, K.; O’Neill, M.; Owen, K.; Smeal, D.; Koudahe, K.; West, M.; Allen, S.; Lombard, K.; Suat Irmak, S. Crop Evapotranspiration, Irrigation Water Requirement and Water Productivity of Maize from Meteorological Data under Semiarid Climate. Water 2018, 10, 405. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H. Efeito da & AACUTEgua no Rendimento das Culturas; Ufpb: Campina Grande, Brazil, 1994; p. 306. [Google Scholar]
- Salmi, T.; Maatta, A.; Anttila, P.; Ruoho-Airola, T.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates—The Excel Template Application Makesens; Publications on Air Quality; Pappelallee: Berlin, Germany, 2002; Volume 31, p. 35. [Google Scholar]
- Bojariu, R.; Bîrsan, M.; Cică, R.; Velea, L.; Burcea, S.; Dumitrescu, A.; Dascălu, S.; Gothard, M.; Dobrinescu, A.; Cărbunaru, F.; et al. Schimbările Climatice—De la Bazele Fizice la Riscuri și Adaptare; Printech: Bucharest, Romania, 2015. [Google Scholar]
- Dinpashoh, Y.; Babamiri, O. Trends in reference crop evapotranspiration in Urmia Lake basin. Arabian J. Geosci. 2020, 13, 372. [Google Scholar] [CrossRef]
- Yong, S.L.S.; Ng, J.L.; Huang, Y.F.; Ang, C.K. Innovative Trend Analysis of Reference Crop Evapotranspiration in Peninsular Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2021, 1022, 012071. [Google Scholar] [CrossRef]
- Sevov, A.; Georgieva, V. Technological solutions for common sunflower (Heliantus annuus) growing in a changing climate condition. Sci. Papers. Ser. A. Agron. 2023, 2, 380–387. [Google Scholar]
- La Fuente, S.; Jennings, E.; Lenters, J.; Verburg, P.; Kirillin, G.; Shatwell, T.; Couture, R.-M.; Côté, M.; Råman Vinnå, L.; Woolwa, I. Increasing warm-season evaporation rates across European lakes under climate change. Clim. Change 2024, 177, 173. [Google Scholar] [CrossRef]
- Maček, U.; Bezak, N.; Šraj, M. Reference evapotranspiration changes in Slovenia, Europe. Agric. For. Meteorol. 2018, 260–261, 183–192. [Google Scholar] [CrossRef]
- Paltineanu, C.; Chitu, E.; Mateescu, E. New trends for reference evapotranspiration and climatic water deficit. Int. Agrophys. 2012, 26, 159–165. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; De Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- Tomas-Burguera, M.; Begueria, S.; Vicente-Serrano, S.M. Climatology and trends of reference evapotranspiration in Spain. Int. J. Climatol. 2021, 41, E1860–E1874. [Google Scholar] [CrossRef]
Crop Name | Planting Date | Harvest Date | Kc Values | Duration of Vegetation Period (days) | Rooting Depth (m) | Crop Height (m) | Soil Type | Total Available Soil Moisture (mm/m) | ||
---|---|---|---|---|---|---|---|---|---|---|
Initial | Mid | End | ||||||||
Strawberry | 20 March | 18 June | 0.4 | 0.85 | 0.75 | 90 | 0.3 | 0.2 | Sandy loam | 120 |
Pea | 1 May | 29 July | 0.5 | 1.15 | 1.1 | 90 | 0.6 | 0.5 | ||
Sunflower | 10 April | 17 August | 0.4 | 1.15 | 0.25 | 130 | 0.4 | 1 |
Parameter | Mann–Kendall Results | Time Series | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
IV | V | VI | VII | VIII | IX | X | XI | Average III–XI | ||
Air temperature (°C) | Test Z | 2.07 | 1.18 | 1.57 | 0.93 | 2.09 | 3.32 | 0.57 | 0.44 | 1.68 |
Signific. | * | * | *** | + | ||||||
Precipitation (mm) | Test Z | 0.50 | 0.21 | 0.25 | −0.18 | −0.68 | −0.36 | 0.25 | 0.48 | 0.36 |
Signific. | ||||||||||
Air humidity (%) | Test Z | 0.82 | 2.60 | 2.45 | 2.54 | 1.45 | −0.54 | 1.81 | 1.78 | 2.93 |
Signific. | ** | * | * | + | + | ** | ||||
Wind speed (m/s) | Test Z | −4.27 | −5.33 | −6.10 | −4.58 | −4.70 | −4.68 | −4.80 | −3.96 | −5.39 |
Signific. | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Crop | Parameter | Initial Stage | Crop Development | Mid-Season | Late Season | Growing Season |
---|---|---|---|---|---|---|
Strawberry | ETc | 24.9 | 54.8 | 31.6 | 50.6 | 162.0 |
Eff. Rain | 42.8 | 53.0 | 20.6 | 38.7 | 155.0 | |
Irr. Req | 4.2 | 15.6 | 12.3 | 11.5 | 43.5 | |
Sunflower | ETc | 5.24 | 44.62 | 205.56 | 82.31 | 337.73 |
Eff. Rain | 30.70 | 58.13 | 113.50 | 41.73 | 244.08 | |
Irr. Req | 0.68 | 11.30 | 94.10 | 41.12 | 147.21 | |
Pea | ETc | 15.93 | 49.80 | 173.62 | 85.75 | 325.06 |
Eff. Rain | 17.45 | 39.08 | 88.75 | 37.96 | 183.24 | |
Irr. Req | 3.64 | 18.13 | 85.93 | 44.75 | 152.45 |
Crop | Initial Stage | Crop Development | Mid-Season | Late Season | |
---|---|---|---|---|---|
Strawberry | Number of days | 34 | 28 | 14 | 14 |
Sunflower | 25 | 35 | 45 | 25 | |
Pea | 15 | 25 | 35 | 15 |
Crop Evapotranspiration | ||||||
---|---|---|---|---|---|---|
Crop | Mann–Kendall Results | Initial Stage | Crop Development | Mid-Season | Late Season | Growing Season |
Strawberry | Test Z | −1.29 | −2.30 | −2.46 | −1.11 | −2.46 |
Signific. | * | * | * | |||
Sunflower | Test Z | −1.00 | −2.48 | −2.09 | −1.50 | −2.25 |
Signific. | * | * | * | |||
Pea | Test Z | −1.77 | −1.84 | −1.36 | −1.73 | −1.86 |
Signific. | + | + | + | + | ||
Effective Rain | ||||||
Crop | Mann–Kendall Results | Initial Stage | Crop Development | Mid-Season | Late Season | Growing Season |
Strawberry | Test Z | 0.37 | 0.21 | 0.11 | 0.16 | 0.23 |
Signific. | ||||||
Sunflower | Test Z | 0.43 | 0.41 | −0.05 | −1.09 | −0.05 |
Signific. | ||||||
Pea | Test Z | 0.32 | 0.43 | 0.00 | −0.30 | 0.25 |
Signific. | ||||||
Irrigation Requirement | ||||||
Crop | Mann–Kendall Results | Initial Stage | Crop Development | Mid-Season | Late Season | Growing Season |
Strawberry | Test Z | −1.55 | −0.94 | −1.02 | −1.04 | −1.18 |
Signific. | ||||||
Sunflower | Test Z | 0.77 | −0.79 | −0.79 | 0.75 | −0.54 |
Signific. | ||||||
Pea | Test Z | −0.79 | −0.89 | −0.96 | −0.07 | −0.61 |
Signific. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mincu, F.I.; Diaconu, D.C.; Constantin, D.M.O.; Peptenatu, D. Evaluation of Temporal Changes in Evapotranspiration and Crop Water Requirements in the Context of Changing Climate: Case Study of the Northern Bucharest–Ilfov Development Region, Romania. Agriculture 2025, 15, 1227. https://doi.org/10.3390/agriculture15111227
Mincu FI, Diaconu DC, Constantin DMO, Peptenatu D. Evaluation of Temporal Changes in Evapotranspiration and Crop Water Requirements in the Context of Changing Climate: Case Study of the Northern Bucharest–Ilfov Development Region, Romania. Agriculture. 2025; 15(11):1227. https://doi.org/10.3390/agriculture15111227
Chicago/Turabian StyleMincu, Florentina Iuliana, Daniel Constantin Diaconu, Dana Maria Oprea Constantin, and Daniel Peptenatu. 2025. "Evaluation of Temporal Changes in Evapotranspiration and Crop Water Requirements in the Context of Changing Climate: Case Study of the Northern Bucharest–Ilfov Development Region, Romania" Agriculture 15, no. 11: 1227. https://doi.org/10.3390/agriculture15111227
APA StyleMincu, F. I., Diaconu, D. C., Constantin, D. M. O., & Peptenatu, D. (2025). Evaluation of Temporal Changes in Evapotranspiration and Crop Water Requirements in the Context of Changing Climate: Case Study of the Northern Bucharest–Ilfov Development Region, Romania. Agriculture, 15(11), 1227. https://doi.org/10.3390/agriculture15111227