The Influence of Weather Conditions and Available Soil Water on Vitis vinifera L. Albillo Mayor in Ribera del Duero DO (Spain) and Potential Changes Under Climate Change: A Preliminary Analysis
Abstract
1. Introduction
2. Materials and Methods
Grapevine Data and Environmental Conditions
3. Results
3.1. Meteorological Conditions During the Growing Seasons Analyzed
3.2. Vine Phenology and Grape Composition
3.3. Grape Composition—Climate Relationship
4. Discussion
4.1. Variability in Weather Conditions and Grapevine Response
4.2. Influence of Climatic Variables on Grape Composition
4.3. Projected Changes in Grape Composition Under Warming Scenarios
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bock, A.; Sparks, T.; Estrella, N.; Menzel, A. Changes in the Phenology and Composition of Wine from Franconia, Germany. Clim. Res. 2011, 50, 69–81. [Google Scholar] [CrossRef]
- Kizildeniz, T.; Mekni, I.; Santesteban, H.; Pascual, I.; Morales, F.; Irigoyen, J.J. Effects of Climate Change Including Elevated CO2 Concentration, Temperature and Water Deficit on Growth, Water Status, and Yield Quality of Grapevine (Vitis vinifera L.) Cultivars. Agric. Water Manag. 2015, 159, 155–164. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez de Toda, F. Variability in the Potential Effects of Climate Change on Phenology and on Grape Composition of Tempranillo in Three Zones of the Rioja DOCa (Spain). Eur. J. Agron. 2020, 115, 126014. [Google Scholar] [CrossRef]
- Yang, C.; Menz, C.; Fraga, H.; Costafreda-Aumedes, S.; Leolini, L.; Ramos, M.C.; Molitor, D.; van Leeuwen, C.; Santos, J.A. Assessing the Grapevine Crop Water Stress Indicator over the Flowering-Veraison Phase and the Potential Yield Lose Rate in Important European Wine Regions. Agric. Water Manag. 2022, 261, 107349. [Google Scholar] [CrossRef]
- Anderosn, K.; Nelgen, S. Which Winegrape Varieties are Grown Where? A Global Empirical Picture (Revised Edition); University of Adelaide Press: Adelaide, Australia, 2020; 800p. [Google Scholar]
- Chacón-Vozmediano, J.L.; Martínez-Gascueña, J.; Ramos, M.C. Projected Effects of Climate Change on Tempranillo and Chardonnay Varieties in La Mancha Designation of Origin. Agron. Sustain. Dev. 2021, 41, 24. [Google Scholar] [CrossRef]
- Parra, C.S.; Aguirreolea, J.; Sánchez-Díaz, M.; Irigoyen, J.J.; Morales, F. Effects of Climate Change Scenarios on Tempranillo Grapevine (Vitis vinifera L.) Ripening: Response to a Combination of Elevated CO2 and Temperature, and Moderate Drought. Plant Soil 2010, 337, 179–191. [Google Scholar] [CrossRef]
- Ramos, M.C.; Jones, G.V.; Yuste, J. Phenology of Tempranillo and Cabernet-Sauvignon Varieties Cultivated in the Ribera Del Duero DO: Observed Variability and Predictions under Climate Change Scenarios. Oeno One 2018, 52, 31–44. [Google Scholar] [CrossRef]
- Yang, C.; Menz, C.; De Abreu Jaffe, M.S.; Costafreda-Aumedes, S.; Moriondo, M.; Leolini, L.; Torres-Matallana, A.; Molitor, D.; Junk, J.; Fraga, H.; et al. Projections of Climate Change Impacts on Flowering-Veraison Water Deficits for Riesling and Müller-Thurgau in Germany. Remote Sens. 2022, 14, 1519. [Google Scholar] [CrossRef]
- Monteiro, A.I.; Aires, A.; Malheiro, A.C.; Bacelar, E.A. Biochemical Changes in Vitis vinifera Buds between Dormancy and Forced Bursting: A Case Study of Three Portuguese White Varieties. Agronomy 2022, 12, 382. [Google Scholar] [CrossRef]
- Nistor, E.; Dobrei, A.G.; Dobrei, A.; Camen, D. Growing Season Climate Variability and Its Influence on Sauvignon Blanc and Pinot Gris Berries and Wine Quality: Study Case in Romania (2005–2015). S. Afr. J. Enol. Vitic. 2018, 39, 196–207. [Google Scholar] [CrossRef]
- Ramos, M.C.; Yuste, J. Grapevine Phenology of White Cultivars in Rueda Designation of Origin (Spain) in Response to Weather Conditions and Potential Shifts under Warmer Climate. Agronomy 2023, 13, 146. [Google Scholar] [CrossRef]
- Gómez, V.; Sotés, V. El suelo de la denominación de origen Ribera del Duero. In Delimitación Cartográfica de Zonas Vitícolas en la Denominación de Origen Ribera del Duero; Fundación premio Arce, ETSIA, UPM: Madrid, Spain, 1992; Chapter 6. [Google Scholar]
- Winkler, A.J.; Cook, J.A.; Kliewer, W.M.; Lider, L.A. General Viticulture, 2nd ed.; Cerruti, L., Ed.; University of California Press: Berkley, CA, USA, 1974; 740p. [Google Scholar]
- Huglin, P. Nouveau mode d’évaluation des possibilités héliothermique d’un milieu viticole. Comptes Rendus L’Académie D’Agriculture Fr. 1978, 64, 1117–1126. [Google Scholar]
- Ramos, M.C.; Pérez-Álvarez, E.P.; Peregrina, F.; Martínez de Toda, F. Relationships between Grape Composition of Tempranillo Variety and Available Soil Water and Water Stress under Different Weather Conditions. Sci. Hortic. 2020, 262, 109063. [Google Scholar] [CrossRef]
- Baillod, M.; Baggiolini, M. Les stades repères de la vigne. Revue Suisse Vitic. Arboric. Hortic. 1993, 25, 10–12. [Google Scholar]
- OIV. Compendium of International Methods of Analysis of Wines and Musts; International Organization of Vine and Wine: Paris, France, 2012; Volume 2, 619p. [Google Scholar]
- Malheiro, A.C.; Campos, R.; Fraga, H.; Eiras-Dias, J.; Silvestre, J.; Santos, J.A. Winegrape Phenology and Temperature Relationships in the Lisbon Wine Region, Portugal. J. Int. Des Sci. La Vigne Du Vin 2013, 47, 287–299. [Google Scholar] [CrossRef]
- Hall, A.; Mathews, A.J.; Holzapfel, B.P. Potential Effect of Atmospheric Warming on Grapevine Phenology and Post-Harvest Heat Accumulation across a Range of Climates. Int. J. Biometeorol. 2016, 60, 1405–1422. [Google Scholar] [CrossRef]
- Ruml, M.; Korac, N.; Vujadinovic, M.; Vukovic, A.; Ivaniševic, D. Response of Grapevine Phenology to Recent Temperature Change and Variability in the Wine-Producing Area of Sremski Karlovci, Serbia. J. Agric. Sci. 2016, 154, 186–206. [Google Scholar] [CrossRef]
- Cameron, W.; Petrie, P.R.; Barlow, E.W.R. The Effect of Temperature on Grapevine Phenological Intervals: Sensitivity of Budburst to Flowering. Agric. For. Meteorol. 2022, 315, 108841. [Google Scholar] [CrossRef]
- Ramos, M.C.; Go, D.T.H.C.; Castro, S. Spatial and Temporal Variability of Cv. Tempranillo Response within the Toro DO (Spain) and Projected Changes under Climate Change. Oeno One 2021, 55, 346–366. [Google Scholar] [CrossRef]
- Sadras, V.O.; Petrie, P.R.; Moran, M.A. Effects of Elevated Temperature in Grapevine. II Juice PH, Titratable Acidity and Wine Sensory Attributes. Aust. J. Grape Wine Res. 2013, 19, 107–115. [Google Scholar] [CrossRef]
- Li, M.; Su, J.; Yang, H.; Feng, L.; Wang, M.; Xu, G.; Shao, J.; Ma, C. Grape Tartaric Acid: Chemistry, Function, Metabolism, and Regulation. Horticulturae 2023, 9, 1173. [Google Scholar] [CrossRef]
- Volschenk, H.; Vuuren, H.; Viljoen-Bloom, M. Malic Acid in Wine: Origin, Function and Metabolism during Vinification. S. Afr. J. Enol. Vitic. 2006, 27, 123–136. [Google Scholar] [CrossRef]
- Sweetman, C.; Sadras, V.O.; Hancock, R.D.; Soole, K.L.; Ford, C.M. Metabolic Effects of Elevated Temperature on Organic Acid Degradation in Ripening Vitis vinifera Fruit. J. Exp. Bot. 2014, 65, 5975–5988. [Google Scholar] [CrossRef]
- Williams, D.L.; Zietsman, A.J.J.; Brand, J.; Eyeghe-Bickong, H.A.; Vivier, M.A. Polyphenolic Compounds in Sauvignon Blanc—From Grapes to Wine. Oeno One 2025, 59, 8298. [Google Scholar] [CrossRef]
- Fulcrand, H.; Dueñas, M.; Salas, E.; Cheynier, V. Phenolic Reactions during Winemaking and Aging. Am. J. Enol. Vitic. 2006, 57, 289–297. [Google Scholar] [CrossRef]
- Flamini, R.; Mattivi, F.; De Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef]
- Makris, D.P.; Kallithraka, S.; Kefalas, P. Flavonols in Grapes, Grape Products and Wines: Burden, Profile and Influential Parameters. J. Food Compos. Anal. 2006, 19, 396–404. [Google Scholar] [CrossRef]
- Jeffery, D.W.; Parker, M.; Smith, P.A. Flavonol Composition of Australian Red and White Wines Determined by High-Performance Liquid Chromatography. Aust. J. Grape Wine Res. 2008, 14, 153–161. [Google Scholar] [CrossRef]
- Downey, M.O.; Harvey, J.S.; Robinson, S.P. Synthesis of Flavonols and Expression of Flavonol Synthase Genes in the Developing Grape Berries of Shiraz and Chardonnay (Vitis vinifera L.). Aust. J. Grape Wine Res. 2003, 9, 110–121. [Google Scholar] [CrossRef]
- Jasse, A.; Berry, A.; Aleixandre-Tudo, J.L.; Poblete-Echeverría, C. Intra-Block Spatial and Temporal Variability of Plant Water Status and Its Effect on Grape and Wine Parameters. Agric. Water Manag. 2021, 246, 106696. [Google Scholar] [CrossRef]
- Azuma, A.; Yakushiji, H.; Koshita, Y.; Kobayashi, S. Flavonoid Biosynthesis-Related Genes in Grape Skin Are Differentially Regulated by Temperature and Light Conditions. Planta 2012, 236, 1067–1080. [Google Scholar] [CrossRef] [PubMed]
- Vršič, S.; Vodovnik, T. Reactions of Grape Varieties to Climate Changes in North East Slovenia. Plant Soil Environ. 2012, 58, 34–41. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez de Toda, F. Macabeo (Viura) Grape Response to Climate Variability in Areas Located at Different Elevations in the Rioja Designation of Origin. J. Sci. Food Agric. 2022, 102, 5670–5679. [Google Scholar] [CrossRef] [PubMed]
- Neumann, P.; Matzarakis, A. Viticulture in Southwest Germany under Climate Change Conditions. Clim. Res. 2011, 47, 161–169. [Google Scholar] [CrossRef]
- Barnuud, N.N.; Zerihun, A.; Mpelasoka, F.; Gibberd, M.; Bates, B. Responses of Grape Berry Anthocyanin and Titratable Acidity to the Projected Climate Change across the Western Australian Wine Regions. Int. J. Biometeorol. 2014, 58, 1279–1293. [Google Scholar] [CrossRef]
- Ramírez-Cuesta, J.M.; Intrigliolo, D.S.; Lorite, I.J.; Moreno, M.A.; Vanella, D.; Ballesteros, R.; Hernández-López, D.; Buesa, I. Determining Grapevine Water Use under Different Sustainable Agronomic Practices Using METRIC-UAV Surface Energy Balance Model. Agric. Water Manag. 2023, 281, 108247. [Google Scholar] [CrossRef]
- Miccichè, D.; Puccio, S.; Di Lorenzo, R.; Turano, L.; Di Carlo, F.; Pisciotta, A. Adapting Viticulture to Climate Change: Impact of Shading in Sicily. Horticulturae 2025, 11, 163. [Google Scholar] [CrossRef]
- Dinis, L.-T.; Mota, N.; Martins, S.; Ribeiro, A.C.; Moutinho-Pereira, J.; Pereira, S. Foliar Silicon Application in the Era of Climate Change as a Part of Strategy to Reduce Water Requirements in Mediterranean Viticulture. Horticulturae 2024, 10, 1224. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. Effects of Kaolin and Shading Net on the Ecophysiology and Berry Composition of Sauvignon Blanc Grapevines. Agriculture 2022, 12, 491. [Google Scholar] [CrossRef]
- Previtali, P.; Giorgini, F.; Mullen, R.S.; Dookozlian, N.K.; Wilkinson, K.L.; Ford, C.M. A Systematic Review and Meta-Analysis of Vineyard Techniques Used to Delay Ripening. Hortic. Res. 2022, 9, uhac118. [Google Scholar] [CrossRef]
- Andreotti, C.; Benyahia, F.; Petrillo, M.; Lucchetta, V.; Volta, B.; Cameron, K.; Targetti, G.; Tagliavini, M.; Zanotelli, D. Comparing Defoliation and Canopy Sprays to Delay Ripening of Sauvignon Blanc Grapes. Sci. Hortic. 2024, 326, 112736. [Google Scholar] [CrossRef]
Plot | Cond. Syst. | Elev. (m a.s.l) | Clay (%) | Silt (%) | Sand (%) | Gravels (%) | OM (%) | FC (%) | WP (%) |
---|---|---|---|---|---|---|---|---|---|
P1 | T | 920 | 20.9 | 27.0 | 45.6 | 21.8 | 1.19 | 23.1 | 11.0 |
P2 | G | 916 | 25.2 | 33.5 | 47.8 | 15.7 | 1.20 | 24.8 | 11.8 |
Plot | Year | TmGS B-Mat (°C) | TmaxGS B-Mat (°C) | TminGS B-Mat (°C) | WI April-Oct. (GDD) | HI April-Sept. (GDD) | PGS B-Mat (mm) | PHY Oct.-Sep. (mm) | ETcGS B-Mat (mm) |
---|---|---|---|---|---|---|---|---|---|
P1 | 2020 | 18.0 | 27.4 | 8.8 | 1252 | 2077 | 211.5 | 599.3 | 300.1 |
2021 | 17.6 | 26.8 | 8.5 | 1227 | 2017 | 158.3 | 432.4 | 307.9 | |
2022 | 19.7 | 29.6 | 9.6 | 1597 | 2412 | 72.9 | 285.8 | 323.6 | |
2023 | 18.0 | 27.1 | 8.8 | 1502 | 2312 | 140.8 | 421.0 | 320.3 | |
2024 | 17.1 | 26.1 | 8.1 | 1353 | 2115 | 155.0 | 578.8 | 275.3 | |
Aver. | 18.1 ± 1.0 | 27.4 ± 1.3 | 8.8 ± 0.6 | 1386 ± 160 | 2187 ± 168 | 147.7 ± 49.7 | 463.5 ± 128.5 | 305.4 ± 19.3 | |
P2 | 2020 | 18.3 | 27.3 | 9.8 | 1291 | 2101 | 171.05 | 480.6 | 312.8 |
2021 | 17.8 | 26.6 | 9.3 | 1235 | 2044 | 192.6 | 455.0 | 327.5 | |
2022 | 20.6 | 30.0 | 11.1 | 1662 | 2460 | 83.5 | 329.8 | 341.6 | |
2023 | 19.1 | 27.7 | 10.6 | 1564 | 2353 | 141.7 | 422.0 | 321.4 | |
2024 | 17.8 | 26.6 | 9.3 | 1389 | 2180 | 115.0 | 532.8 | 130.0 | |
Aver. | 18.7 ± 1.2 | 27.6 ± 1.4 | 10.0 ± 0.8 | 140.8 ± 180 | 227 ± 174 | 140.8 ± 43.3 | 444.0 ± 75.65 | 288.7 ± 88.2 |
Plot | Year | pH | TAc (g/L) | MAc (g/L) | BW 100b (g) | PVAD (°B) | TPI |
---|---|---|---|---|---|---|---|
P1 | 2020 | 3.17 | 7.47 | 1.28 | 108.1 | 12.7 | 22 |
2021 | 3.08 | 7.89 | 2.16 | 119.0 | 12.1 | 47 | |
2022 | 3.21 | 6.51 | 1.19 | 101.2 | 13.4 | 21 | |
2023 | 3.19 | 6.01 | 1.80 | 119.2 | 11.8 | 31 | |
2024 | 3.14 | 7.05 | 1.96 | 139.6 | 12.5 | 20 | |
average | 3.16 ± 0.05 | 7.0 ± 0.8 | 1.7 ± 0.4 | 107 ± 15 | 12.6 ± 0.8 | 27 ± 11 | |
P2 | 2020 | 3.39 | 6.25 | 1.70 | 170.4 | 12.5 | 36 |
2021 | 3.61 | 6.31 | 2.18 | 173.2 | 12.0 | 33 | |
2022 | 3.59 | 6.05 | 1.03 | 166.2 | 12.4 | 26 | |
2023 | 3.36 | 5.80 | 1.58 | 174.3 | 12.1 | 32 | |
2024 | 3.49 | 5.56 | 2.17 | 191.3 | 11.8 | 23 | |
average | 3.49 ± 0.11 | 6.0 ± 0.3 | 1.7 ± 0.5 | 175 ± 10 | 12.2 ± 0.6 | 30 ± 5 |
PC1 | PC2 | PC3 | PC4 | |
---|---|---|---|---|
Tmax BFL | 0.922 | 0.059 | 0.115 | 0.321 |
Tmin BFL | 0.450 | 0.470 | 0.692 | 0.262 |
Tmax FLV | 0.896 | −0.376 | −0.016 | −0.028 |
Tmin FLV | 0.928 | 0.107 | −0.128 | −0.266 |
Tmax-Tmin_VMat | 0.003 | −0.835 | 0.452 | −0.125 |
ASW_BFLa | −0.378 | -0.137 | 0.845 | −0.143 |
ASWFL-Va | −0.755 | 0.030 | 0.518 | −0.277 |
ASW_VMATa | −0.235 | 0.571 | 0.439 | 0.092 |
pH | 0.514 | 0.767 | 0.267 | −0.030 |
TAc | −0.773 | −0.534 | 0.004 | 0.217 |
MAc | −0.732 | 0.486 | −0.296 | −0.167 |
PVAD | 0.609 | -0.675 | 0.225 | 0.178 |
TPI | −0.517 | 0.325 | −0.068 | 0.735 |
BW | 0.233 | 0.884 | 0.019 | −0.216 |
Variance (%) | 39.809 | 27.647 | 15.003 | 7.565 |
Variable | coef | R2 | p | |
---|---|---|---|---|
TAc | TmaxBF | −0.166 | 74.71 | 0.0012 |
TminBF | −0.158 | |||
TmaxFV | −0.142 | |||
TminFV | −0.304 | |||
Tmax-Tmin VMat | 0.160 | |||
ASW-FLV | −0.00005 | |||
ASW-VMat | −0.0037 | |||
MAc | TmaxBF | −0.070 | 73.74 | 0.0001 |
TminBF | −0.046 | |||
TmaxFV | −0.092 | |||
TminFV | −0.085 | |||
Tmax-Tmin VMat | −0.082 | |||
ASW-FLV | −0.00016 | |||
ASW-VMat | 0.00004 | |||
PVAD | TmaxBF | 0.087 | 84.48 | 0.0015 |
TminBF | 0.019 | |||
TmaxFV | 0.229 | |||
TminFV | 0.029 | |||
Tmax-Tmin VMat | 0.284 | |||
ASW-FLV | −0.0003 | |||
ASW-VMat | −0.003 | |||
BW | TmaxBF | −0.903 | 91.55 | 0.0001 |
TminBF | 2.953 | |||
TmaxFV | −2.861 | |||
TminFV | 4.857 | |||
Tmax-Tmin VMat | −15.776 | |||
ASW-FLV | 0.182 | |||
ASW-VMat | 0.256 | |||
TPI | TmaxBF | 0.972 | 91.60 | 0.00018 |
TminBF | 2.837 | |||
TmaxFV | −2.651 | |||
TminFV | −2.798 | |||
Tmax-Tmin VMat | −2.117 | |||
ASW-FLV | −0.140 | |||
ASW-VMat | 0.039 |
Scenario | Year | TAc (g/L) | Mac (g/L) | PVAC (°B) | BW100b (g) | TPI |
---|---|---|---|---|---|---|
SSP2-4.5 | 2050 | −0.91 | −0.3 | 0.70 | −8.0 | −4.67 |
SSP2-4.5 | 2070 | −1.13 | −0.36 | 0.71 | −8.7 | −5.6 |
SSP5-8.5 | 2050 | −1.35 | −0.40 | 0.80 | −10.4 | −5.9 |
SSP5-8.5 | 2070 | −1.98 | −0.62 | 1.25 | −12.7 | −10.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, M.C. The Influence of Weather Conditions and Available Soil Water on Vitis vinifera L. Albillo Mayor in Ribera del Duero DO (Spain) and Potential Changes Under Climate Change: A Preliminary Analysis. Agriculture 2025, 15, 1229. https://doi.org/10.3390/agriculture15111229
Ramos MC. The Influence of Weather Conditions and Available Soil Water on Vitis vinifera L. Albillo Mayor in Ribera del Duero DO (Spain) and Potential Changes Under Climate Change: A Preliminary Analysis. Agriculture. 2025; 15(11):1229. https://doi.org/10.3390/agriculture15111229
Chicago/Turabian StyleRamos, María Concepción. 2025. "The Influence of Weather Conditions and Available Soil Water on Vitis vinifera L. Albillo Mayor in Ribera del Duero DO (Spain) and Potential Changes Under Climate Change: A Preliminary Analysis" Agriculture 15, no. 11: 1229. https://doi.org/10.3390/agriculture15111229
APA StyleRamos, M. C. (2025). The Influence of Weather Conditions and Available Soil Water on Vitis vinifera L. Albillo Mayor in Ribera del Duero DO (Spain) and Potential Changes Under Climate Change: A Preliminary Analysis. Agriculture, 15(11), 1229. https://doi.org/10.3390/agriculture15111229