A Study of Observed Climate Change Effects on Grapevine Suitability in Oltenia (Romania)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Variables and Data Sources
2.3. Methods
2.3.1. Bioclimatic Indices
2.3.2. Trend Analysis
2.3.3. Interpolation
3. Results
3.1. Spatial Distribution of the Climatic Parameters and Suitability for Quality Wine Production (1961–2020)
3.2. Spatial Distribution of the Climatic Parameters and Suitability for Quality Wine Production: 1961–1990 Versus 1991–2020
3.3. Trends in the Main Climatic Parameters and Bioclimatic Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blanco-Ward, D.; Monteiro, A.; Lopes, M.; Borrego, C.; Silveira, C.; Viceto, C.; Rocha, A.; Ribeiro, A.; Andrade, J.; Feliciano, M.; et al. Analysis of climate change indices in relation to wine production: A case study in the Douro Region (Portugal). In BIO Web of Conferences, Proceedings of the 40th World Congress of Vine and Wine 2017, Bulgaria, Sofia, 29 May–2 June 2017; EDP Sciences: Les Ulis, France, 2017; Volume 9, p. 01011. [Google Scholar] [CrossRef]
- van Leeuwen, C. Terroir: The effect of the physical environment on vine growth, grape ripening, and wine sensory attributes. In Managing Wine Quality Volume I: Viticulture and Wine Quality, 2nd ed.; Reynolds, A.G., Ed.; Woodhead Publishing: Sawston, UK, 2022; Volume 9, pp. 341–393. [Google Scholar] [CrossRef]
- Jones, G.V.; Reid, R.; Vilks, A. Climate, Grapes, and Wine: Structure and Suitability in a Variable and Changing Climate. In The Geography of Wine; Dougherty, P., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 109–133. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Roşca, B.; Cotea, V.V. Modifications in climate suitability for wine production of Romanian wine regions as a result of climate change. In BIO Web of Conferences, Proceedings of the 40th World Congress of Vine and Wine 2017, Bulgaria, Sofia, 29 May–2 June 2017; EDP Sciences: Les Ulis, France, 2017; Volume 9, p. 01026. [Google Scholar] [CrossRef]
- Jones, G.V.; Webb, L.B. Climate change, viticulture, and wine: Challenges and opportunities. J. Wine Res. 2010, 21, 103–106. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar] [CrossRef]
- Bernardo, S.; Dinis, L.T.; Machado, N.; Perreira, J. Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean-like climates. A review. Agron. Sustain. Dev. 2018, 38, 66. [Google Scholar] [CrossRef]
- García de Cortázar-Atauri, I.; Duchêne, E.; Destrac-Irvine, A.; Barbeau, G.; de Resseguier, L.; Lacombe, T.; Parker, A.K.; Saurin, N.; van Leeuwen, C. Grapevine phenology in France: From past observations to future evolutions in the context of climate change. OENO One 2017, 51, 115–126. [Google Scholar] [CrossRef]
- Tomasi, D.; Jones, G.V.; Giust, M.; Lovat, L.; Gaiotti, F. Grapevine phenology and climate change: Relationships and trends in the Veneto region of Italy for 1964–2009. Am. J. Enol. Vitic. 2011, 62, 329–339. [Google Scholar] [CrossRef]
- Teslić, N.; Vujadinović, M.; Ruml, M.; Antolini, G.; Vuković, A.; Parpinello, G.P.; Ricci, A.; Versari, A. Climatic shifts in high quality wine production areas, Emilia Romagna, Italy, 1961–2015. Clim. Res. 2017, 73, 195–206. [Google Scholar] [CrossRef]
- Malheiro, A.C.; Campos, R.; Fraga, H.; Eiras-Dias, J.; Silvestre, J.; Santos, J.A. Winegrape phenology and temperature relationships in the Lisbon vine region, Portugal. J. Int. Sci. Vigne Vin. 2013, 47, 287–299. [Google Scholar] [CrossRef]
- Santos, J.A.; Costa, R.; Fraga, H. New insights into thermal growing conditions of Portuguese grapevine varieties under changing climates. Theor. Appl. Climatol. 2019, 135, 1215–1226. [Google Scholar] [CrossRef]
- Muñoz-Organero, G.; Espinosa, F.E.; Cabello, F.; Zamorano, J.P.; Urbanos, M.A.; Puertas, B.; Lara, M.; Domingo, C.; Puig-Pujol, A.; Valdés, M.E.; et al. Phenological Study of 53 Spanish Minority Grape Varieties to Search for Adaptation of Vitiviniculture to Climate Change Conditions. Horticulturae 2022, 8, 984. [Google Scholar] [CrossRef]
- Xyrafis, E.G.; Fraga, H.; Nakas, C.T.; Koundouras, S. A study on the effects of climate change on viticulture on Santorini Island. OENO One 2022, 56, 259–273. [Google Scholar] [CrossRef]
- Kryza, M.; Szymanowski, M.; Błaś, M.; Migała, K.; Werner, M.; Sobik, M. Observed changes in SAT and GDD and the climatological suitability of the Poland-Germany-Czech Republic transboundary region for wine grapes cultivation. Theor. Appl. Climatol. 2015, 122, 207–218. [Google Scholar] [CrossRef]
- Koch, B.; Oehl, F. Climate change favors grapevine production in temperate zones. Agric. Sci. 2018, 9, 247–263. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Murariu, O.C. The impact of climate change on viticultural potential and wine grape varieties of a temperate wine growing region. Appl. Ecol. Environ. Res. 2018, 16, 2663–2680. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Quenol, H.; Sfâcă, L.; Foss, C. Shifts in climate suitability for wine production as a result of climate change in a temperate climate wine region of Romania. Theor. Appl. Climatol. 2018, 131, 1069–1081. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Roșca, B. Climate change impact on climate suitability for wine production in Romania. Theor. Appl. Climatol. 2018, 133, 1–14. [Google Scholar] [CrossRef]
- Vrsic, S.; Sustar, V.; Pulko, B.; Sumenjak, T.K. Trends in climate parameters affecting winegrape ripening in Northeastern Slovenia. Clim. Res. 2014, 58, 257–266. [Google Scholar] [CrossRef]
- Malheiro, A.C.; Santos, J.A.; Fraga, H.; Pinto, J.G. Climate change scenarios applied to viticultural zoning in Europe. Clim. Res. 2010, 43, 163–177. [Google Scholar] [CrossRef]
- Moriondo, M.; Jones, G.V.; Bois, B.; Dibari, C.; Ferrise, R.; Trombi, G.; Bindi, M. Projected shifts of wine regions in response to climate change. Clim. Change 2013, 119, 825–839. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Santos, J.A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Change Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef]
- Cardell, M.F.; Amengual, A.; Romero, R. Future Effects of climate change on the suitability of wine grape production across Europe. Reg. Environ. Change 2019, 19, 2299–2310. [Google Scholar] [CrossRef]
- Morales-Castilla, I.; García de Cortázar-Atauri, I.; Cook, B.I.; Lacombe, T.; Parker, A.; van Leeuwen, C.; Nicholas, K.A.; Wolkovich, E.M. Diversity buffers winegrowing regions from climate change losses. Proc. Natl. Acad. Sci. USA 2020, 117, 2864–2869. [Google Scholar] [CrossRef]
- Sgubin, G.; Swingedouw, D.; Mignot, J.; Gambetta, G.A.; Bois, B.; Loukos, H.; Noël, T.; Pieri, P.; García de Cortázar-Atauri, I.; Ollat, N.; et al. Non-linear loss of suitable wine regions over Europe in response to increasing global warming. Glob. Change Biol. 2022, 29, 808–826. [Google Scholar] [CrossRef] [PubMed]
- Busuioc, A.; Dobrinescu, A.; Birsan, M.V.; Dumitrescu, A.; Orzan, A. Spatial and temporal variability of climate extremes in Romania and associated large-scale mechanisms. Int. J. Climatol. 2015, 35, 1278–1300. [Google Scholar] [CrossRef]
- Dumitrescu, A.; Bojariu, R.; Birsan, M.V.; Marin, L.; Manea, A. Recent climatic changes in Romania from observational data (1961–2013). Theor. Appl. Climatol. 2015, 122, 111–119. [Google Scholar] [CrossRef]
- Birsan, M.V.; Micu, D.M.; Niţă, I.A.; Mateescu, E.; Szép, R.; Keresztesi, Á. Spatio-temporal changes in annual temperature extremes over Romania (1961–2013). Rom. J. Phys. 2019, 64, 816. Available online: https://rjp.nipne.ro/2019_64_7-8/RomJPhys.64.816.pdf (accessed on 20 August 2024).
- Nistor, M.M. High-resolution projections of the aridity in Europe under climate change. In Climate and Land Use Impacts on Natural and Artificial Systems: Mitigation and Adaptation; Nistor, M.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 73–90. [Google Scholar] [CrossRef]
- Mihai, G.; Alexandru, A.M.; Nita, I.A.; Birsan, M.V. Climate Change in the Provenance Regions of Romania over the Last 70 Years: Implications for Forest Management. Forests 2022, 13, 1203. [Google Scholar] [CrossRef]
- Piticar, A.; Croitoru, A.E.; Ciupertea, F.A.; Harpa, G.V. Recent changes in heat waves and cold waves detected based on excess heat factor and excess cold factor in Romania. Int. J. Climatol. 2018, 38, 1777–1793. [Google Scholar] [CrossRef]
- Ionita, M.; Caldarescu, D.E.; Nagavciuc, V. Compound Hot and Dry Events in Europe: Variability and Large-Scale Drivers. Front. Clim. 2021, 3, 688991. [Google Scholar] [CrossRef]
- Nagavciuc, V.; Scholz, P.; Ionita, M. Hotspots for warm and dry summers in Romania. Nat. Hazards Earth Syst. Sci. 2022, 22, 1347–1369. [Google Scholar] [CrossRef]
- Busuioc, A.; Birsan, M.V.; Carbunaru, D.; Baciu, M.; Orzan, M. Changes in the large-scale thermodynamic instability and connection with rain shower frequency over Romania: Verification of the Clausius–Clapeyron scaling. Int. J. Climatol. 2016, 36, 2015–2034. [Google Scholar] [CrossRef]
- Cheval, S.; Busuioc, A.; Dumitrescu, A.; Birsan, M.V. Spatiotemporal variability of meteorological drought in Romania using the standardized precipitation index (SPI). Clim. Res. 2014, 60, 235–248. [Google Scholar] [CrossRef]
- Ionita, M.; Scholz, P.; Chelcea, S. Assessment of droughts in Romania using the Standardized Precipitation Index. Nat. Hazards 2016, 81, 1483–1498. [Google Scholar] [CrossRef]
- Croitoru, A.E.; Piticar, A.; Dragotă, C.S.; Burada, D.C. Recent changes in reference evapotranspiration in Romania. Glob. Planet. Change 2013, 111, 127–137. [Google Scholar] [CrossRef]
- Prăvălie, R. Analysis of temperature, precipitation and potential evapotranspiration trends in southern Oltenia in the context of climate change. Geogr. Tech. 2014, 9, 68–84. Available online: https://technicalgeography.org/pdf/2_2014/08_pravalie.pdf (accessed on 30 June 2024).
- Prăvălie, R.; Bandoc, G.; Patriche, C.; Tomescu, M. Spatio-temporal trends of mean air temperature during 1961–2009 and impacts on crop (maize) yields in the most important agricultural region of Romania. Stoch. Environ. Res. Risk Assess. 2017, 31, 1923–1939. [Google Scholar] [CrossRef]
- Vlăduţ, A. Analysis of the Mean of Daily Maximum Temperature within the Romanian Plain (1961–2015). Forum Geogr. 2017, 16, 37–48. [Google Scholar] [CrossRef]
- Angearu, C.-V.; Ontel, I.; Boldeanu, G.; Mihailescu, D.; Nertan, A.; Craciunescu, V.; Catana, S.; Irimescu, A. Multi-Temporal Analysis and Trends of the Drought Based on MODIS Data in Agricultural Areas, Romania. Remote Sens. 2020, 12, 3940. [Google Scholar] [CrossRef]
- Vlăduţ, A.Ș. Thermal continentality in Romania (period 1961–2018). Arab. J. Geosci. 2023, 16, 557. [Google Scholar] [CrossRef]
- Prăvălie, R. Climate issues on aridity trends of Southern Oltenia in the last five decades. Geogr. Tech. 2013, 1, 70–79. Available online: http://www.technicalgeography.org/pdf/1_2013/08_1_2013.pdf (accessed on 30 June 2024).
- Prăvălie, R.; Patriche, C.V.; Sîrodoev, I.; Bandoc, G.; Dumitraşcu, M.; Peptenatu, D. Water deficit and corn productivity during the post-socialist period. Case study: Southern Oltenia drylands, Romania. Arid Land Res. Manag. 2016, 30, 239–257. [Google Scholar] [CrossRef]
- Răducă, C.; Crişu, L.; Boengiu, S. Aridity risk in the west of the Oltenia Plain: Natural factors and human impacts on land degradation. Forum Geogr. 2019, 18, 143–152. [Google Scholar] [CrossRef]
- Vlăduţ, A.; Nikolova, N.; Licurici, M. Aridity assessment within southern Romania and northern Bulgaria. Croat. Geogr. Bull. 2017, 79, 5–26. [Google Scholar] [CrossRef]
- Vlăduţ, A.; Licurici, M. Aridity conditions within the region of Oltenia (Romania) from 1961 to 2015. Theor. Appl. Climatol. 2020, 140, 589–602. [Google Scholar] [CrossRef]
- Bucur, G.M.; Babeș, A.C. Research on Trends in Extreme Weather Conditions and their Effects on Grapevine in Romanian Viticulture. Bull. UASMV Hortic. 2016, 73, 126–134. [Google Scholar] [CrossRef]
- Bucur, G.M.; Dejeu, L. Climate change trends in some Romanian viticultural centers. AgroLife Sci. J. 2016, 5, 24–27. Available online: https://agrolifejournal.usamv.ro/index.php/agrolife/article/view/130/130 (accessed on 15 September 2024).
- Irimia, L.M.; Patriche, C.V.; Roșca, B. Changes in oenoclimate aptitude index characterizing climate suitability of Romanian wine growing regions. Appl. Ecol. Environ. Res. 2017, 15, 755–767. [Google Scholar] [CrossRef]
- Costea, M.; Lengyel, E.; Stegăruş, D.; Rusan, N.; Tăușan, I. Assessment of climatic conditions as driving factors of wine aromatic compounds: A case study from Central Romania. Theor. Appl. Climatol. 2019, 137, 239–254. [Google Scholar] [CrossRef]
- Iliescu, M.; Tomoiagă, L.; Chedea, V.S.; Pop, E.A.; Sîrbu, A.; Popa, M.; Călugăr, A.; Babeş, A.C. Evaluation of climate changes on the vine agrosystem in Târnave vineyard. J. Environ. Prot. Ecol. 2019, 20, 1754–1760. Available online: https://www.researchgate.net/publication/338791784_EVALUATION_OF_CLIMATE_CHANGES_ON_THE_VINE_AGROSYSTEM_IN_TARNAVE_VINEYARD (accessed on 30 June 2024).
- Baciu (Ropan), L.M.; Giugea, N.; Popescu, D.; Șimon, A. Evaluation of the ecoclimatic conditions in Turda wine center and assessment of oenoclimatic aptitude. Ann. Univ. Craiova—Agric. Mont. Cadastre Ser. 2020, 50, 13–20. Available online: https://anale.agro-craiova.ro/index.php/aamc/article/view/1082/1016 (accessed on 30 June 2024).
- Chedea, V.S.; Drăgulinescu, A.M.; Tomoiagă, L.L.; Bălăceanu, C.; Iliescu, M.L. Climate Change and Internet of Things Technologies—Sustainable Premises of Extending the Culture of the Amurg Cultivar in Transylvania—A Use Case for Târnave Vineyard. Sustainability 2021, 13, 8170. [Google Scholar] [CrossRef]
- Nistor, E.; Dobrei, A.G.; Dobrei, A.; Camen, D. Growing season climate variability and its influence on Sauvignon blanc and Pinot gris berries and wine quality: Study case in Romania (2005–2015). S. Afr. J. Enol. Vitic. 2018, 39, 196–207. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Quénol, H. Analysis of viticultural potential and delineation of homogeneous viticultural zones in a temperate climate region of Romania. OENO One 2014, 48, 145–167. [Google Scholar] [CrossRef]
- Pușcalău, M.; Bosoi, I.; Dîrloman, C.A. Research on climate trends in the area of Odobeşti vineyard. Sci. Papers. Ser. B Hortic. 2021, 65, 334–341. Available online: https://horticulturejournal.usamv.ro/pdf/2021/issue_1/Art47.pdf (accessed on 30 September 2024).
- Zaldea, G.; Nechita, A.; Damian, D.; Ghiur, A.D.; Cotea, V.V. Climate changes in recent decades, the evolution of the drought phenomenon and the impact on vineyards in North-eastern Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12448. [Google Scholar] [CrossRef]
- Bucur, G.M.; Dejeu, L. Researches on situation and trends in climate change in south part of Romania and their effects on grapevine. Sci. Papers. Ser. B Hortic. 2017, 61, 243–247. Available online: https://horticulturejournal.usamv.ro/pdf/2017/Art35.pdf (accessed on 16 September 2024).
- Bucur, G.M.; Cojocaru, G.A.; Antoce, A.O. The climate change influences and trends on the grapevine growing in Southern Romania: A long-term study. In BIO Web of Conferences, Proceedings of the 42nd World Congress of Vine and Wine, Geneva, Switzerland, 15–19 July 2019; EDP Sciences: Les Ulis, France, 2019; Volume 15, p. 01008. [Google Scholar] [CrossRef]
- Onache, P.A.; Sumedrea, D.I.; Florea, A.; Tănase, A. The influence of climatic conditions on oenological parameters of some wine cultivars from different Romanian vineyard. Rom. J. Hortic. 2020, 1, 103–110. [Google Scholar] [CrossRef]
- OIV/International Organisation of Vine and Wine. State of the World Vine and Wine Sector 2023. Available online: https://www.oiv.int/sites/default/files/documents/OIV_STATE_OF_THE_WORLD_VINE_AND_WINE_SECTOR_IN_2023_1.pdf (accessed on 10 December 2024).
- European Commission (Directorate-General for Agriculture and Rural Development). Wine. Available online: https://agriculture.ec.europa.eu/farming/crop-productions-and-plant-based-products/wine_en (accessed on 20 September 2024).
- Badea, L. Geografia României, I, Geografia fizică; Edit. Academiei Române: Bucureşti, Romania, 1983. [Google Scholar]
- NIS/National Institute of Statistics. TEMPO Online Database. Available online: http://statistici.insse.ro:8077/tempo-online/#/pages/tables/insse-table (accessed on 20 August 2024).
- Geo-spatial. Shuttle Radar Topography Mission (SRTM90) Reprojected in Stereo70. Available online: http://geo-spatial.org/vechi/download/datele-srtm90-reproiectate-in-stereo70 (accessed on 1 July 2023).
- Geo-Spatial. Romania: General Vector Datasets. Available online: http://geo-spatial.org/vechi/download/romania-seturi-vectoriale (accessed on 1 July 2023).
- Copernicus Land Monitoring Service. CORINE Land Cover 2018 and 2012 Data. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 1 July 2023).
- Natural Earth. International Free Vector Dataset. Available online: https://www.naturalearthdata.com/downloads/ (accessed on 1 July 2023).
- Ministerial Order 1205/22.06.2018 Issued by the Minister of Agriculture and Rural Development, for the Approval of the Nomination of the Wine-Growing Areas and the Classification of the Settlements by Wine-Growing Regions, Vineyards and Wine-growing Centers, Published in the Official Gazette No. 527/27.06.2018. Available online: https://legislatie.just.ro/Public/DetaliiDocument/201889 (accessed on 29 August 2024). (In Romanian).
- Law No. 244/2002 of April 29, 2002, on Vineyards and Wines in the System of Common Organization of Vineyards and Wine Market. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/85359 (accessed on 1 July 2024). (In Romanian).
- Ministerial Order 1508/17.12.2018 Issued by the Minister of Agriculture and Rural Development, for the Approval of the Methodological Norms Regarding the Conditions for the Implementation of the Restructuring/Reconversion Measure of Wine Plantations, Eligible for Financing Under the 2019–2023 National Support Program in the Wine Sector, Published in the Official Gazette No. 1079/20.12.2018, Part I. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/209042 (accessed on 29 August 2024). (In Romanian).
- Council Regulation (EC) No. 491/2009 of 25 May 2009 Amending Regulation (EC) No 1234/2007 Establishing a Common Organisation of Agricultural Markets and on Specific Provisions for Certain Agricultural Products (Single CMO Regulation). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009R0491&from=EN (accessed on 22 July 2024).
- ONVPV. Caiet de sarcini vin DOC Drăgășani Modificat. Available online: https://www.onvpv.ro/sites/default/files/caiet_de_sarcini_doc_dragasani_modf_cf_cererii_1353_14.07.2020_no_track_changes_cf_notific_com_28.06.2023.pdf (accessed on 27 October 2023).
- Navrátilová, M.; Beranová, M.; Severová, L.; Šrédl, K.; Svoboda, R.; Abrhám, J. The Impact of Climate Change on the Sugar Content of Grapes and the Sustainability of their Production in the Czech Republic. Sustainability 2021, 13, 222. [Google Scholar] [CrossRef]
- Comte, V.; Schneider, L.; Calanca, P.; Reberez, M. Effects of climate change on bioclimatic indices in vineyards along Lake Neuchatel, Switzerland. Theor. Appl. Climatol. 2022, 147, 423–436. [Google Scholar] [CrossRef]
- Constantinescu, G. Méthodes et principes de détermination des aptitudes viticoles d’une région et du choix des cépages appropriés. Bull. OIV 1967, 441, 1179–1205. Available online: https://pandor.u-bourgogne.fr/fr/archives-en-ligne/ead.html?id=FRMSH021_00019_b&c=FRMSH021_00019_b_BOIV_1967_11_n441_art01 (accessed on 30 June 2023).
- Teodorescu, Ş.; Popa, A.I.; Sandu, G. Oenoclimatul României; Edit. Ştiinţifică şi Enciclopedică: Bucureşti, Romania, 1987. [Google Scholar]
- Piña-Rey, A.; González-Fernández, E.; Fernández-González, M.; Lorenzo, M.N.; Rodríguez-Rajo, F.J. Climate Change Impacts Assessment on Wine-Growing Bioclimatic Transition Areas. Agriculture 2020, 10, 605. [Google Scholar] [CrossRef]
- Winkler, A.J.; Cook, J.A.; Kliewer, W.M.; Lider, L.A. General Viticulture, 4th ed.; University of California Press: Berkley, CA, USA, 1974. [Google Scholar]
- Irimia, L.M. Biologia, Ecologia şi Fiziologia Viţei de Vie; Edit. Ion Ionescu de la Brad: Iaşi, Romania, 2012. [Google Scholar]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate Change and Global Wine Quality. Clim. Change 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Molitor, D.; Keller, M. Yield of Müller-Thurgau and Riesling grapevines is altered by meteorological conditions in the current and the previous growing seasons. OENO One 2016, 50, 245–258. [Google Scholar] [CrossRef]
- Oşlobeanu, M.; Macici, M.; Georgescu, M.; Stoian, V. Zonarea soiurilor de viţă de vie în Romania; Ceres: Bucureşti, Romania, 1991. [Google Scholar]
- Jones, G.V. Climate, grapes, and wine: Structure and suitability in a variable and changing climate. In Proceedings of the 8th International Terroir Congress, Soave, Italy, 14–18 June 2010; Available online: https://ives-openscience.eu/wp-content/uploads/2023/03/Climate_Grape_Wine_Jones.pdf (accessed on 13 June 2024).
- Jones, G.V. Climate and Terroir: Impacts of Climate Variability and Change on Wine. In Fine Wine and Terroir—The Geoscience Perspective; Macqueen, R.W., Meinert, L.D., Eds.; Geoscience Canada Reprint Series No. 9; Geological Association of Canada: St. John’s, NL, Canada, 2006; 247p, Available online: https://www.climateofwine.com/_files/ugd/07f66e_b12281b16d0b45a4a5e1f9943cefb25f.pdf?index=true (accessed on 20 August 2024).
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Shinomiya, R.; Fujishima, H.; Muramoto, K.; Shiraishi, M. Impact of temperature and sunlight on the skin coloration of the ‘Kyoho’ table grape. Sci. Hortic. 2015, 193, 77–83. [Google Scholar] [CrossRef]
- Sun, R.Z.; Cheng, G.; Li, Q.; He, Y.N.; Wang, Y.; Lan, Y.B.; Li, S.Y.; Zhu, Y.R.; Song, W.F.; Zhang, X.; et al. Light-induced variation in phenolic compounds in cabernet sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Front. Plant Sci. 2017, 8, 547. [Google Scholar] [CrossRef] [PubMed]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Salmi, T.; Määttä, A.; Anttila, P.; Ruoho-Airola, T.; Ammell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates—The Excel Template Application MAKESENS; In the Series Publications of Air Quality No. 31; Report code FMI-AQ-31; Finnish Meteorological Institute: Helsinki, Finland, 2002; 35p, ISBN 951-697-563-1. [Google Scholar]
- Önöz, B.; Bayazit, M. The Power of Statistical Tests for Trend Detection. Turk. J. Eng. Environ. Sci. 2003, 27, 247–251. Available online: https://online-journals.tubitak.gov.tr/engineering/abstract.htm?id=6407 (accessed on 28 August 2024).
- Hutchinson, M.F. Interpolating Mean Rainfall Using Thin Plate Smoothing Splines. Int. J. Geogr. Inf. Syst. 1995, 9, 385–403. [Google Scholar] [CrossRef]
- Apaydin, H.; Sonmez, F.K.; Yildirim, Y.E. Spatial Interpolation Techniques for Climate Data in the GAP Region in Turkey. Clim. Res. 2004, 28, 31–40. [Google Scholar] [CrossRef]
- Jones, G.V. The Climate Component of Terroir. Elements 2018, 14, 167–172. [Google Scholar] [CrossRef]
- Bandoc, G.; Piticar, A.; Patriche, C.; Roșca, B.; Dragomir, E. Climate Warming-Induced Changes in Plant Phenology in the Most Important Agricultural Region of Romania. Sustainability 2022, 14, 2776. [Google Scholar] [CrossRef]
- Chiriac, C. Influenţa schimbărilor climatice asupra mediului în zona podgoriei Cotnari. Analele Univ. „Ştefan Cel Mare” Suceava Secţiunea Geogr. 2007, 16, 215–222. Available online: https://georeview.usv.ro/wp-content/uploads/2023/07/Article.19-Vol.16-1.pdf (accessed on 15 September 2024).
- Vlăduţ, A.Ș.; Licurici, M.; Burada, C.D. Viticulture in Oltenia Region (Romania) in the New Climatic Context. Theor. Appl. Clim. 2023, 154, 179–199. [Google Scholar] [CrossRef]
- Patriche, C.V.; Irimia, L.M. Mapping the impact of recent climate change on viticultural potential in Romania. Theor. Appl. Clim. 2022, 148, 1035–1056. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Petitjean, T.; Tissot, C.; Santesteban, L.G.; Neethling, E.; Foss, C.; Le Roux, R.; Quénol, H. Structural and Spatial Shifts in the Viticulture Potential of Main European Wine Regions as an Effect of Climate Change. Horticulturae 2024, 10, 413. [Google Scholar] [CrossRef]
- Koźmiński, C.; Mąkosza, A.; Michalska, B.; Nidzgorska-Lencewicz, J. Thermal Conditions for Viticulture in Poland. Sustainability 2020, 12, 5665. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Polychroni, I.; Psomiadis, E.; Nastos, P. Spatiotemporal Estimation of the Olive and Vine Cultivations’ Growing Degree Days in the Balkans Region. Atmosphere 2021, 12, 148. [Google Scholar] [CrossRef]
- Kovács, E.; Puskas, J.; Pozsgai, A. Positive Effects of Climate Change on the Field of Sopron Wine-Growing Region in Hungary. In Perspectives on Atmospheric Sciences; Karacostas, T., Bais, A., Nastos, P., Eds.; Springer Atmospheric Sciences: Cham, Switzerland, 2017; pp. 607–613. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One 2017, 51, 147–154. [Google Scholar] [CrossRef]
- Poudel, P.R.; Mochioka, R.; Beppu, K.; Kataoka, I. Influence of Temperature on Berry Composition of Interspecific Hybrid Wine Grape ‘Kadainou R-1′ (Vitis ficifolia var. ganebu × V. vinifera ‘Muscat of Alexandria’). J. Jpn. Soc. Hortic. Sci. 2009, 78, 169–174. [Google Scholar] [CrossRef]
- Venios, X.; Korkas, E.; Nisiotou, A.; Banilas, G. Grapevine Responses to Heat Stress and Global Warming. Plants 2020, 9, 1754. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A.; Moutinho-Pereira, J.; Carlos, C.; Silvestre, J.; Eiras-Dias, J.; Mota, T.; Malheiro, A.C. Statistical modelling of grapevine phenology in Portuguese wine regions: Observed trends and climate change projections. J. Agric. Sci. 2016, 154, 795–811. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Viticulture in Portugal: A review of recent trends and climate change projections. Oeno One 2017, 51, 61–69. [Google Scholar] [CrossRef]
- Gentilucci, M.; Materazzi, M.; Pambianchi, G.; Burt, P.; Guerriero, G. Temperature variations in Central Italy (Marche region) and effects on wine grape production. Theor. Appl. Clim. 2020, 140, 303–312. [Google Scholar] [CrossRef]
- Costea, D.; Genoiu, E.; Cichi, D.D.; Giugea, N.; Mărăcineanu, L.C. Research studies on the influence of pedoclimatic variations over the quality of grapes in viticultural areas of Oltenia (Romania). In Proceedings of the 36th World Congress on Vine and Wine: Vine and Wine Between Tradition and Modernity, Bucharest, Romania, 2–7 June 2013; Available online: https://www.researchgate.net/publication/328074860 (accessed on 29 September 2024).
- Băducă Câmpeanu, C.; Beleniuc, G.; Simionescu, V.; Panaitescu, L.; Grigorica, L. Climate Change Effects on Ripening Process and Wine Composition in Oltenia’s Vineyards from Romania. Acta Hortic. 2012, 931, 47–54. [Google Scholar] [CrossRef]
- Buciumeanu, E.C.; Murariu, G.; Dincă, L.; Vizitiu, D.E.; Georgescu, L.P. The influence of climatic factors on the main phenological phases of grapevines from Stefanesti Viticultural Center, Romania. Rom. Biotechnol. Lett. 2019, 24, 1055–1060. [Google Scholar] [CrossRef]
- NMA/National Meteorological Administration. Anul 2024. Caracterizare Meteorologică. Available online: https://www.meteoromania.ro/clim/caracterizare-anuala/cc_2024.html (accessed on 3 February 2025).
- NMA/National Meteorological Administration. Caracterizare Climatologică. Iulie 2024. Available online: https://www.meteoromania.ro/clim/caracterizare-lunara/cc_2024_07.html (accessed on 7 November 2024).
- NMA/National Meteorological Administration. Caracterizare Climatologică. August 2024. Available online: https://www.meteoromania.ro/clim/caracterizare-lunara/cc_2024_08.html (accessed on 7 November 2024).
- van Leeuwen, C.; Sgubin, G.; Bois, B.; Ollat, N.; Swingedouw, D.; Zito, S.; Gambetta, G.A. Climate change impacts and adaptations of wine production. Nat. Rev. Earth Environ. 2024, 5, 258–275. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef]
No. | Meteorological Station | Altitude (m) | Latitude | Longitude |
---|---|---|---|---|
1. | Dr.-T. Severin ** | 77 | 44°38′ | 22°38′ |
2. | Calafat * | 61 | 43°59′ | 22°57′ |
3. | Bechet * | 36 | 43°47′ | 23°57′ |
4. | Băilești * | 57 | 44°01′ | 23°20′ |
5. | Craiova ** | 192 | 44°19′ | 23°52′ |
6. | Caracal * | 106 | 44°06′ | 24°22′ |
7. | Slatina ** | 172 | 44°26′ | 24°21′ |
8. | Bâcleș ** | 313 | 44°29′ | 23°07′ |
9. | Târgu Logreşti ** | 265 | 44°53′ | 23°42′ |
10. | Drăgășani ** | 280 | 44°40′ | 24°17′ |
11. | Apa Neagră (Padeș) | 258 | 45°00′ | 22°52′ |
12. | Târgu Jiu ** | 203 | 45°02′ | 23°16′ |
13. | Polovragi | 531 | 45°11′ | 23°49′ |
14. | Râmnicu Vâlcea | 237 | 45°06′ | 24°22′ |
Bioclimatic Index and Abbreviation | Period | Equation, Suitability | Sources |
---|---|---|---|
Bioclimatic index (Ibcv, units) | 1 April to 30 September | (1) 4.0–8.0 QWW; 8.0–15.0 QRW; <4.0 and >15.0 unsuitable for grapevine growing | [57,78,82] |
Oenoclimate aptitude index (IAOe, units) | 1 April to 30 September | (2) <3793 = class IV (unsuitable for grapevine growing); 3793–4300 = class III (suitable for WTW + SW + WD); 4301–4600 = class II (suitable for QWW + RTW); >4600 = class I (suitable for QRW) | [57,79] |
Meteorological Station | GST (°C) | Difference | Difference | |||||
---|---|---|---|---|---|---|---|---|
Mean | 1961–1990 | 1991–2020 | Mean | 1961–1990 | 1991–2020 | |||
Dr.-T. Severin | 19.4 | 18.8 | 20.0 | +1.2 | 3553.5 | 3446.9 | 3660.1 | +213.2 |
Calafat⁕ | 19.4 | 18.9 | 20.0 | +1.1 | 3564.2 | 3461.3 | 3667.1 | +205.8 |
Bechet⁕ | 19.2 | 18.8 | 19.6 | +0.8 | 3514.2 | 3440.7 | 3587.6 | +147.0 |
Băilești⁕ | 19.2 | 18.6 | 19.7 | +1.1 | 3512.5 | 3418.2 | 3606.8 | +188.6 |
Craiova | 18.6 | 18.1 | 19.2 | +1.1 | 3414.1 | 3309.6 | 3518.7 | +209.1 |
Caracal⁕ | 19.1 | 18.6 | 19.6 | +1.0 | 3495.2 | 3403.0 | 3587.3 | +184.3 |
Slatina | 18.8 | - | 19.1 | - | 3441.2 | - | 3498.2 | - |
Bâcleș | 17.7 | 17.0 | 18.4 | +1.4 | 3242.0 | 3112.0 | 3372.0 | +260.0 |
Tg. Logreşti | 17.2 | 16.9 | 17.6 | +0.7 | 3158.9 | 3095.1 | 3222.7 | +127.7 |
Drăgășani | 18.1 | 17.5 | 18.6 | +1.1 | 3315.6 | 3212.8 | 3418.4 | +205.6 |
Apa Neagră | 17.0 | 16.5 | 17.5 | +1.0 | 3110.1 | 3017.0 | 3203.1 | +186.0 |
Târgu Jiu | 17.9 | 17.3 | 18.5 | +1.2 | 3272.5 | 3167.6 | 3377.5 | +209.9 |
Polovragi | 16.3 | 15.9 | 16.7 | +0.7 | 2985.8 | 2917.2 | 3054.3 | +137.1 |
Râmnicu Vâlcea | 17.9 | 17.3 | 18.4 | +1.1 | 3273.4 | 3173.6 | 3373.1 | +199.4 |
MOHwr | 17.9 | 17.3 | 18.4 | +1.1 | 3276.7 | 3161.3 | 3339.8 | +194.2 |
Swr⁕ | 19.2 | 18.7 | 19.7 | +1.0 | 3521.5 | 3430.8 | 3612.2 | +181.4 |
Meteorological Station | PP (mm) | Difference | ASD (Hours) | Difference | ||||
---|---|---|---|---|---|---|---|---|
Mean | 1961–1990 | 1991–2020 | Mean | 1961–1990 | 1991–2020 | |||
Dr.-T. Severin | 358.8 | 358.7 | 358.9 | +0.2 | 1566.6 | 1531.0 | 1602.3 | +71.3 |
Calafat⁕ | 297.0 | 283.5 | 310.4 | +27.0 | 1594.1 | 1563.2 | 1624.9 | +61.7 |
Bechet⁕ | 301.5 | 292.6 | 310.5 | +17.9 | 1572.4 | 1536.8 | 1608.0 | +71.2 |
Băilești⁕ | 307.4 | 299.1 | 315.6 | +16.5 | 1622.4 | 1526.6 | 1718.2 | +191.5 |
Craiova | 348.9 | 328.2 | 369.6 | +41.4 | 1555.3 | 1564.4 | 1546.1 | −18.3 |
Caracal⁕ | 316.5 | 323.3 | 309.6 | −13.6 | 1594.0 | 1553.2 | 1634.8 | +81.7 |
Slatina | 345.2 | - | 365.4 | - | 1498.8 | - | 1494.6 | - |
Bâcleș | 351.4 | 351.9 | 351.0 | −0.9 | 1553.1 | 1538.7 | 1567.6 | +28.9 |
Tg. Logreşti | 401.7 | 397.7 | 405.7 | +8.0 | 1459.0 | 1438.3 | 1479.7 | +41.4 |
Drăgășani | 393.0 | 383.8 | 402.2 | +18.4 | 1551.0 | 1523.9 | 1578.1 | +54.2 |
Apa Neagră | 488.6 | 465.0 | 512.3 | +47.3 | 1412.2 | 1375.6 | 1448.7 | +73.1 |
Târgu Jiu | 451.5 | 445.4 | 457.6 | +12.2 | 1404.5 | 1377.4 | 1431.6 | +54.2 |
Polovragi | 535.5 | 525.8 | 545.2 | +19.3 | 1289.9 | 1287.5 | 1292.3 | +4.8 |
Râmnicu Vâlcea | 447.5 | 435.4 | 459.6 | +24.2 | 1410.8 | 1380.1 | 1441.5 | +61.4 |
MOHwr | 412.2 | 410.2 | 422.8 | +18.9 | 1470.1 | 1446.3 | 1488.3 | +41.2 |
Swr⁕ | 305.6 | 299.6 | 311.5 | +12.0 | 1595.7 | 1545.0 | 1646.5 | +101.5 |
Mean | Max. | Min. | |||||
---|---|---|---|---|---|---|---|
Period/Wine-Growing Region | 1961–1990 | 1991–2020 | 1961–1990 | 1991–2020 | 1961–1990 | 1991–2020 | |
Ibcv (Units) | |||||||
Dr.-T. Severin | 9.3 | 10.4 | 21.2 | 21.5 | 4.6 | 3.6 | |
Calafat⁕ | 11.9 | 11.8 | 24.6 | 21.2 | 6.4 | 5.5 | |
Bechet⁕ | 11.1 | 11.5 | 20.4 | 24.3 | 5.6 | 4.7 | |
Băilești⁕ | 10.8 | 12.3 | 23.2 | 23.4 | 5.4 | 4.6 | |
Craiova | 9.5 | 9.4 | 18.6 | 22.4 | 6 | 3.5 | |
Caracal⁕ | 10 | 12.1 | 17.5 | 30.5 | 5.6 | 4.4 | |
Slatina | - | 8.9 | - | 19.8 | - | 3.3 | |
Bâcleș | 8.2 | 9.5 | 13.8 | 16.6 | 5.2 | 3.6 | |
Tg. Logreşti | 7 | 7.3 | 11.4 | 14.4 | 3.9 | 2.8 | |
Drăgășani | 7.9 | 8.3 | 13.5 | 17.2 | 4.4 | 3.5 | |
Apa Neagră | 5.6 | 5.9 | 10.9 | 14.6 | 3 | 2.6 | |
Târgu Jiu | 5.6 | 6.1 | 12.9 | 14.8 | 3 | 2.9 | |
Polovragi | 4.3 | 4.5 | 7.8 | 11.5 | 2.4 | 2.3 | |
Râmnicu Vâlcea | 6.1 | 6.6 | 11.1 | 13.4 | 3.5 | 2.9 | |
Average | MOHwr | 7.1 | 7.7 | 13.5 | 16.6 | 4.0 | 3.1 |
Swr⁕ | 11.0 | 11.9 | 21.4 | 24.9 | 5.8 | 4.8 | |
Difference | MOHwr | +0.6 | +3.1 | −0.9 | |||
Swr⁕ | +0.9 | +3.5 | −1.0 |
Mean | Max. | Min. | |||||
---|---|---|---|---|---|---|---|
Period/Wine-Growing Region | 1961–1990 | 1991–2020 | 1961–1990 | 1991–2020 | 1961–1990 | 1991–2020 | |
IAOe (Units) | |||||||
Dr.-T. Severin | 4869.2 | 5153.5 | 5368.2 | 5722.4 | 4422.1 | 4381.4 | |
Calafat⁕ | 4991 | 5231.5 | 5376.8 | 5790.3 | 4498.7 | 4664.1 | |
Bechet⁕ | 4934.9 | 5135.2 | 5389.5 | 5638.9 | 4512.3 | 4504.7 | |
Băilești⁕ | 4895.7 | 5259.3 | 5317.3 | 5842.1 | 4547.3 | 4594.7 | |
Craiova | 4795.8 | 4945.2 | 5260.7 | 5590.8 | 4338.1 | 4227.2 | |
Caracal⁕ | 4882.9 | 5162.5 | 5365.8 | 5841.4 | 4434.1 | 4500.6 | |
Slatina | - | 4877.4 | - | 5464.2 | - | 4164.3 | |
Bâcleș | 4548.7 | 4838.6 | 4932.2 | 5585.2 | 4179.8 | 4235.7 | |
Tg. Logreşti | 4385.7 | 4546.7 | 4767.4 | 5273.7 | 3992.1 | 3763.7 | |
Drăgășani | 4602.9 | 4844.3 | 5111.4 | 5346.9 | 4180 | 4164.6 | |
Apa Neagră | 4177.7 | 4389.5 | 4756.6 | 4995.2 | 3765.4 | 3755.1 | |
Târgu Jiu | 4349.6 | 4601.5 | 5020.1 | 5256.2 | 3927.4 | 4002.2 | |
Polovragi | 3928.9 | 4051.5 | 4400.8 | 4869.1 | 3558.1 | 3376.4 | |
Râmnicu Vâlcea | 4368.4 | 4604.9 | 4798.4 | 5164 | 4000.7 | 3961.9 | |
Average | MOHwr | 4447.4 | 4685.3 | 4935.1 | 5326.8 | 4040.4 | 4003.3 |
Swr⁕ | 4926.1 | 5197.1 | 5362.4 | 5778.2 | 4498.1 | 4566.0 | |
Difference | MOHwr | +237.9 | +391.4 | −37.2 | |||
Swr⁕ | +271.0 | +415.8 | +67.9 |
Meteorological Station | Ibcv | IAOe | ||||
---|---|---|---|---|---|---|
Z | SS | Q | Z | SS | Q | |
Dr.-T. Severin | 1.58 | 0.044 | 3.64 | *** | 9.323 | |
Calafat⁕ | 0.04 | 0.001 | 3.23 | ** | 7.366 | |
Bechet⁕ | 0.85 | 0.020 | 3.25 | ** | 6.588 | |
Băileşti⁕ | 1.93 | + | 0.046 | 4.76 | *** | 10.349 |
Craiova | −0.66 | −0.015 | 2.03 | * | 4.423 | |
Caracal⁕ | 2.15 | * | 0.059 | 3.77 | *** | 8.346 |
Slatina | −0.96 | −0.035 | 1.85 | + | 5.038 | |
Bâcleş | 1.84 | + | 0.037 | 3.94 | *** | 8.353 |
Tg. Logreşti | 0.57 | 0.009 | 2.21 | * | 4.557 | |
Drăgăşani | 1.47 | 0.023 | 3.55 | *** | 8.375 | |
Apa Neagră | 0.92 | 0.013 | 2.67 | ** | 6.791 | |
Târgu Jiu | 0.98 | 0.011 | 2.77 | ** | 7.375 | |
Polovragi | 0.40 | 0.004 | 2.29 | * | 5.257 | |
Râmnicu Vâlcea | 1.27 | 0.018 | 3.36 | *** | 7.553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licurici, M.; Vlăduț, A.Ș.; Burada, C.D. A Study of Observed Climate Change Effects on Grapevine Suitability in Oltenia (Romania). Horticulturae 2025, 11, 591. https://doi.org/10.3390/horticulturae11060591
Licurici M, Vlăduț AȘ, Burada CD. A Study of Observed Climate Change Effects on Grapevine Suitability in Oltenia (Romania). Horticulturae. 2025; 11(6):591. https://doi.org/10.3390/horticulturae11060591
Chicago/Turabian StyleLicurici, Mihaela, Alina Ștefania Vlăduț, and Cristina Doina Burada. 2025. "A Study of Observed Climate Change Effects on Grapevine Suitability in Oltenia (Romania)" Horticulturae 11, no. 6: 591. https://doi.org/10.3390/horticulturae11060591
APA StyleLicurici, M., Vlăduț, A. Ș., & Burada, C. D. (2025). A Study of Observed Climate Change Effects on Grapevine Suitability in Oltenia (Romania). Horticulturae, 11(6), 591. https://doi.org/10.3390/horticulturae11060591