Remote Sensing-Based Assessment of Evapotranspiration Patterns in a UNESCO World Heritage Site Under Increasing Water Competition
Abstract
1. Introduction
- To analyze the intra- and inter-annual dynamics of ET and the water deficit index (WDI) in the Doñana region, with a particular focus on differences between irrigated croplands and natural protected ecosystems within the park, while also examining the relationships between land cover types and meteorological drivers, especially precipitation.
- To assess the spatial patterns and temporal trends of ET and WDI over the study period, with special attention given to years of significant water stress, such as 2005, characterized by severe precipitation deficits affecting natural ecosystems, and 2007, when irrigation supply was notably insufficient.
2. Study Area and Data
2.1. Study Area
2.2. Remote Sensing Data
2.3. Meteorological Data
2.4. Land Use Maps
3. Methods
3.1. Remote Sensing ET Based on a Thermal and Optical RS Model
3.2. Intra- and Inter-Annual Dynamics of Evapotranspiration in the Doñana Region and the Influence of Meteorological Drivers
3.3. Spatial Patterns of Evapotranspiration Dynamics Across Land Cover Types (2003–2016) and During Years of Significant Water Constraints
4. Results
4.1. Intra- and Inter-Annual Dynamics of Evapotranspiration in the Doñana Region and the Influence of Meteorological Drivers
4.2. Spatial Patterns and Trends of Evapotranspiration Across Land Cover Types (2003–2016) and During Years of Significant Water Constraints
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muller, A.; Schader, C.; El-Hage Scialabba, N.; Brüggemann, J.; Isensee, A.; Erb, K.-H.; Smith, P.; Klocke, P.; Leiber, F.; Stolze, M.; et al. Strategies for Feeding the World More Sustainably with Organic Agriculture. Nat. Commun. 2017, 8, 1290. [Google Scholar] [CrossRef]
- Javadian, M.; Behrangi, A.; Smith, W.K.; Fisher, J.B. Global Trends in Evapotranspiration Dominated by Increases across Large Cropland Regions. Remote Sens. 2020, 12, 1221. [Google Scholar] [CrossRef]
- Tanentzap, A.J.; Lamb, A.; Walker, S.; Farmer, A. Resolving Conflicts between Agriculture and the Natural Environment. PLoS Biol. 2015, 13, e1002242. [Google Scholar] [CrossRef]
- Rastogi, M.; Kolur, S.M.; Burud, A.; Sadineni, T.; Sekhar, M.; Kumar, R.; Rajput, A. Advancing Water Conservation Techniques in Agriculture for Sustainable Resource Management: A Review. J. Geogr. Environ. Earth Sci. Int. 2024, 28, 41–53. [Google Scholar] [CrossRef]
- Mushtaq, S.; White, N.; Cockfield, G.; Power, B.; Jakeman, G. Reconfiguring Agriculture through the Relocation of Production Systems for Water, Environment and Food Security under Climate Change. J. Agric. Sci. 2015, 153, 779–797. [Google Scholar] [CrossRef]
- Sharma, T.; Vittal, H.; Karmakar, S.; Ghosh, S. Increasing Agricultural Risk to Hydro-Climatic Extremes in India. Environ. Res. Lett. 2020, 15, 34010. [Google Scholar] [CrossRef]
- Scholes, R.J. Climate Change and Ecosystem Services. Wiley Interdiscip. Rev. Clim. Change 2016, 7, 537–550. [Google Scholar] [CrossRef]
- Muluneh, M.G. Impact of Climate Change on Biodiversity and Food Security: A Global Perspective—A Review Article. Agric. Food Secur. 2021, 10, 36. [Google Scholar] [CrossRef]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Tramblay, Y.; Llasat, M.C.; Randin, C.; Coppola, E. Climate Change Impacts on Water Resources in the Mediterranean. Reg. Environ. Change 2020, 20, 83. [Google Scholar] [CrossRef]
- Rodriguez-Ramirez, N.; Santonja, M.; Baldy, V.; Ballini, C.; Montès, N. Shrub Species Richness Decreases Negative Impacts of Drought in a Mediterranean Ecosystem. J. Veg. Sci. 2017, 28, 985–996. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Pal, J.S.; Giorgi, F.; Gao, X. Heat Stress Intensification in the Mediterranean Climate Change Hotspot. Geophys. Res. Lett. 2007, 34, L11706. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Careto, J.A.M.; Russo, A.; Lima, D.C.A. The Future of Iberian Droughts: A Deeper Analysis Based on Multi-Scenario and a Multi-Model Ensemble Approach. Nat. Hazards 2023, 117, 2001–2028. [Google Scholar] [CrossRef]
- Hurtado, A.R.; Díaz-Cano, E.; Berbel, J. The Paradox of Success: Water Resources Closure in Axarquia (Southern Spain). Sci. Total Environ. 2024, 946, 174318. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Minacapilli, M.; Agnese, C.; Blanda, F.; Cammalleri, C.; Ciraolo, G.; D’Urso, G.; Iovino, M.; Pumo, D.; Provenzano, G.; Rallo, G. Estimation of Actual Evapotranspiration of Mediterranean Perennial Crops by Means of Remote-Sensing Based Surface Energy Balance Models. Hydrol. Earth Syst. Sci. 2009, 13, 1061–1074. [Google Scholar] [CrossRef]
- Chavez-Jimenez, A.; Granados, A.; Garrote, L.; Martín-Carrasco, F. Adapting Water Allocation to Irrigation Demands to Constraints in Water Availability Imposed by Climate Change. Water Resour. Manag. 2015, 29, 1413–1430. [Google Scholar] [CrossRef]
- García de Jalón, S.; Iglesias, A.; Cunningham, R.; Pérez Díaz, J.I. Building Resilience to Water Scarcity in Southern Spain: A Case Study of Rice Farming in Doñana Protected Wetlands. Reg. Environ. Change 2014, 14, 1229–1242. [Google Scholar] [CrossRef]
- Andrade, C.; Contente, J.; Santos, J.A. Climate Change Projections of Aridity Conditions in the Iberian Peninsula. Water 2021, 13, 2035. [Google Scholar] [CrossRef]
- Lorenzo, M.N.; Alvarez, I. Climate Change Patterns in Precipitation over Spain Using CORDEX Projections for 2021–2050. Sci. Total Environ. 2020, 723, 138024. [Google Scholar] [CrossRef]
- Moss, W.E.; Crausbay, S.D.; Rangwala, I.; Wason, J.W.; Trauernicht, C.; Stevens-Rumann, C.S.; Sala, A.; Rottler, C.M.; Pederson, G.T.; Miller, B.W.; et al. Drought as an Emergent Driver of Ecological Transformation in the Twenty-First Century. Bioscience 2024, 74, 524–538. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, C.; Kang, R.; Yin, H.; Xu, T.; Kaufmann, H.J. Assessing the Responses of Ecosystem Patterns, Structures and Functions to Drought under Climate Change in the Yellow River Basin, China. Sci. Total Environ. 2024, 929, 172603. [Google Scholar] [CrossRef] [PubMed]
- de Felipe, M.; Aragonés, D.; Díaz-Paniagua, C. Thirty-Four Years of Landsat Monitoring Reveal Long-Term Effects of Groundwater Abstractions on a World Heritage Site Wetland. Sci. Total Environ. 2023, 880, 163329. [Google Scholar] [CrossRef] [PubMed]
- Naranjo-Fernández, N.; Guardiola-Albert, C.; Aguilera, H.; Serrano-Hidalgo, C.; Rodríguez-Rodríguez, M.; Fernández-Ayuso, A.; Ruiz-Bermudo, F.; Montero-González, E. Relevance of Spatio-Temporal Rainfall Variability Regarding Groundwater Management Challenges under Global Change: Case Study in Doñana (SW Spain). Stoch. Environ. Res. Risk Assess. 2020, 34, 1289–1311. [Google Scholar] [CrossRef]
- Frietsch, M.; Loos, J.; Löhr, K.; Sieber, S.; Fischer, J. Future-Proofing Ecosystem Restoration Through Enhancing Adaptive Capacity. Commun. Biol. 2023, 6, 377. [Google Scholar] [CrossRef] [PubMed]
- Naderi, L.; Karamidehkordi, E.; Badsar, M.; Moghadas, M. Impact of Climate Change on Water Crisis and Conflicts: Farmers’ Perceptions at the ZayandehRud Basin in Iran. J. Hydrol. Reg. Stud. 2024, 54, 101878. [Google Scholar] [CrossRef]
- Green, A.J.; Alcorlo, P.; Peeters, E.T.; Morris, E.P.; Espinar, J.L.; Bravo-Utrera, M.A.; Bustamante, J.; Díaz-Delgado, R.; Koelmans, A.A.; Mateo, R.; et al. Creating a Safe Operating Space for Wetlands in a Changing Climate. Front. Ecol. Environ. 2017, 15, 99–107. [Google Scholar] [CrossRef]
- Green, A.J.; Bustamante, J.; Janss, G.F.E.; Fernández-Zamudio, R.; Díaz-Paniagua, C. Doñana Wetlands (Spain). In The Wetland Book; Springer: Dordrecht, The Netherlands, 2018; pp. 1123–1136. [Google Scholar]
- Camacho, C.; Negro, J.J.; Elmberg, J.; Fox, A.D.; Nagy, S.; Pain, D.J.; Green, A.J. Groundwater Extraction Poses Extreme Threat to Doñana World Heritage Site. Nat. Ecol. Evol. 2022, 6, 654–655. [Google Scholar] [CrossRef]
- Acreman, M.; Salathe, T. A Complex Story of Groundwater Abstraction and Ecological Threats to the Doñana National Park World Heritage Site. Nat. Ecol. Evol. 2022, 6, 1401–1402. [Google Scholar] [CrossRef]
- Court of Justice of the European Union. EU Habitats Directive (Case C-559/19). Available online: https://curia.europa.eu/juris/document/document.jsf?text=&docid=219133&pageIndex=0&doclang=en&mode=req&dir=&occ=first&part=1&cid=1871651 (accessed on 12 May 2025).
- Acreman, M.; Casier, R.; Salathe, T. Evidence-Based Risk Assessment of Ecological Damage Due to Groundwater Abstraction; the Case of Doñana Natural Space, Spain. Wetlands 2022, 42, 63. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Melton, F.S.; Huntington, J.; Grimm, R.; Herring, J.; Hall, M.; Rollison, D.; Erickson, T.; Allen, R.; Anderson, M.; Fisher, J.B.; et al. OpenET: Filling a Critical Data Gap in Water Management for the Western United States. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 971–994. [Google Scholar] [CrossRef]
- Fisher, J.B.; Lee, B.; Purdy, A.J.; Halverson, G.H.; Dohlen, M.B.; Cawse-Nicholson, K.; Wang, A.; Anderson, R.G.; Aragon, B.; Arain, M.A.; et al. ECOSTRESS: NASA’s Next Generation Mission to Measure Evapotranspiration From the International Space Station. Water Resour. Res. 2020, 56, e2019WR026058. [Google Scholar] [CrossRef]
- Talsma, C.J.; Good, S.P.; Jimenez, C.; Martens, B.; Fisher, J.B.; Miralles, D.G.; McCabe, M.F.; Purdy, A.J. Partitioning of Evapotranspiration in Remote Sensing-Based Models. Agric. For. Meteorol. 2018, 260–261, 131–143. [Google Scholar] [CrossRef]
- Marshall, M.; Tu, K.; Andreo, V. On Parameterizing Soil Evaporation in a Direct Remote Sensing Model of ET: PT-JPL. Water Resour. Res. 2020, 56, e2019WR026290. [Google Scholar] [CrossRef]
- Zhang, L.; Marshall, M.; Nelson, A.; Vrieling, A. A Global Assessment of PT-JPL Soil Evaporation in Agroecosystems with Optical, Thermal, and Microwave Satellite Data. Agric. For. Meteorol. 2021, 306, 108455. [Google Scholar] [CrossRef]
- Grayson, R.B.; Western, A.W.; Chiew, F.H.S.; Blöschl, G. Preferred States in Spatial Soil Moisture Patterns: Local and Nonlocal Controls. Water Resour. Res. 1997, 33, 2897–2908. [Google Scholar] [CrossRef]
- Purdy, A.J.; Fisher, J.B.; Goulden, M.L.; Famiglietti, J.S. Ground Heat Flux: An Analytical Review of 6 Models Evaluated at 88 Sites and Globally. J. Geophys. Res. Biogeosci. 2016, 121, 3045–3059. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Yu, J.; Zhao, S.; Lin, Y.; Jia, K.; Zhang, X.; Cheng, J.; Xie, X.; Sun, L.; et al. Differences in Estimating Terrestrial Water Flux from Three Satellite-Based Priestley-Taylor Algorithms. Int. J. Appl. Earth Obs. Geoinf. 2017, 56, 1–12. [Google Scholar] [CrossRef]
- Biggs, T.W.; Petropoulos, G.P.; Velpuri, N.M.; Marshall, M.; Glenn, E.P.; Nagler, P.; Messina, A. Remote Sensing of Evapotranspiration from Croplands. In Remote Sensing of Water Resources, Disasters, and Urban Studies; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Li, F.; Xiao, J.; Chen, J.; Ballantyne, A.; Jin, K.; Li, B.; Abraha, M.; John, R. Global Water Use Efficiency Saturation Due to Increased Vapor Pressure Deficit. Science 2023, 381, 672–677. [Google Scholar] [CrossRef]
- García, M.; Sandholt, I.; Ceccato, P.; Ridler, M.; Mougin, E.; Kergoat, L.; Morillas, L.; Timouk, F.; Fensholt, R.; Domingo, F. Actual Evapotranspiration in Drylands Derived from In-Situ and Satellite Data: Assessing Biophysical Constraints. Remote Sens. Environ. 2013, 131, 103–118. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global Estimates of the Land–Atmosphere Water Flux Based on Monthly AVHRR and ISLSCP-II Data, Validated at 16 FLUXNET Sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A Simple Surface Conductance Model to Estimate Regional Evaporation Using MODIS Leaf Area Index and the Penman-Monteith Equation. Water Resour. Res. 2008, 44, W10419. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Heinsch, F.A.; Liu, M.; Tian, H.; Running, S.W. Evaluating Water Stress Controls on Primary Production in Biogeochemical and Remote Sensing Based Models. J. Geophys. Res. Biogeosci 2007, 112, G01012. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Moyano, M.; Garcia, M.; Palacios-Orueta, A.; Tornos, L.; Fisher, J.; Fernández, N.; Recuero, L.; Juana, L. Vegetation Water Use Based on a Thermal and Optical Remote Sensing Model in the Mediterranean Region of Doñana. Remote Sens. 2018, 10, 1105. [Google Scholar] [CrossRef]
- Fernández, N.; Paruelo, J.M.; Delibes, M. Ecosystem Functioning of Protected and Altered Mediterranean Environments: A Remote Sensing Classification in Doñana, Spain. Remote Sens. Environ. 2010, 114, 211–220. [Google Scholar] [CrossRef]
- Tocados-Franco, E.; Berbel, J.; Expósito, A. Water Policy Implications of Perennial Expansion in the Guadalquivir River Basin (Southern Spain). Agric. Water Manag. 2023, 282, 108286. [Google Scholar] [CrossRef]
- Martín-López, B.; García-Llorente, M.; Palomo, I.; Montes, C. The Conservation against Development Paradigm in Protected Areas: Valuation of Ecosystem Services in the Doñana Social–Ecological System (Southwestern Spain). Ecol. Econ. 2011, 70, 1481–1491. [Google Scholar] [CrossRef]
- García-Novo, F.; Marín-Cabrera, C. Doñana: Water and Biosphere; Doñana 2005 Project—Confederación Hidrográfica del Guadalquivir (Guadalquivir Hydrologic Basin Authority), Spanish Ministry of the Environment: Madrid, Spain, 2006; ISBN 84-609-6326-8. [Google Scholar]
- Manzano, M.; Custodio, E.; Montes, C.; Mediavilla, C. Groundwater Quality and Quantity Assessment through a Dedicated Monitoring Network. The Doñana Aquifer Experience (SW Spain). In Groundwater Monitoring.; Quevauviller, P., Fouillac, A.-M., Grath, J., Ward, R., Eds.; Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2009; pp. 273–287. [Google Scholar]
- Amigo, I. Farming Bill Threatens Spain’s Most Important Wetland, Scientists Say. Available online: https://www.science.org/content/article/farming-bill-threatens-spain-s-most-important-wetland-scientists-say (accessed on 30 May 2025).
- Serrano, L.; Díaz-Paniagua, C.; Gómez-Rodríguez, C.; Florencio, M.; Marchand, M.-A.; Roelofs, J.G.M.; Lucassen, E.C.H.E.T. Susceptibility to Acidification of Groundwater-Dependent Wetlands Affected by Water Level Declines, and Potential Risk to an Early-Breeding Amphibian Species. Sci. Total Environ. 2016, 571, 1253–1261. [Google Scholar] [CrossRef]
- Green, A.J.; Guardiola-Albert, C.; Bravo-Utrera, M.Á.; Bustamante, J.; Camacho, A.; Camacho, C.; Contreras-Arribas, E.; Espinar, J.L.; Gil-Gil, T.; Gomez-Mestre, I.; et al. Groundwater Abstraction Has Caused Extensive Ecological Damage to the Doñana World Heritage Site, Spain. Wetlands 2024, 44, 20. [Google Scholar] [CrossRef]
- CHG. Informe Del Estado De Los Acuíferos Del Entorno De Doñana. Año Hidrológico 2015–2016; Confederación Hidrográfica del Guadalquivir: Sevilla, Spain, 2017. [Google Scholar]
- Olías, M.; González, F.; Cerón, J.C.; Bolívar, J.P.; González-Labajo, J.; García-López, S. Water Qualitiy and Distribution of Trace Elements in the Doñana Aquifer (SW Spain). Environ. Geol. 2008, 55, 1555–1568. [Google Scholar] [CrossRef]
- CHG. Plan Hidrológico de La Demarcación Hidrográfica Del Guadalquivir 2015–2021; Anejo No3. Descripción de Usos, Demandas y Presiones; Confederación Hidrográfica del Guadalquivir: Sevilla, Spain, 2015. [Google Scholar]
- EU. Council Directive 91/676/EEC Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Off. J. L. 1991, 375, 12. [Google Scholar]
- Estévez, J.; Gavilán, P.; García-Marín, A.P. Data Validation Procedures in Agricultural Meteorology—A Prerequisite for Their Use. Adv. Sci. Res. 2011, 6, 141–146. [Google Scholar] [CrossRef]
- JdA. Portal Ambiental de Andalucía. Available online: http://www.juntadeandalucia.es/medioambiente/site/rediam/ (accessed on 1 June 2025).
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source Approach for Estimating Soil and Vegetation Energy Fluxes in Observations of Directional Radiometric Surface Temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- IFAPA. Estación Meteorológica de Lebrija I. Available online: https://www.juntadeandalucia.es/agriculturaypesca/ifapa/riaweb/web/ (accessed on 10 December 2024).
- Idso, S.B.; Jackson, R.D. Thermal Radiation from The Atmosphere. J. Geophys. Res. 1969, 74, 5397–5403. [Google Scholar] [CrossRef]
- Parton, W.J.; Logan, J.A. A Model for Diurnal Variation in Soil and Air Temperature. Agric. Meteorol. 1981, 23, 205–216. [Google Scholar] [CrossRef]
- García, M.; Villagarcía, L.; Contreras, S.; Domingo, F.; Puigdefábregas, J. Comparison of Three Operative Models for Estimating the Surface Water Deficit Using ASTER Reflective and Thermal Data. Sensors 2007, 7, 860–883. [Google Scholar] [CrossRef]
- Rasmussen, M.O.; Sørensen, M.K.; Wu, B.; Yan, N.; Qin, H.; Sandholt, I. Regional-Scale Estimation of Evapotranspiration for the North China Plain Using MODIS Data and the Triangle-Approach. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 143–153. [Google Scholar] [CrossRef]
- Jackson, R.D.; Hatfield, J.L.; Reginato, R.J.; Idso, S.B.; Pinter, P.J. Estimation of Daily Evapotranspiration from One Time-of-Day Measurements. Agric. Water Manag. 1983, 7, 351–362. [Google Scholar] [CrossRef]
- Bisht, G.; Venturini, V.; Islam, S.; Jiang, L. Estimation of the Net Radiation Using MODIS (Moderate Resolution Imaging Spectroradiometer) Data for Clear Sky Days. Remote Sens. Environ. 2005, 97, 52–67. [Google Scholar] [CrossRef]
- Iqbal, M. An Introduction to Solar Radiation; Academic Press: Toronto, ON, Canada, 1983. [Google Scholar]
- Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating Crop Water Deficit Using the Relation Between Surface-Air Temperature and Spectral Vegetation Index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Dabernig, M.; Mayr, G.J.; Messner, J.W.; Zeileis, A. Simultaneous Ensemble Postprocessing for Multiple Lead Times with Standardized Anomalies. Mon. Weather. Rev. 2017, 145, 2523–2531. [Google Scholar] [CrossRef]
- García-Herrera, R.; Hernández, E.; Barriopedro, D.; Paredes, D.; Trigo, R.M.; Trigo, I.F.; Mendes, M.A. The Outstanding 2004/05 Drought in the Iberian Peninsula: Associated Atmospheric Circulation. J. Hydrometeorol. 2007, 8, 483–498. [Google Scholar] [CrossRef]
- Ionita, M.; Tallaksen, L.M.; Kingston, D.G.; Stagge, J.H.; Laaha, G.; Van Lanen, H.A.J.; Scholz, P.; Chelcea, S.M.; Haslinger, K. The European 2015 Drought from a Climatological Perspective. Hydrol. Earth Syst. Sci. 2017, 21, 1397–1419. [Google Scholar] [CrossRef]
- Drexler, J.Z.; Anderson, F.E.; Snyder, R.L. Evapotranspiration Rates and Crop Coefficients for a Restored Marsh in the Sacramento–San Joaquin Delta, California, USA. Hydrol. Process. 2008, 22, 725–735. [Google Scholar] [CrossRef]
- Nagler, P.L.; Glenn, E.P.; Kim, H.; Emmerich, W.; Scott, R.L.; Huxman, T.E.; Huete, A.R. Relationship between Evapotranspiration and Precipitation Pulses in a Semiarid Rangeland Estimated by Moisture Flux Towers and MODIS Vegetation Indices. J. Arid. Environ. 2007, 70, 443–462. [Google Scholar] [CrossRef]
- Díaz-Paniagua, C.; Aragonés, D. Permanent and Temporary Ponds in Doñana National Park (SW Spain) Are Threatened by Desiccation. Limnetica 2015, 34, 407–424. [Google Scholar] [CrossRef]
- JdA. El Cultivo Del Arroz En Andalucía. Secretaría General de Agricultura, Ganadería y Desarrollo Rural, España. Junta de Andalucía. Available online: https://www.juntadeandalucia.es/export/drupaljda/arr07121.pdf (accessed on 8 July 2021).
- Calder, I.R.; Rosier, P.T.W.; Prasanna, K.T.; Parameswarappa, S. Eucalyptus Water Use Greater than Rainfall Input—Possible Explanation from Southern India. Hydrol. Earth Syst. Sci. 1997, 1, 249–256. [Google Scholar] [CrossRef]
- Garcia, M.; Fernandez, N.; Gonzalez-Dugo, M.P.; Delibes, M. Impact of Annual Drought on the Water and Energy Exchanges in the Doñana Region (SW Spain). In Proceedings of the Symposium Earth Observation and Water Cycle Science, Frascati, Italy, 18–20 November 2009; Volume 674. [Google Scholar]
- Guardiola-Albert, C.; Jackson, C.R. Potential Impacts of Climate Change on Groundwater Supplies to the Doñana Wetland, Spain. Wetlands 2011, 31, 907–920. [Google Scholar] [CrossRef]
- Custodio, E.; Manzano, M.; del Olmo, C.M. Las Aguas Subterráneas En Doñana: Aspectos Ecológicos y Sociales; Consejería de Medio Ambiente: Madrid, Spain, 2009. [Google Scholar]
- IPCC Expert Meeting on Climate Change, Food, and Agriculture. Meeting Report of the Intergovernmental Panel on Climate Change; World Meteorological Organization: Geneva, Switzerland, 2015.
- UNESCO Convention Concerning the Protection of the World Cultural and Natural Heritage. World Heritage Committee-Forty First Session. Available online: http://whc.unesco.org/archive/2017/whc17-41com-7B-en.pdf (accessed on 10 May 2021).
Variable Description | PT-JPL-Thermal Equations | Reference |
---|---|---|
Evapotranspiration | [45] | |
Canopy transpiration | [45] | |
Potential canopy transpiration | [45] | |
| [45] | |
| [64] | |
| [45] | |
Instant. incoming longwave radiation | [66] | |
Air temperature at MODISpass-time | [67] | |
Number of hours from Tmin until sunset | [67] | |
Instant. outgoing longwave radiation | [68] | |
Daily shortwave radiation | [68] | |
Albedo | [69] | |
Instant. shortwave radiation | [70] | |
Conversion factor day-inst | [70] | |
Instantaneous net radiation | ||
Daily net radiation | [71] | |
Canopy transpiration constraints | ||
| [45] | |
| [45] | |
| [68] | |
Soil evaporation | [45] | |
Potential soil evaporation | [45] | |
Soil evaporation constraints | ||
| [44] | |
Apparent thermal inertia | [44] | |
Solar flux correction factor | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moyano, M.C.; Garcia, M.; Juana, L.; Recuero, L.; Tornos, L.; Fisher, J.B.; Fernández, N.; Palacios-Orueta, A. Remote Sensing-Based Assessment of Evapotranspiration Patterns in a UNESCO World Heritage Site Under Increasing Water Competition. Remote Sens. 2025, 17, 2339. https://doi.org/10.3390/rs17142339
Moyano MC, Garcia M, Juana L, Recuero L, Tornos L, Fisher JB, Fernández N, Palacios-Orueta A. Remote Sensing-Based Assessment of Evapotranspiration Patterns in a UNESCO World Heritage Site Under Increasing Water Competition. Remote Sensing. 2025; 17(14):2339. https://doi.org/10.3390/rs17142339
Chicago/Turabian StyleMoyano, Maria C., Monica Garcia, Luis Juana, Laura Recuero, Lucia Tornos, Joshua B. Fisher, Néstor Fernández, and Alicia Palacios-Orueta. 2025. "Remote Sensing-Based Assessment of Evapotranspiration Patterns in a UNESCO World Heritage Site Under Increasing Water Competition" Remote Sensing 17, no. 14: 2339. https://doi.org/10.3390/rs17142339
APA StyleMoyano, M. C., Garcia, M., Juana, L., Recuero, L., Tornos, L., Fisher, J. B., Fernández, N., & Palacios-Orueta, A. (2025). Remote Sensing-Based Assessment of Evapotranspiration Patterns in a UNESCO World Heritage Site Under Increasing Water Competition. Remote Sensing, 17(14), 2339. https://doi.org/10.3390/rs17142339