Multi-Scale Analysis of Land Use Transition and Its Impact on Ecological Environment Quality: A Case Study of Zhejiang, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Sources and Processing of Land Use Data
2.2.2. Scale Selection and Processing
2.2.3. Driving Factors’ Selection and Processing
2.2.4. Research Framework
2.3. Methods
2.3.1. Land Use Transfer Matrix
2.3.2. Analysis of Ecological Environmental Effects from Land Use Transition
- EEQ index
- Spatial autocorrelation analysis
- Ecological contribution rate of land use transition
2.3.3. OPGD Method
3. Results
3.1. Land Use Transition in Study Area
3.1.1. Change in Land Use Structure
3.1.2. Land Use Transition Pattern
3.2. Ecological Environmental Effects Based on Different Spatial Scales
3.2.1. Distribution of EEQ
3.2.2. Change in EEQ
3.2.3. Ecological Contribution Rate of Land Use Transition
3.3. Driving Factors of EEQ at Different Scales
3.3.1. Single-Factor Analysis
3.3.2. Factor Interaction Analysis
4. Discussion
4.1. Scale Effects of EEQ
- Clarifying scale-dependent differentiation in spatial heterogeneity. The findings demonstrate scale dependency in land use transition impacts on EEQ, consistent with earlier research [65]. The county scale exhibits the strongest spatial heterogeneity (Moran’s I > 0.87, p < 0.001), establishing it as the core unit for EEQ spatial differentiation—a conclusion corroborated by recent studies [40]. This phenomenon stems from the intensive coupling of natural endowments (e.g., topographic gradients between southwestern mountains and northeastern plains) and socio-economic activities within counties. Mountainous counties maintain superior EEQ due to high forest coverage, whereas plain counties face stronger degradation pressures from IML expansion [66]. In contrast, city scales show pronounced spatial homogenization effects due to larger administrative units, obscuring internal variations [67]. Although 5 km grid scales detect localized anomalies (e.g., abrupt EEQ declines in urban–rural fringes), misalignment between regular grids and administrative boundaries limits their direct utility for management decisions. The township scale demonstrates transitional characteristics, with heterogeneity levels intermediate between county and grid scales.
- Discussing scale dependency in EEQ evolutionary trends. Land use transition exhibits distinct scale-dependent ecological effects. Macro-scale analyses (city and county levels) reveal universal EEQ degradation, particularly during the 2010–2015 industrialization acceleration phase, where IML encroachment on ES drove rapid deterioration. Conversely, micro-scale assessments (township and grid levels) uncover localized improvements obscured at coarser resolutions: post-2015, approximately 0.4% of townships and 1.0% of grids showed EEQ enhancement, primarily attributable to restorative transitions such as abandoned industrial sites (WEL/IML) converted to GEL. This “macro-scale degradation coexisting with micro-scale improvement” dichotomy underscores the critical function of grid- and township-level analyses in identifying site-specific ecological recovery. Empirical evidence confirms that EEQ variations diminish at broader scales while intensifying at finer resolutions [68], as finer-scale land transitions simultaneously drive and respond to macro-scale dynamics, collectively shaping EEQ outcomes [69]. Specifically, larger spatial units face greater implementation barriers and extended timeframes for land use transitions [39]. Localized EEQ demonstrates heightened sensitivity to land use changes—urban expansion and agricultural land reduction directly compromise ecological functions during urbanization. Smaller-scale transitions may further trigger environmental issues (e.g., soil erosion, degradation), exacerbating EEQ decline. Conversely, proactive land use optimization at finer scales directly contributes to significant EEQ recovery [70].
- Illustrating the scale transition of EEQ driving factors. Natural factors constitute primary cross-scale determinants of EEQ, aligning with extensive research [71]. Precipitation predominantly influences EEQ at micro scales, where its variability regulates biochemical processes and nutrient cycling in surface ecosystems, exerting critical explanatory power over localized EEQ patterns [72]. Socio-economic factors gain prominence with increasing spatial extent, demonstrating significant negative effects at city and county scales: a higher per-capita GDP and population density correlate with lower EEQ (Figure 13). That is, the development of urbanization is accompanied by a decrease in EEQ, and this result is also consistent with the relevant studies [73].
4.2. Policy Impacts on Land Use Transition and EEQ
4.3. Policy Recommendations for Optimizing EEQ
- Establishment of multi-scale differentiated EEQ management frameworks. First, this requires the clarification of EEQ management priorities across scales. Given the scale dependency of EEQ revealed in this study, policymakers should adopt multi-scale perspectives to address various EEQ characteristics and governance needs. Policy implementation scales should be adjusted based on the relative contributions of driving factors at different scales to maximize the efficiency of EEQ management. Macro-scale policies should emphasize EEQ integrity by integrating natural and socio-economic factors, while micro-scale policies should target localized ecological challenges through precision management, particularly in terms of addressing climatic drivers such as precipitation. Second, county-scale EEQ governance should be prioritized. This study identified the county scale as the optimal unit for EEQ management, aligning with China’s recent urbanization strategy centered on county-level development. In practice, county-scale governance should leverage the unique role of counties in bridging urban and rural systems.
- Maintenance and improvement of EEQ through the rational restructuring of land use. First, the coordinated development of PLESs should be promoted. The present findings demonstrate that the direction and magnitude of the PLES transition had a direct effect on EEQ. Urbanization policies should therefore incentivize a balanced integration of production, living, and ecological functions to ensure sustainable land use. Comprehensive land remediation should be prioritized to optimize existing land resources and enhance utilization efficiency. Concurrently, ES regulations should be strengthened by the rigorous delineation and management of ecological redlines, ensuring the protection of ecologically sensitive zones and critical functional areas. Second, multi-scale land use planning and integrated assessments should be prioritized, together with the establishment of hierarchical land use planning systems tailored to scale-specific characteristics, the development of science-based policies to encourage sustainable land use practices [77], and the implementation of adaptable monitoring frameworks to evaluate ecological impacts of land use changes, ensuring planning flexibility and responsiveness.
- Implementation of zonal EEQ management strategies. First, EEQ conservation in mountainous areas should be prioritized. Ecological monitoring and assessment systems should be implemented in mountainous regions and zones, and robust ecological compensation mechanisms should be established to mitigate the effects of development. Second, EEQ degradation should be curtailed in coastal regions and plains. Strategies for green development should be implemented to decouple rapid economic growth from ecological degradation. Low-impact land use transitions should be prioritized, including the integration of renewable energy infrastructure and restoration of coastal wetlands, to minimize adverse effects on EEQ.
4.4. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EEQ | Ecological environment quality |
OPGD | Optimal parameter geographic detector |
PLESs | Production, living, and ecological spaces |
PS | Production space |
LS | Living space |
ES | Ecological space |
APL | Agricultural production land |
IML | Industrial and mining land |
ULL | Urban living land |
RLL | Rural living land |
FEL | Forest ecological land |
GEL | Grassland ecological land |
WEL | Water ecological land |
OEL | Other ecological land |
References
- Turner Ii, B.L.; Skole, D.; Sanderson, S.; Fischer, G.; Fresco, L.; Leemans, R. Land-Use and Land-Cover Change: Science/Research Plan; IGBP: Stockholm, Sweden, 1995. [Google Scholar]
- GLP. Science Plan and Implementation Strategy Global Land Project; IGBP Report No.53; IGBP: Stockholm, Sweden, 2005. [Google Scholar]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639. [Google Scholar] [CrossRef]
- Fu, B.; Zhang, J.; Wu, X.; Meadows, M.E. Geography’s hotspots and frontiers: Diverse, systematic, and intelligent trends. Geogr. Sustain. 2025, 6, 100285. [Google Scholar] [CrossRef]
- Levin, S.; Xepapadeas, T.; Crépin, A.; Norberg, J.; de Zeeuw, A.; Folke, C.; Hughes, T.; Arrow, K.; Barrett, S.; Daily, G.; et al. Social-ecological systems as complex adaptive systems: Modeling and policy implications. Environ. Dev. Econ. 2013, 18, 111–132. [Google Scholar] [CrossRef]
- Ostrom, E. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. USA 2007, 104, 15181–15187. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Chen, X. Land system science and its contributions to sustainable development goals: A systematic review. Land Use Policy 2024, 143, 107221. [Google Scholar] [CrossRef]
- Yu, B.B. Ecological effects of new-type urbanization in china. Renew. Sust. Energ. Rev. 2021, 135, 110239. [Google Scholar] [CrossRef]
- Zhu, T.; Qin, X. Urbanization path: The fundamental problem of changes in land use patterns. Sci. Geogr. Sin. 2012, 32, 1348–1352. [Google Scholar]
- Tao, J.; Lu, Y.; Ge, D.; Dong, P.; Gong, X.; Ma, X. The spatial pattern of agricultural ecosystem services from the production-living-ecology perspective: A case study of the huaihai economic zone, china. Land Use Policy 2022, 122, 106355. [Google Scholar] [CrossRef]
- Li, W.J.; Wang, Y.; Xie, S.Y.; Cheng, X. Coupling coordination analysis and spatiotemporal heterogeneity between urbanization and ecosystem health in chongqing municipality, china. Sci. Total Environ. 2021, 791, 148311. [Google Scholar] [CrossRef]
- Li, H. Introduction to the Research of Marginalization of Agricultural Land; China Social Sciences Press: Beijing, China, 2023. [Google Scholar]
- Meyfroidt, P.; Roy Chowdhury, R.; de Bremond, A.; Ellis, E.C.; Erb, K.H.; Filatova, T.; Garrett, R.D.; Grove, J.M.; Heinimann, A.; Kuemmerle, T.; et al. Middle-range theories of land system change. Glob. Environ. Change 2018, 53, 52–67. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, Y.; Ding, J.; Li, Z.; Li, Y.; Sun, F. Ecological impacts of land use change in the arid tarim river basin of china. Remote Sens. 2022, 14, 1894. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Liu, Y.; Liu, R. Spatial-temporal dynamics and drivers of ecosystem service interactions along the yellow river area in shaanxi province. J. Clean. Prod. 2025, 496, 145095. [Google Scholar] [CrossRef]
- Gari, S.R.; Newton, A.; Icely, J.D. A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean Coast. Manag. 2015, 103, 63–77. [Google Scholar] [CrossRef]
- Liao, C. Quantitative judgement and classification system for coordinated development of environment and economy—A case study of the city group in the pearl river delta. Trop. Geogr. 1999, 19, 171–177. [Google Scholar]
- Giampietro, M.; Mayumi, K.; Ramos-Martin, J. Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale. Energy 2009, 34, 313–322. [Google Scholar] [CrossRef]
- Li, J.S.; Sun, W.; Li, M.Y.; Meng, L.L. Coupling coordination degree of production, living and ecological spaces and its influencing factors in the yellow river basin. J. Clean. Prod. 2021, 298, 126803. [Google Scholar] [CrossRef]
- Song, W.; Deng, X.Z. Land-use/land-cover change and ecosystem service provision in china. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Hill, S.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45. [Google Scholar] [CrossRef]
- Li, J.F.; Han, J.C.; Zhang, Y.; Liu, S.Q.; Ye, H.P.; Zhang, Z.Y. Decoupling characteristics of county-level land use carbon emissions and ecological environment quality at spatiotemporal scales: A case study of shaanxi province, china. Int. J. Digit. Earth 2024, 17, 2436494. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Liu, Y.X.; Zhao, M.Y.; Hu, Y.N.; Wu, J.S. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 2017, 607, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Kang, Y.; Niu, Y. Spatiotemporal dynamics and driving factors of ecosystem services value in lanzhou city, china. Sci. Rep. 2024, 14, 26562. [Google Scholar] [CrossRef]
- Su, Y.; Feng, G.; Ren, J. Spatio-temporal evolution of land use and its eco-environmental effects in the caohai national nature reserve of china. Sci. Rep. 2023, 13, 20150. [Google Scholar] [CrossRef]
- Gu, G.H.; Wu, B.; Lu, S.Q.; Zhang, W.Z.; Tian, Y.C.; Lu, R.C.; Feng, X.L.; Liao, W.H. Differential evolution of territorial space and effects on ecological environment quality in china’s border regions. J. Geogr. Sci. 2024, 34, 1109–1127. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, M.Y.; Zhang, Z.Y.; Liu, L.; Gao, Y.; Zhang, X.Y.; Chen, H.J.; Kang, Z.W.; Liu, X.Y.; Zhang, Y. The impact of land-use change on the ecological environment quality from the perspective of production-living-ecological space: A case study of the northern slope of tianshan mountains. Ecol. Inform. 2024, 83, 102795. [Google Scholar] [CrossRef]
- Walther, G.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Wang, X.; Liu, G.; Xiang, A.; Xiao, S.; Lin, D.; Lin, Y.; Lu, Y. Terrain gradient response of landscape ecological environment to land use and land cover change in the hilly watershed in south china. Ecol. Indic. 2023, 146, 109797. [Google Scholar] [CrossRef]
- Li, C.; Wu, J. Land use transformation and eco-environmental effects based on production-living-ecological spatial synergy: Evidence from shaanxi province, china. Environ. Sci. Pollut. Res. 2022, 29, 41492–41504. [Google Scholar] [CrossRef]
- Hu, X.S.; Xu, H.Q. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from fuzhou city, china. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Sun, Z.H.; Han, J.C.; Li, Y.A.; Yang, L.Y.; Lei, S.; Yan, J.K. Effects of large-scale land consolidation projects on ecological environment quality: A case study of a land creation project in yan’an, china. Environ. Int. 2024, 183, 108392. [Google Scholar]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef]
- Pattee, H.H. Hierarchy theory: The challenge of complex systems. In National Association of Biology Teachers; George Braziller Inc.: New York, NY, USA, 1973; Volume 35, pp. 428–429. [Google Scholar]
- Chen, W.Y.; Zhao, R.F.; Lu, H.T. Response of ecological environment quality to land use transition based on dryland oasis ecological index (DOEI) in dryland: A case study of oasis concentration area in middle heihe river, china. Ecol. Indic. 2024, 165, 112214. [Google Scholar] [CrossRef]
- Sun, T.; Yang, Y.; Wang, Z.; Yong, Z.; Xiong, J.; Ma, G.; Li, J.; Liu, A. Spatiotemporal variation of ecological environment quality and extreme climate drivers on the qinghai-tibetan plateau. J. Mt. Sci. 2023, 20, 2282–2297. [Google Scholar] [CrossRef]
- Ye, B.; Sun, B.; Shi, X.; Zhao, Y.; Pang, J.; Guo, Y.; Yao, W. Land use changes and its impact on ecological environment quality in bayannur city. Huan Jing Ke Xue Huanjing Kexue 2024, 45, 6899–6909. [Google Scholar]
- Zhou, G.; Long, H. Explanation of land-use system evolution: Modes, trends, and mechanisms. Land Use Policy 2025, 150, 107470. [Google Scholar] [CrossRef]
- Dang, L.; Zhao, F.; Teng, Y.; Teng, J.; Zhan, J.; Zhang, F.; Liu, W.; Wang, L. Scale dependency of trade-offs/synergies analysis of ecosystem services based on bayesian belief networks: A case of the yellow river basin. J. Environ. Manag. 2025, 375, 124410. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wu, W.; Tian, S.; Li, L.; Li, Z.; Cao, Y. Geographical feature and method factors significantly influence the reliability of ecological source information transmission at multi-scale. Ecol. Indic. 2025, 170, 113029. [Google Scholar] [CrossRef]
- Bao, S.W.; Cui, W.L.; Yang, F. Future land use prediction and optimization strategy of zhejiang greater bay area coupled with ecological security multi-scenario pattern. PLoS ONE 2024, 19, e0291570. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Ke, F.; Yu, J. Spatio-temporal evolution and influencing factors of rural production-living-ecological function: A case study of mountainous counties in zhejiang province, china. Front. Environ. Sci. 2025, 13, 1495778. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.Y.; Kuang, W.H.; Xu, X.L.; Zhang, S.W.; Yan, C.Z.; Li, R.D.; Wu, S.X.; Hu, Y.F.; Du, G.M.; et al. Spatiotemporal patterns and characteristics of land-use change in china during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Yang, Q.; Duan, X.; Wang, L.; Jin, Z. Land use transformation based on ecological-production-living spaces and associated eco-environment effects: A case study in the yangtze river delta. Sci. Geogr. Sin. 2018, 38, 97–106. [Google Scholar]
- Huang, Y.; Lin, J.; He, X.; Lin, Z.; Wu, Z.; Zhang, X. Assessing the scale effect of urban vertical patterns on urban waterlogging: An empirical study in shenzhen. Environ. Impact Assess. Rev. 2024, 106, 107486. [Google Scholar] [CrossRef]
- Huang, J.T.; Zhang, Y.C.; Zhang, J.Q.; Qi, J.W.; Liu, P. Study on the ecological environment quality and its driving factors of the spatial transformation of production-living-ecological space in baishan city. Sci. Rep. 2024, 14, 18709. [Google Scholar] [CrossRef]
- Hayes, A.F.; Cai, L. Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. Behav. Res. Methods 2007, 39, 709–722. [Google Scholar] [CrossRef]
- Hu, J.; Miao, C. CHM\_PRE v2: A New Upgraded High-Precision Gridded Precipitation Dataset Considering Spatiotemporal and Physical Correlations for Mainland China; Zenodo: Geneva, Switzerland, 2025. [Google Scholar]
- Peng, S. 1-km Monthly Mean Temperature Dataset for China (1901–2023); National Tibetan Plateau Data Center: Beijing, China, 2024. [Google Scholar]
- Didan, K. MOD13a3 MODIS/terra Vegetation Indices Monthly l3 Global 1km SIN Grid v006; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2015.
- Xu, X. 1 km-Grid Dataset of Spatial Distribution of China’s GDP. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=33 (accessed on 21 April 2025).
- Hu, C.; Song, M.; Zhang, A. Dynamics of the eco-environmental quality in response to land use changes in rapidly urbanizing areas: A case study of wuhan, china from 2000 to 2018. J. Geogr. Sci. 2023, 33, 245–265. [Google Scholar] [CrossRef]
- Li, X.; Fang, C.; Huang, J.; Mao, H. The urban land use transformations and associated effects on eco-environment in nothwest china arid region: A case study in hexi region, gansu province. Quat. Sci. 2003, 23, 280–290. [Google Scholar]
- Zhang, Y.; Liu, Y.; Gu, J. Land use/land cover change and its environmental effects in wuhan city. Geogr. Sci. 2011, 31, 1280–1285. [Google Scholar]
- Yang, L.; Shi, L.; Wei, J.; Wang, Y. Spatiotemporal evolution of ecological environment quality in arid areas based on the remote sensing ecological distance index: A case study of yuyang district in yulin city, china. Open Geosci. 2021, 13, 1701–1710. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, W.; Zhou, J. Land-use transfer and its ecological effects in rapidly urbanizing areas: A case study of nanjing, china. Sustainability 2024, 16, 10615. [Google Scholar] [CrossRef]
- Lv, L.; Zhou, S.; Zhou, B.; Dai, L.; Chang, T.; Bao, G.; Zhou, H.; Li, Z. Land use transformation and its eco-environmental response in process of the regional development: A case study of jiangsu province. Sci. Geogr. Sin. 2013, 33, 1442–1449. [Google Scholar]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, L.; Yu, H.; Zhong, Q.; Zhang, G.; Chen, X.; Zhang, Q. Attributing spatially stratified heterogeneity in biodiversity of urban–rural interlaced zones based on the OPGD model. Ecol. Inform. 2024, 83, 102789. [Google Scholar] [CrossRef]
- Hou, M.; Deng, Y.; Yao, S. Coordinated relationship between urbanization and grain production in china: Degree measurement, spatial differentiation and its factors detection. J. Clean. Prod. 2022, 331, 129957. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Zhang, X.M.; Fan, H.B.; Hou, H.; Xu, C.Q.; Sun, L.; Li, Q.Y.; Ren, J.Z. Spatiotemporal evolution and multi-scale coupling effects of land-use carbon emissions and ecological environmental quality. Sci. Total Environ. 2024, 922, 171149. [Google Scholar] [CrossRef]
- Xue, C.; Chen, X.; Xue, L.; Zhang, H.; Chen, J.; Li, D. Modeling the spatially heterogeneous relationships between tradeoffs and synergies among ecosystem services and potential drivers considering geographic scale in bairin left banner, china. Sci. Total Environ. 2023, 855, 158834. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Qiao, J.; Li, M.; Huang, M. Spatiotemporal heterogeneity of ecosystem service interactions and their drivers at different spatial scales in the yellow river basin. Sci. Total Environ. 2024, 908, 168486. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Y.; Meng, R.; Li, S.; Zheng, L.; Song, M. Multi-scale matching and simulating flows of ecosystem service supply and demand in the wuhan metropolitan area, china. J. Clean. Prod. 2024, 476, 143648. [Google Scholar] [CrossRef]
- Magliocca, N.R.; Dhungana, P.; Sink, C.D. Review of counterfactual land change modeling for causal inference in land system science. J. Land Use Sci. 2023, 18, 1–24. [Google Scholar] [CrossRef]
- Long, H. Theorizing land use transitions: A human geography perspective. Habitat Int. 2022, 128, 102669. [Google Scholar] [CrossRef]
- Tian, F.; Li, X.; Wu, X.; Gong, L. Identifying supply–demand mismatches of ecosystem services and social-ecological drivers at different scales to support land use planning. Ecol. Indic. 2025, 174, 113462. [Google Scholar] [CrossRef]
- Qiu, H.; Bai, Y.; Han, H.; Zhang, J.; Cheng, X. Ecosystem service supply and demand relationship and spatial identification of driving threshold in loess plateau of china. Ecol. Eng. 2025, 212, 107534. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.C.; Lin, Z.L. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef]
- Su, X.Y.; Fan, Y.M.; Wen, C.H. Systematic coupling and multistage interactive response of the urban land use efficiency and ecological environment quality. J. Environ. Manag. 2024, 365, 121584. [Google Scholar] [CrossRef] [PubMed]
- Huber, P.R.; Greco, S.E.; Thorne, J.H. Spatial scale effects on conservation network design: Trade-offs and omissions in regional versus local scale planning. Landsc. Ecol. 2010, 25, 683–695. [Google Scholar] [CrossRef]
- Valerio, F.; Godinho, S.; Ferraz, G.; Pita, R.; Gameiro, J.; Silva, B.; Marques, A.T.; Silva, J.P. Multi-temporal remote sensing of inland surface waters: A fusion of sentinel-1&2 data applied to small seasonal ponds in semiarid environments. Int. J. Appl. Earth Obs. Geoinf. 2024, 135, 104283. [Google Scholar]
Type | Factor | Years | Spatial Resolution | Data Source | Reference |
---|---|---|---|---|---|
Natural factors | Average precipitation | 2005, 2010, 2015, 2020 | 1 km | CHM_PRE V2 from China HydroMeteorology Research Group (https://zenodo.org/records/14634575, accessed on 18 April 2025) | [49] |
Average temperature | 2005, 2010, 2015, 2020 | 1 km | National Tibetan Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn, accessed on 18 April 2025) | [50] | |
NDVI | 2005, 2010, 2015, 2020 | 1 km | MOD13A3 V006 from EarthData (https://www.earthdata.nasa.gov/, accessed on 5 August 2024) | [51] | |
Socio-economic factors | Per-capita GDP | 2005, 2010, 2015, 2020 | 1 km | Resource and environmental science data platform (https://www.resdc.cn/, accessed on 21 April 2025) | [52] |
Population density | 2005, 2010, 2015, 2020 | 1 km | WorldPop (https://www.worldpop.org/, accessed on 21 April 2025) | / |
Primary Classification | Secondary Classifications | Land Use Types (Ri Value) |
---|---|---|
PS | APL | Dry land (0.25), paddy field (0.30) |
IML | Other construction land (0.15) | |
LS | ULL | Urban land (0.20) |
RLL | Rural residential area (0.20) | |
ES | FEL | Forest (0.95), scrubland (0.65), sparse forest (0.45), other forest (0.40) |
GEL | High-coverage grassland (0.75), medium-coverage grassland (0.45), low-coverage grassland (0.20) | |
WEL | Inland waterway (0.55), natural lake (0.75), artificial water (0.55), intertidal flat (0.45), floodplain (0.55) | |
OEL | Marshland (0.65), bare soil (0.05), bare rock (0.01) |
Space Type | Land Use | Area (km2) | Change Rate (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
2005 | 2010 | 2015 | 2020 | 2005–2010 | 2010–2015 | 2015–2020 | 2005–2020 | ||
PS | APL | 25,583.30 | 25,165.99 | 24,625.47 | 23,999.04 | −1.63 | −2.15 | −2.54 | −6.19 |
IML | 1335.40 | 1698.83 | 2513.40 | 2831.67 | 27.22 | 47.95 | 12.66 | 112.05 | |
Total of PS | 26,918.71 | 26,864.82 | 27,138.88 | 26,830.71 | −0.20 | 1.02 | −1.14 | −0.33 | |
LS | ULL | 2788.33 | 2853.83 | 3227.06 | 3263.48 | 2.35 | 13.08 | 1.13 | 17.04 |
RLL | 2567.18 | 2637.75 | 2906.65 | 3077.58 | 2.75 | 10.19 | 5.88 | 19.88 | |
Total of LS | 5355.51 | 5491.58 | 6133.71 | 6341.06 | 2.54 | 11.69 | 3.38 | 18.40 | |
ES | FEL | 65,646.59 | 65,543.29 | 64,949.92 | 65,149.97 | −0.16 | −0.91 | 0.31 | −0.76 |
GEL | 2419.19 | 2464.10 | 2492.37 | 2470.57 | 1.86 | 1.15 | −0.87 | 2.12 | |
WEL | 4056.85 | 4030.41 | 3691.37 | 3613.93 | −0.65 | −8.41 | −2.10 | −10.92 | |
OEL | 49.23 | 51.88 | 39.84 | 39.84 | 5.38 | −23.21 | 0.00 | −19.08 | |
Total of ES | 72,171.86 | 72,089.68 | 71,173.50 | 71,274.31 | −0.11 | −1.27 | 0.14 | −1.24 |
Type | APL | IML | ULL | RLL | FEL | GEL | WEL | OEL | Roll-Out |
---|---|---|---|---|---|---|---|---|---|
APL | 23,887.59 | 735.13 | 434.37 | 465.74 | 23.03 | 2.46 | 35.00 | 0.00 | 1695.72 |
IML | 0.79 | 1286.62 | 10.48 | 3.73 | 5.21 | 18.81 | 8.63 | 1.12 | 48.78 |
ULL | 0.00 | 1.05 | 2787.27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.06 |
RLL | 2.66 | 0.31 | 1.65 | 2561.63 | 0.28 | 0.00 | 0.64 | 0.00 | 5.56 |
FEL | 8.19 | 416.45 | 21.02 | 23.58 | 65,115.07 | 55.57 | 6.70 | 0.00 | 531.51 |
GEL | 28.25 | 63.58 | 1.62 | 14.44 | 5.11 | 2295.82 | 10.38 | 0.00 | 123.37 |
WEL | 71.55 | 328.14 | 6.46 | 8.45 | 1.26 | 89.91 | 3549.24 | 1.83 | 507.61 |
OEL | 0.00 | 0.40 | 0.61 | 0.00 | 0.00 | 7.99 | 3.34 | 36.89 | 12.34 |
Add-in | 111.45 | 1545.06 | 476.21 | 515.95 | 34.89 | 174.75 | 64.69 | 2.95 | 2925.95 |
City Scale | County Scale | Township Scale | Grid Scale | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2005 | 2010 | 2015 | 2020 | 2005 | 2010 | 2015 | 2020 | 2005 | 2010 | 2015 | 2020 | 2005 | 2010 | 2015 | 2020 | |
Moran’s I | 0.24 | 0.24 | 0.23 | 0.24 | 0.92 *** | 0.93 *** | 0.87 *** | 0.89 *** | 0.79 *** | 0.79 *** | 0.79 *** | 0.78 *** | 0.49 *** | 0.49 *** | 0.50 *** | 0.49 *** |
z-score | 1.75 | 1.74 | 1.68 | 1.73 | 12.57 | 12.62 | 11.89 | 12.08 | 112.45 | 112.02 | 111.63 | 110.48 | 232.41 | 231.64 | 235.50 | 233.25 |
p-value | 0.08 | 0.08 | 0.09 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
H-H unit | 0 | 0 | 1 | 1 | 10 | 11 | 11 | 11 | 506 | 505 | 511 | 507 | 2254 | 2255 | 2267 | 2267 |
H-L unit | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 71 | 73 | 65 | 70 | 178 | 173 | 165 | 174 |
L-H unit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 41 | 41 | 44 | 43 | 299 | 297 | 300 | 295 |
L-L unit | 0 | 0 | 0 | 0 | 19 | 19 | 19 | 19 | 501 | 498 | 505 | 498 | 1328 | 1326 | 1340 | 1339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Ke, F.; Yu, J.; Zhang, H. Multi-Scale Analysis of Land Use Transition and Its Impact on Ecological Environment Quality: A Case Study of Zhejiang, China. Land 2025, 14, 1569. https://doi.org/10.3390/land14081569
Xu Z, Ke F, Yu J, Zhang H. Multi-Scale Analysis of Land Use Transition and Its Impact on Ecological Environment Quality: A Case Study of Zhejiang, China. Land. 2025; 14(8):1569. https://doi.org/10.3390/land14081569
Chicago/Turabian StyleXu, Zhiyuan, Fuyan Ke, Jiajie Yu, and Haotian Zhang. 2025. "Multi-Scale Analysis of Land Use Transition and Its Impact on Ecological Environment Quality: A Case Study of Zhejiang, China" Land 14, no. 8: 1569. https://doi.org/10.3390/land14081569
APA StyleXu, Z., Ke, F., Yu, J., & Zhang, H. (2025). Multi-Scale Analysis of Land Use Transition and Its Impact on Ecological Environment Quality: A Case Study of Zhejiang, China. Land, 14(8), 1569. https://doi.org/10.3390/land14081569