Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (421)

Search Parameters:
Keywords = positive electrode materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5112 KiB  
Article
Fabrication of a Porous TiNi3 Intermetallic Compound to Enhance Anti-Corrosion Performance in 1 M KOH
by Zhenli He, Yue Qiu, Yuehui He, Qian Zhao, Zhonghe Wang and Yao Jiang
Metals 2025, 15(8), 865; https://doi.org/10.3390/met15080865 - 1 Aug 2025
Viewed by 175
Abstract
Porous intermetallic compounds have the properties of porous materials as well as a combination of covalent and metallic bonds, and they exhibit high porosity, structural stability, and corrosion resistance. In this work, a porous TiNi3 intermetallic compound was fabricated through reactive synthesis [...] Read more.
Porous intermetallic compounds have the properties of porous materials as well as a combination of covalent and metallic bonds, and they exhibit high porosity, structural stability, and corrosion resistance. In this work, a porous TiNi3 intermetallic compound was fabricated through reactive synthesis of elemental powders. Next, detailed studies of its phase composition and pore structure characteristics at different sintering temperatures, as well as its corrosion behavior against an alkaline environment, were carried out. The results show that the as-prepared porous TiNi3 intermetallic compound has abundant pore structures, with an open porosity of 56.5%, which can be attributed to a combination of the bridging effects of initial powder particles and the Kirkendall effect occurring during the sintering process. In 1 M KOH solution, a higher positive corrosion potential (−0.979 VSCE) and a lower corrosion current density (1.18 × 10−4 A∙cm−2) were exhibited by the porous TiNi3 intermetallic compound, compared to the porous Ni, reducing the thermodynamic corrosion tendency and the corrosion rate. The corresponding corrosion process is controlled by the charge transfer process, and the increased charge transfer resistance value (713.9 Ω⋅cm2) of TiNi3 makes it more difficult to charge-transfer than porous Ni (204.5 Ω⋅cm2), thus decreasing the rate of electrode reaction. The formation of a more stable passive film with the incorporation of Ti contributes to this improved corrosion resistance performance. Full article
(This article belongs to the Special Issue Advanced Ti-Based Alloys and Ti-Based Materials)
Show Figures

Figure 1

16 pages, 4629 KiB  
Article
Development of a Reflective Electrochromic Zinc-Ion Battery Device for Infrared Emissivity Control Using Self-Doped Polyaniline Films
by Yi Wang, Ze Wang, Tong Feng, Jiandong Chen, Enkai Lin and An Xie
Polymers 2025, 17(15), 2110; https://doi.org/10.3390/polym17152110 - 31 Jul 2025
Viewed by 229
Abstract
Electrochromic devices (ECDs) capable of modulating both visible color and infrared (IR) emissivity are promising for applications in smart thermal camouflage and multifunctional displays. However, conventional transmissive ECDs suffer from limited IR modulation due to the low IR transmittance of transparent electrodes. Here, [...] Read more.
Electrochromic devices (ECDs) capable of modulating both visible color and infrared (IR) emissivity are promising for applications in smart thermal camouflage and multifunctional displays. However, conventional transmissive ECDs suffer from limited IR modulation due to the low IR transmittance of transparent electrodes. Here, we report a reflection-type electrochromic zinc-ion battery (HWEC-ZIB) using a self-doped polyaniline nanorod film (SP(ANI-MA)) as the active layer. By positioning the active material at the device surface, this structure avoids interference from transparent electrodes and enables broadband and efficient IR emissivity tuning. To prevent electrolyte-induced IR absorption, a thermal lamination encapsulation method is employed. The optimized device achieves emissivity modulation ranges of 0.28 (3–5 μm) and 0.19 (8–14 μm), delivering excellent thermal camouflage performance. It also exhibits a visible color change from earthy yellow to deep green, suitable for various natural environments. In addition, the HWEC-ZIB shows a high areal capacity of 72.15 mAh cm−2 at 0.1 mA cm−2 and maintains 80% capacity after 5000 cycles, demonstrating outstanding electrochemical stability. This work offers a versatile device platform integrating IR stealth, visual camouflage, and energy storage, providing a promising solution for next-generation adaptive camouflage and defense-oriented electronics. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

20 pages, 3217 KiB  
Review
Progress in Al/AgO Electrode Materials for Seawater-Activated Batteries
by Peiqiang Chen, Qun Zheng, Changfu Wang, Penglin Dai, Yujuan Yin, Jinmao Chen, Xudong Wang, Wanli Xu and Man Ruan
Energies 2025, 18(15), 4007; https://doi.org/10.3390/en18154007 - 28 Jul 2025
Viewed by 265
Abstract
Al/AgO seawater-activated batteries with high specific energy and high specific power are widely used at present. The AgO electrode determines the performance of the battery, with its active material utilization rate having a significant impact on the specific capacity, energy density and discharge [...] Read more.
Al/AgO seawater-activated batteries with high specific energy and high specific power are widely used at present. The AgO electrode determines the performance of the battery, with its active material utilization rate having a significant impact on the specific capacity, energy density and discharge capacity of the battery. Therefore, this study briefly introduces the structure and working principle of Al/AgO seawater-activated batteries. Starting from the AgO material itself, common preparation methods for such positive electrode materials—including sintered silver oxide electrodes, pressed silver oxide electrodes and thin-film silver oxide electrodes—are introduced, and the factors influencing their electrochemical performance are analyzed in depth. We elaborate on the relevant research progress regarding AgO electrodes in terms of improving battery performance, detailing the effects of the silver powder’s morphology, porosity, purity, ordered structure, surface treatment and doping modification methods on silver oxide electrodes. Finally, various methods for improving the electrochemical performance of silver oxide electrodes are detailed. Current challenges and possible future research directions are analyzed, and prospects for the future development of high-specific-energy batteries based on AgO electrode materials are discussed. Overall, this review highlights the characteristics of Al/AgO batteries, providing a theoretical basis for the development of high-performance Al/AgO batteries. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

21 pages, 3325 KiB  
Article
Numerical Modelling of 1d Isothermal Lithium-Ion Battery with Varied Electrolyte and Electrode Materials
by Elif Kaya and Alessandro d’Adamo
Energies 2025, 18(13), 3288; https://doi.org/10.3390/en18133288 - 23 Jun 2025
Viewed by 469
Abstract
In this study, the lithium-ion (Li-ion) battery type, which has a high-power density and utilizes lithium as the primary conductive terminal, has been employed. Within the scope of this research, a one-dimensional isothermal Li-ion battery model has been investigated under various electrolyte (both [...] Read more.
In this study, the lithium-ion (Li-ion) battery type, which has a high-power density and utilizes lithium as the primary conductive terminal, has been employed. Within the scope of this research, a one-dimensional isothermal Li-ion battery model has been investigated under various electrolyte (both liquid and solid) and electrode materials using the COMSOL Multiphysics software. The obtained simulation results have been corroborated with information sourced from the literature and establish a foundational framework for future studies. The average range of electrolyte salt concentration in battery components is slightly higher for batteries utilizing polymer electrolytes compared to those with liquid electrolytes. During discharge at five different C-rates, Li-ion batteries with liquid electrolytes displayed higher voltage than those with polymer electrolytes. On the other hand, the one with the lithium iron phosphate (LFP) positive electrode exhibits the greatest variation in lithium concentration at the surface of the positive electrode at the end of discharge. Conversely, the battery using a LiNiO2 cathode shows the smallest surface lithium concentration variation during the same period. This pattern is similarly observed for the lithium concentration at the center of the electrode particles. The presented model can be used to explore innovative electrolyte and electrode materials to improve the design of Li-ion batteries. Full article
(This article belongs to the Special Issue Current Advances in Fuel Cell and Batteries)
Show Figures

Figure 1

13 pages, 2867 KiB  
Article
Characterization of Space Charge Accumulations in Alternative Gas-to-Liquid Oil-Immersed Paper Insulation Under Polarity Reversal Voltage Scenarios
by Ya Wang, Yifei Xiong, Zheming Wang and Wu Lu
Energies 2025, 18(12), 3152; https://doi.org/10.3390/en18123152 - 16 Jun 2025
Viewed by 275
Abstract
Due to its advantages, such as its corrosive sulfur-free property and high purity, gas-to-liquid (GTL) oil is regarded as an excellent alternative to conventional naphthenic mineral oil in the oil/paper composite insulation of UHV converter transformers. In such application scenarios, under the condition [...] Read more.
Due to its advantages, such as its corrosive sulfur-free property and high purity, gas-to-liquid (GTL) oil is regarded as an excellent alternative to conventional naphthenic mineral oil in the oil/paper composite insulation of UHV converter transformers. In such application scenarios, under the condition of voltage polarity reversal, charge accumulation is likely to occur along the liquid/solid interface, which leads to the distortion of the electric field, consequently reducing the breakdown voltage of the insulating material, and leading to flashover in the worst case. Therefore, understanding such space charge characteristics under polarity-reversed voltage is key for the insulation optimization of GTL oil-filled converter transformers. In this paper, a typical GTL oil is taken as the research object with naphthenic oil as the benchmark. Electroacoustic pulse measurement technology is used to study the space charge accumulation characteristics and electric field distribution of different oil-impregnated paper insulations under polarity-reversed conditions. The experimental results show that under positive–negative–positive polarity reversal voltage, the gas-impregnated pressboard exhibits significantly higher rates of space charge density variation and electric field distortion compared with mineral oil-impregnated paper. In stage B, the dissipation rate of negative charges at the grounded electrode in GTL oil-impregnated paper is 140% faster than that in mineral oil-impregnated paper. In stage C, the electric field distortion rate near the electrode of GTL oil-impregnated paper reaches 54.15%. Finally, based on the bipolar charge transport model, the microscopic processes responsible for the differences in two types of oil-immersed papers are discussed. Full article
Show Figures

Figure 1

20 pages, 2425 KiB  
Review
A Review of Electroactive Polymers in Sensing and Actuator Applications
by Diana Narvaez and Brittany Newell
Actuators 2025, 14(6), 258; https://doi.org/10.3390/act14060258 - 23 May 2025
Viewed by 3913
Abstract
Electroactive polymers (EAPs) represent a versatile class of smart materials capable of converting electrical stimuli into mechanical motion and vice versa, positioning them as key components in the next generation of actuators and sensors. This review summarizes recent developments in both electronic and [...] Read more.
Electroactive polymers (EAPs) represent a versatile class of smart materials capable of converting electrical stimuli into mechanical motion and vice versa, positioning them as key components in the next generation of actuators and sensors. This review summarizes recent developments in both electronic and ionic EAPs, highlighting their activation mechanisms, material architectures, and multifunctional capabilities. Representative systems include dielectric elastomers, ferroelectric and conducting polymers, liquid crystal elastomers, and ionic gels. Advances in fabrication methods, such as additive manufacturing, nanocomposite engineering, and patternable electrode deposition, are discussed with emphasis on miniaturization, stretchability, and integration into soft systems. Applications span biomedical devices, wearable electronics, soft robotics, and environmental monitoring, with growing interest in platforms that combine actuation and sensing within a single structure. Finally, the review addresses critical challenges such as long-term material stability and scalability, and outlines future directions toward self-powered, AI-integrated, and sustainable EAP technologies. Full article
(This article belongs to the Special Issue Electroactive Polymer (EAP) for Actuators and Sensors Applications)
Show Figures

Figure 1

20 pages, 3813 KiB  
Article
Recycling Positive Electrode Materials of Li-Ion Batteries by Creating a pH Gradient Within Aqueous Sodium Chloride Electrolyser
by Yue Chen and Xiaofei Guan
Processes 2025, 13(5), 1525; https://doi.org/10.3390/pr13051525 - 15 May 2025
Viewed by 676
Abstract
Recycling the positive electrode materials of spent Li-ion batteries is critical for environmental sustainability and resource security. To facilitate the attainment of the goal, this study presents a novel approach for recovering valuable metals from positive electrode materials of spent lithium-ion batteries (LIBs) [...] Read more.
Recycling the positive electrode materials of spent Li-ion batteries is critical for environmental sustainability and resource security. To facilitate the attainment of the goal, this study presents a novel approach for recovering valuable metals from positive electrode materials of spent lithium-ion batteries (LIBs) in an H-shaped cell containing aqueous NaCl electrolyte. The process employs hydrochloric acid that could be derived from the chlorine cycle as the leaching agent. The electrolytic device is engineered to generate a high pH gradient, thereby enhancing the leaching of metal elements and eliminating the requirement for external acid or base addition. This green recycling approach adheres to the principles of a circular economy and provides an environmentally friendly solution for sustainable battery material recycling. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

20 pages, 7473 KiB  
Article
Cerebellar Contributions to Hypokinetic Symptoms in an Acute Lesion Parkinsonism Model
by Cristofer Zarate-Calderon, Gerardo Marín, Iraís Viveros-Martínez, Lizbeth Vásquez-Celaya, Porfirio Carrillo-Castilla, Gonzalo E. Aranda-Abreu, Donaji Chi-Castañeda and Luis I. García
Neurol. Int. 2025, 17(5), 72; https://doi.org/10.3390/neurolint17050072 - 7 May 2025
Viewed by 1278
Abstract
Background: Parkinsonism, characterized by motor symptoms, is typically attributed to basal ganglia dysfunction. Recent evidence suggests that the cerebellum may also influence these symptoms. This study investigated Crus II, the dentate nucleus (DN), and the inferior olive (IO) in a rat model of [...] Read more.
Background: Parkinsonism, characterized by motor symptoms, is typically attributed to basal ganglia dysfunction. Recent evidence suggests that the cerebellum may also influence these symptoms. This study investigated Crus II, the dentate nucleus (DN), and the inferior olive (IO) in a rat model of parkinsonism induced by a bilateral ventrolateral striatal (VLS) lesion. Materials and Methods: Twenty-four male Wistar rats were divided into control (n = 12) and experimental (n = 12) groups. Monopolar electrodes were implanted in target structures. The experimental group received a bilateral VLS lesion. Animals underwent four weekly sessions of electrophysiological recordings and blind behavioral assessments (resting, grooming, locomotion, rearing, sniffing) via video tracking. Power spectral density (PSD) in the 300–500 Hz band was computed. Statistical analyses included Mann–Whitney U, Friedman with Wilcoxon post hoc, and Spearman correlation tests. Results: During weeks one and two, there were significant PSD increases in the experimental group compared to the control, particularly in Crus II—grooming (p = 0.005), locomotion (p = 0.007), and rearing (p = 0.026); in IO—sniffing (p = 0.0167); and in DN—grooming (p < 0.001) and locomotion (p = 0.0008). Additionally, intragroup analysis revealed significant PSD elevations relative to baseline in these structures. Significant correlations were observed only for grooming (negative correlations) and sniffing (positive correlations) across all cerebellar regions. Conclusions: These findings suggest compensatory cerebellar hyperactivity induced by VLS lesion, potentially modulating hypokinetic symptoms and highlighting dynamic network interactions. Interpretation warrants caution due to limitations inherent to the acute lesion model and experimental duration. Full article
Show Figures

Figure 1

16 pages, 2478 KiB  
Article
Kinetic Study and Simulation of Titanium Carbide-Supported, Platinum-Doped Tetrahedral Amorphous Carbon Electrodes for Hydrogen Evolution Reaction
by Harunal Rejan Ramji, Nicolas Glandut, Jean-Christophe Orlianges, Joseph Absi and Soh Fong Lim
Materials 2025, 18(9), 1916; https://doi.org/10.3390/ma18091916 - 23 Apr 2025
Viewed by 413
Abstract
This paper presents the kinetic study of titanium carbide (TiC)-supported, platinum-doped tetrahedral amorphous carbon (taC:Pt) referred to as TiC-taC, for the hydrogen evolution reaction (HER). This study employs the Volmer–Heyrovsky–Tafel (VHT) mechanism. A theoretical approach was utilized to investigate the kinetic properties of [...] Read more.
This paper presents the kinetic study of titanium carbide (TiC)-supported, platinum-doped tetrahedral amorphous carbon (taC:Pt) referred to as TiC-taC, for the hydrogen evolution reaction (HER). This study employs the Volmer–Heyrovsky–Tafel (VHT) mechanism. A theoretical approach was utilized to investigate the kinetic properties of these materials for an HER in 0.5 M H2SO4. TiC-taC exhibited Volmer-dominated reactions with a Tafel slope of 40 mV/dec and the overpotential at 10 mA/cm2 was 185 mV. In contrast, isolated TiC and taC:Pt recorded significantly higher Tafel slopes with 60–110 mV/dec and overpotentials of 871 mV and 1009 mV, respectively. The developed model was tested in one dimension (1D) for individual TiC and taC:Pt. The simulated kinetics parameters were determined for both TiC and taC:Pt, revealing that TiC follows the VHT steps, while taC:Pt follows the VH steps. The simulation results show excellent coherence with the experimental results. Further simulation of the hybrid TiC-taC electrocatalyst was conducted considering surface diffusion and edge effects in two (2D) and three dimensions (3D). To the best of our knowledge, this FEM simulation approach is the first to be reported due to the unique geometry of the TiC-taC catalyst enabling the assumption of surface diffusion and edge effect. The introduction of edge effects on the taC:Pt side of the TiC support significantly enhanced the current output, aligning closely with experimental results. The edge exhibited distinct kinetic properties compared to both TiC and taC:Pt. The kinetic parameters determined from the simulation demonstrated strong agreement with experimental findings. Adding the edge effects was essential to explaining the higher current output from the TiC-taC electrode. It exhibited unique kinetic properties not observed in either TiC or taC:Pt alone, acting as a pump where it absorbs cHs from neighbouring sites due to surface diffusivity and releases H2 via the Heyrovsky reaction. While surface diffusion had a lesser effect, the simulation indicated its positive influence on the HER. Full article
Show Figures

Figure 1

23 pages, 5906 KiB  
Article
Design and Performance Assessment of Biocompatible Capacitive Pressure Sensors with Circular and Square Geometries Using ANSYS Workbench
by Md Shams Tabraiz Alam, Shabana Urooj, Abdul Quaiyum Ansari and Areiba Arif
Sensors 2025, 25(8), 2423; https://doi.org/10.3390/s25082423 - 11 Apr 2025
Viewed by 2442
Abstract
This research outlines the design of capacitive pressure sensors fabricated from three biocompatible materials, featuring both circular and square geometries. The sensors were structured with a dielectric layer positioned between gold-plated electrodes at the top and bottom. Their performance was assessed through simulations [...] Read more.
This research outlines the design of capacitive pressure sensors fabricated from three biocompatible materials, featuring both circular and square geometries. The sensors were structured with a dielectric layer positioned between gold-plated electrodes at the top and bottom. Their performance was assessed through simulations conducted with ANSYS Workbench. Of the various sensor configurations tested, the circular design that included two crescent-shaped slots and a 20 µm thick PDMS dielectric material demonstrated the highest sensitivity of 10.68 fF/mmHg. This study further investigated the relationship between resonant frequency shifts and arterial blood pressure, revealing an exceptionally linear response, as evidenced by a Pearson’s correlation coefficient of −0.99986 and an R-squared value of 0.99972. This confirmed the sensor’s applicability for obtaining precise blood pressure measurements. Additionally, a 3 × 30 mm cobalt–chromium (Co-Cr) stent was obtained, and its inductance was measured using an impedance analyzer. Full article
(This article belongs to the Special Issue Advances in E-health, Biomedical Sensing, Biosensing Applications)
Show Figures

Figure 1

11 pages, 3640 KiB  
Article
Tin Disulfide Nanosheet as Cathode Materials for Rechargeable Aluminum Ion Batteries: Synthesis, Electrochemical Performance, and Mechanism
by Ruiyuan Zhuang, Xinming Tan, Yuxin Wang, Junhong Wang, Jianfeng Zhan, Jiangnan Yan, Jun Zhang and Lixiang Wang
Molecules 2025, 30(8), 1649; https://doi.org/10.3390/molecules30081649 - 8 Apr 2025
Viewed by 630
Abstract
Aluminum ion batteries (AIBs) exhibit a promising development prospect due to their advantages such as high theoretical specific capacity, high safety, low cost, and sufficient raw material sources. In this work, nanosheet tin disulfide (SnS2) was successfully prepared using the hydrothermal [...] Read more.
Aluminum ion batteries (AIBs) exhibit a promising development prospect due to their advantages such as high theoretical specific capacity, high safety, low cost, and sufficient raw material sources. In this work, nanosheet tin disulfide (SnS2) was successfully prepared using the hydrothermal method and then used as a cathode material for AIBs. The synthesized nano-flake SnS2 has a large size and thin thickness, with a size of about 900 nm and a thickness of about 150 nm. This electrode material effectively enhances the contact interface with the electrolyte and shortens the depth and travel distance of ion deintercalation. As an electrode, the battery obtained a residual discharge specific capacity of about 55 mAh g−1 and a coulombic efficiency of about 83% after 600 cycles. Furthermore, the first-principles calculation results show that the energy storage mechanism is the deintercalation behavior of Al3+. Based on model analysis and calculation results, it can be seen that compared with the position between two sulfur atoms, Al3+ is more inclined to be deintercalated directly above the sulfur atom. This study provides fundamental data for the large-scale preparation of AIBs using SnS2 as an electrode material and the application research of AIBs. Full article
(This article belongs to the Special Issue Advances in 2D Materials for Electrochemical Applications)
Show Figures

Figure 1

14 pages, 4314 KiB  
Article
Rationally Designed PPy-Coated Fe2O3 Nanoneedles Anchored on N-C Nanoflakes as a High-Performance Anode for Aqueous Supercapacitors
by Zhiqiang Cui, Siqi Zhan, Yatu Luo, Yunfeng Hong, Zexian Liu, Guoqiang Tang, Dongming Cai and Rui Tong
Crystals 2025, 15(4), 346; https://doi.org/10.3390/cryst15040346 - 7 Apr 2025
Cited by 13 | Viewed by 588
Abstract
Flexible supercapacitors have emerged as pivotal energy storage components in wearable smart electronic systems, owing to their exceptional electrochemical performance. However, the widespread application of flexible supercapacitors in smart electronic devices is significantly hindered by the developmental bottleneck of high-performance anode materials. In [...] Read more.
Flexible supercapacitors have emerged as pivotal energy storage components in wearable smart electronic systems, owing to their exceptional electrochemical performance. However, the widespread application of flexible supercapacitors in smart electronic devices is significantly hindered by the developmental bottleneck of high-performance anode materials. In this study, a novel electrode composed of surface-modified Fe2O3 nanoneedles uniformly coated with a polypyrrole (PPy) film and anchored on Co-MOF-derived N-C nanoflake arrays (PPy/Fe2O3/N-C) is designed. This composite electrode, grown in situ on carbon cloth (CC), demonstrated outstanding specific capacity, rate performance, and mechanical flexibility, attributed to its unique hierarchical 3D arrayed structure and the protective PPy layer. The fabricated PPy/Fe2O3/N-C@CC (P-FONC) composite electrode exhibited an excellent specific capacitance of 356.6 mF cm−2 (143 F g−1) at a current density of 2 mA cm−2. The current density increased to 20 mA cm−2, and the composite electrode material preserved a specific capacitance of 278 mF cm−2 (112 F g−1). Furthermore, the assembled quasi-solid-state Mn/Fe asymmetric supercapacitor, configured with P-FONC as the negative electrode and MnO2/N-C@CC as the positive electrode, demonstrated robust chemical stability and notable mechanical flexibility. This study sheds fresh light on the creation of three-dimensional composite electrode materials for highly efficient, flexible energy storage systems. Full article
Show Figures

Figure 1

24 pages, 6282 KiB  
Article
Study on the Effect of Different Cathodic Protection Potentials on the Growth of Mixed Bacteria and Cathodic Protection Efficiency
by Zeyu Zuo, Jie Zhang, Qingle Hou, Chengjun Zhang, Ke Wang, Jizhou Duan, Xilei Chen and Baorong Hou
Chemistry 2025, 7(2), 54; https://doi.org/10.3390/chemistry7020054 - 1 Apr 2025
Viewed by 631
Abstract
Microbiologically influenced corrosion (MIC) is one of the key causes of material failure in marine engineering, and sulfate-reducing bacteria (SRB) and iron-oxidizing bacteria (IOB) are typical representatives of anaerobic and aerobic microorganisms, respectively. These microorganisms are widely present in marine environments and can [...] Read more.
Microbiologically influenced corrosion (MIC) is one of the key causes of material failure in marine engineering, and sulfate-reducing bacteria (SRB) and iron-oxidizing bacteria (IOB) are typical representatives of anaerobic and aerobic microorganisms, respectively. These microorganisms are widely present in marine environments and can form synergistic communities on the surface of metal materials, posing a corrosion threat to them. At the same time, the presence of mixed bacteria may have an effect on cathodic protection, so this study investigates the growth metabolism of mixed SRB and IOB under different cathodic protection potentials in an impressed current cathodic protection (ICCP) system in a marine environment containing SRB and IOB. It also examines the attachment of these microorganisms to the anode and cathode, and the impact on cathodic protection efficiency. The results indicate that in a marine environment containing IOB and SRB, the cathodic protection efficiency of the ICCP system increases with the negative shift of the protection potential. A more positive cathodic protection potential promotes the adhesion of mixed bacteria on the electrode surface and the formation of a biofilm, which reduces cathodic protection efficiency. In contrast, at a cathodic protection potential of −1.05 V (SCE), bacterial growth is inhibited, and a dense crystalline corrosion film primarily composed of Fe2O3 and Fe(OH)3 forms on the cathode surface. This film effectively protects the cathodic metal, significantly mitigating MIC. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

18 pages, 6581 KiB  
Article
Graphite Felt Decorated with Metal–Organic Framework-Derived Nanocomposite as Cathode for Vanadium Redox Flow Battery
by Priya Lakshmanan, Chia-Hung Huang, Suba Devi Rengapillai, Yong-Song Chen, Wei-Ren Liu, Cheng-Liang Hsu and Sivakumar Marimuthu
Nanomaterials 2025, 15(7), 535; https://doi.org/10.3390/nano15070535 - 1 Apr 2025
Viewed by 678
Abstract
Fabricating electrodes with high electrocatalytic efficiency is crucial for the commercial feasibility of vanadium redox flow batteries (VRFBs). In this study, metal–organic framework-derived ZnO and Fe2O3 with a high specific surface area were successfully synthesized via high-energy ball milling. The [...] Read more.
Fabricating electrodes with high electrocatalytic efficiency is crucial for the commercial feasibility of vanadium redox flow batteries (VRFBs). In this study, metal–organic framework-derived ZnO and Fe2O3 with a high specific surface area were successfully synthesized via high-energy ball milling. The nanocomposite material (ZnO-Fe2O3) was prepared through ultrasonication and coated on the graphite felt using dip coating, serving as the positive electrode for the VRFB. These modified electrodes control polarization losses, leading to high voltage efficiency (VE) and energy efficiency (EE), even at high current densities. Consequently, the nanocomposite-modified electrode shows VE of 87% and EE of 84% at 50 mA/cm2, surpassing the performance of individual materials. The nanocomposite material retains its EE without degradation over 250 cycles at a current density of 150 mA/cm2. This enhanced performance is due to improved kinetics and reduced losses in the VO2+/VO2+ redox couple, enabled by the nanocomposite material. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

17 pages, 3834 KiB  
Article
Evaluation of the Removal of PVDF Using ToF-SIMS: Comparing Dihydrolevoglucosenone and Pyrolysis as Pretreatments for Cathode Materials of Lithium-Ion Batteries
by Marc Simon Henderson, Aliza Marie Salces, William D. A. Rickard, Denis Fougerouse, Álvaro José Rodríguez Medina, Elsayed A. Oraby, Chau Chun Beh, Martin Rudolph, Anna Vanderbruggen and Jacques Eksteen
Recycling 2025, 10(2), 56; https://doi.org/10.3390/recycling10020056 - 1 Apr 2025
Cited by 1 | Viewed by 2046
Abstract
Effective and environmentally benign removal of polyvinylidene fluoride (PVDF) binders from spent battery electrodes remains a critical hurdle in sustainable recycling, primarily due to issues related to the mitigation of fluorinated compound emissions. This work evaluates PVDF binder removal from cathode active material [...] Read more.
Effective and environmentally benign removal of polyvinylidene fluoride (PVDF) binders from spent battery electrodes remains a critical hurdle in sustainable recycling, primarily due to issues related to the mitigation of fluorinated compound emissions. This work evaluates PVDF binder removal from cathode active material using either a green solvent-based dissolution process or pyrolysis, analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). The solvent pretreatment involved mixing dihydrolevoglucosenone (Cyrene™) with PVDF-coated NMC811 at 100 °C, followed by hot filtration to separate the Cyrene-PVDF solution. Pyrolysis was conducted at 800 °C under an argon atmosphere. Positive ToF-SIMS spectra for Cyrene showed characteristic peaks at ketene (42 m/z) and 1,3-dioxole (86 m/z), along with intense C2H3O+, C3H3O+, C4H7+, and C3H5O+ peaks. The characteristic peaks used to identify PVDF were C3H2F5+ (133 m/z), C3H2F3+ (95 m/z), and C3HF4+ (113 m/z). Both processes resulted in PVDF removal, with pyrolysis demonstrating higher effectiveness. Particle agglomeration was observed in both pretreated NMC811 samples, however agglomeration was more pronounced with Cyrene pretreatment due to PVDF redeposition. Following pyrolysis, PVDF was transformed into a defluorinated carbonaceous material. Full article
(This article belongs to the Special Issue Lithium-Ion and Next-Generation Batteries Recycling)
Show Figures

Figure 1

Back to TopTop