Progress in Al/AgO Electrode Materials for Seawater-Activated Batteries
Abstract
1. Introduction
2. Preparation Methods
2.1. Preparation of Sintered Silver Oxide Electrodes
2.2. Preparation of Pressed Silver Oxide Electrodes
2.3. Preparation of Thin-Film Silver Oxide Electrodes
3. Factors Affecting AgO Cathodes
3.1. Silver Powder Morphology
3.2. Porosity
3.3. Purity
3.4. Ordered Structure
3.5. Surface Treatment
3.6. Doping Modification
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vatsalarani, J.; Kalaiselvi, N.; Karthikeyan, R. Effect of mixed cations in synergizing the performance characteristics of PVA-based polymer electrolytes for novel category Zn/AgO polymer batteries-a preliminary study. Ionics 2009, 15, 97–105. [Google Scholar] [CrossRef]
- Hashim, M.G.; Hu, C.; Wang, X.; Wan, B.Y.; Xu, J. Room temperature synthesis and photocatalytic property of AgO/Ag2Mo2O7 heterojunction nanowires. Mater. Res. Bull. 2012, 47, 3383–3389. [Google Scholar] [CrossRef]
- Chen, J.; Xu, W.; Wang, X.; Yang, S.; Xiong, C. Progress and applications of seawater-activated batteries. Sustainability 2023, 15, 1635. [Google Scholar] [CrossRef]
- Ozgit, D.; Hiralal, P.; Amaratunga, G.A.J. Improving performance and cyclability of zinc-silver oxide batteries by using graphene as a two dimensional conductive additive. ACS Appl. Mater. Interfaces 2014, 6, 20752–20757. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Carpenter, R.; Buttry, D. Electrochemical cycling of polycrystalline silver nanoparticles produces single-crystal silver nanocrystals. Langmuir 2017, 33, 13490–13495. [Google Scholar] [CrossRef] [PubMed]
- Srimuk, P.; Husmann, S.; Presser, V. Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater. RSC Adv. 2019, 9, 14849–14858. [Google Scholar] [CrossRef]
- Sabzi, M.; Dezfuli, S.M. A study on the effect of compositing silver oxide nanoparticles by carbon on the electrochemical behavior and electronic properties of zinc-silver oxide batteries. Int. J. Appl. Ceram. Technol. 2018, 15, 1446–1458. [Google Scholar] [CrossRef]
- Leng, P.S.; Wang, H.B.; Wu, B.F.; Zhao, L.; Deng, Y.J.; Cui, J.T. Ag Decorated Co3O4-Nitrogen Doped Porous Carbon as the Bifunctional Cathodic Catalysts for Rechargeable Zinc-Air Batteries. Sustainability 2022, 14, 13417. [Google Scholar] [CrossRef]
- Kong, M.X.; Bu, L.X.; Wang, W. Investigations on the discharge/charge process of a novel AgCl/Ag/carbon felt composite electrode used for seawater batteries. J. Power Sources 2021, 506, 230210. [Google Scholar] [CrossRef]
- Hwang, S.M.; Park, J.S.; Kim, Y.; Go, W.; Han, J.; Kim, Y.; Kim, Y. Rechargeable seawater batteries-from concept to applications. Adv. Mater. 2019, 31, e1804936. [Google Scholar] [CrossRef]
- Li, C.; Hu, L.; Ren, X.; Lin, L.; Zhao, C.; Weng, Q.; Sun, X.; Yu, X. Asymmetric Charge Distribution of Active Centers in Small Molecule Quinone Cathode Boosts High-Energy and High-Rate Aqueous Zinc-Organic Batteries. Adv. Funct. Mater. 2024, 34, 2313241. [Google Scholar] [CrossRef]
- Rashmi, B.N.; Harlapur, S.F.; Avinash, B.; Ravikumar, C.R.; Nagaswarupa, H.P.; Kumar, M.A.; Gurushantha, K.; Santosh, M.S. Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies. Inorg. Chem. Commun. 2020, 111, 107580. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, C.; Yliniemi, K.; Lundstrom, M. Recovery of high-purity silver from spent silver oxide batteries by sulfuric acid leaching and electrowinning. ACS Sustain. Chem. Eng. 2020, 8, 15573–15583. [Google Scholar] [CrossRef]
- Lu, J.; Li, L.; Park, J.B.; Sun, Y.K.; Wu, F.; Amine, K. Aprotic and Aqueous Li–O2 Batteries. Chem. Rev. 2014, 114, 5611–5640. [Google Scholar] [CrossRef]
- Farooqui, U.R.; Ahmad, A.L.; Hamid, N.A. Challenges and potential advantages of membranes in lithium air batteries: A review. Renew. Sustain. Energy Rev. 2017, 77, 1114–1129. [Google Scholar] [CrossRef]
- Meng, Z.S.; Li, R.L.; Wu, Q.B.; Qin, T.; Bai, Y.; Sun, K. Qualifying the Cathode Aging Process for Storage Life Prediction for Primary AgO-Zn Batteries. Electrochim. Acta 2024, 492, 144264. [Google Scholar] [CrossRef]
- Yu, K.; Xiong, H.Q.; Wen, L.; Dai, Y.L.; Yang, S.H.; Fan, S.F.; Teng, F.; Qiao, X.Y. Discharge behavior and electrochemical properties of Mg-Al-Sn alloy anode for seawater activated battery. Trans. Nonferrous Met. Soc. China 2015, 25, 1234–1240. [Google Scholar] [CrossRef]
- Shafiq, U.; Fiaz, A.; Amin, B.; Ataf, A.A.; Ramsha, R.; Bhajan, L.; Rizwan, H.; Bing, X. Solvothermal preparation of ZnO nanorods as anode material for improved cycle life Zn/AgO batteries. PLoS ONE 2013, 8, e75999. [Google Scholar]
- Gonzalez-Guerrero, M.J.; Gomez, F.A. Miniaturized Al/AgO coin shape and self-powered battery featuring painted paper electrodes for portable applications. Sens. Actuators B Chem. 2018, 273, 101–107. [Google Scholar] [CrossRef]
- Ma, Z.; Li, X. The study on microstructure and electrochemical properties of Al-Mg-Sn-Ga-Pb alloy anode material for Al/AgO battery. J. Solid State Electrochem. 2011, 15, 2601–2610. [Google Scholar] [CrossRef]
- Yan, C.; Wang, X.; Cui, M.; Wang, J.; Kang, W.; Foo, C.; Lee, P.S. Stretchable silver-zinc batteries based on embedded nanowire elastic conductors. Adv. Energy Mater. 2014, 4, 1301396. [Google Scholar] [CrossRef]
- Lal Bahadur, G.; Kumaresh babu, S.P.; Srinivasan, S.A.; Pathanjali, G.A. Study of passivation treatment on SS321 electrolyte reservoir used in AgO-Zn reserve battery, for defence applications. Mater. Today Proc. 2020, 27, A1–A7. [Google Scholar] [CrossRef]
- Dou, Z.; Tang, Q.; Du, Z.; Du, Y.; Li, S.; Liu, F. Design and Implementation of an Electrolyte Temperature Control System for AgO-Al Batteries. Batteries 2025, 11, 244. [Google Scholar] [CrossRef]
- Zheng, L.I.; Zhang, H.T.; Zhang, Q.; Kun, Y.U. Effect of binders on electrochemical properties of AgO cathode material for aqueous AgO–Al batteries. Trans. Nonferrous Met. Soc. China 2025, 35, 1648–1661. [Google Scholar]
- Ipadeola, A.K.; Abdullah, A.M.; Eid, K. Recent advances in porous multimetallic alloy-based anodes for rechargeable alkali metal-ion batteries. Energy Mater. 2024, 4, 400079. [Google Scholar] [CrossRef]
- Ipadeola, A.K.; Eid, K.; Abdullah, A.M. Porous transition metal-based nanostructures as efficient cathodes for aluminium-air batteries. Curr. Opin. Electrochem. 2023, 37, 101198. [Google Scholar] [CrossRef]
- Ma, F.; Liu, Y.; Huang, T.; Du, X.; Lu, Q.; Eid, K. Facile in situ polymerization synthesis of poly(ionic liquid)-based polymer electrolyte for high-performance solid-state batteries. Energy Convers. Manag. X 2024, 22, 100570. [Google Scholar] [CrossRef]
- Kim, Y.; Hwang, S.; Yua, H.; Kim, Y. High energy density rechargeable metal-free seawater batteries: A phosphorus/carbon composite as a promising anode material. J. Mater. Chem. A 2018, 6, 3046–3054. [Google Scholar] [CrossRef]
- Kim, D.H.; Choi, H.; Hwang, D.Y.; Park, J.; Kim, K.S.; Ahn, S.; Kim, Y.; Kwak, S.K.; Yu, Y.; Kang, S.J. Reliable seawater battery anode: Controlled sodium nucleation via deactivation of the current collector surface. J. Mater. Chem. A 2018, 6, 19672–19680. [Google Scholar] [CrossRef]
- Wu, M.L.; Wang, D.; Wan, L.J. Directed block copolymer self-assembly implemented via surface-embedded electrets. Nat. Commun. 2016, 7, 10752. [Google Scholar] [CrossRef]
- Li, S.; Tian, X. Progress of seawater batteries: From mechanisms, materials to applications. J. Power Sources 2024, 617, 235161. [Google Scholar] [CrossRef]
- Pan, J.Q.; Sun, Y.Z.; Wang, Z.H.; Wan, P.Y.; Liu, X.G.; Fan, M.H. Nano silver oxide (AgO) as a super high charge/discharge rate cathode material for rechargeable alkaline batteries. J. Mater. Chem. 2007, 17, 4820–4825. [Google Scholar] [CrossRef]
- Najafi, M.; Abedini, A. The effect of dimensional ratio and proportion of micron-nanoparticles on discharge performance of silver (II) oxide cathode. Ionics 2019, 25, 3269–3276. [Google Scholar] [CrossRef]
- Li, H.Q.; Wang, Y.G.; He, P.; Zhou, H.S. A novel rechargeable Li-AgO battery with hybrid electrolytes. Chem. Commun. 2010, 46, 2055–2057. [Google Scholar] [CrossRef] [PubMed]
- Vidyasagar, D.; Ghugal, S.G.; Kulkarni, A.; Mishra, P.; Shende, A.G.; Umare, S.S.; Sasikala, R. Silver/Silver(II) oxide (Ag/AgO) loaded graphitic carbon nitride microspheres: An effective visible light active photocatalyst for degradation of acidic dyes and bacterial inactivation. Appl. Catal. B Environ. 2018, 221, 339–348. [Google Scholar] [CrossRef]
- Najafi, M.; Abedini, A. The critical role of polymeric binders on AgO cathodes in high rate batteries. Thin Solid Film. 2021, 721, 138532. [Google Scholar] [CrossRef]
- Xu, W.; Wang, S.Q.; Zhang, Q.Y.; Ma, C.Y.; Wang, Q.; Wen, D.H.; Li, X.N. Hierarchically structured AgO films with nano-porosity for photocatalyst and all solid-state thin film battery. J. Alloys Compd. 2019, 802, 210–216. [Google Scholar] [CrossRef]
- Jin, X.B.; Lu, J.T.; Xia, Y.; Liu, P.F.; Tong, H. Ultra-thin silver electrodes for high power density pulse batteries. J. Power Sources 2001, 102, 124–129. [Google Scholar] [CrossRef]
- He, X.; Li, Z.; Wang, Y.; Xu, W.; Zhang, Q.; Wang, X.; Liu, H.; Yang, G.; Zhang, H.; Song, J.; et al. A high-purity AgO cathode active material for high-performance aqueous AgO-Al batteries. J. Power Sources 2022, 551, 232151. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.; Yang, P.; He, Y.; Wang, S.; Zhao, P.; Wang, H. Recovery of Valuable Metals from Spent LiNi0.8Co0.1Mn0.1O2 Cathode Materials Using Compound Leaching Agents of Sulfuric Acid and Oxalic Acid. Sustainability 2022, 14, 14169. [Google Scholar] [CrossRef]
- Chen, T.; Dai, P.X.; Wu, J.Y.; Wang, D.; Wan, L.J. Disorder-order transformation of trithiocyanuric acid adlayer on a Au(111) surface induced by electrode potential. J. Phys. Chem. C 2011, 115, 16583–16589. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, M.; Wang, H.; Li, Z. Enhancement of CO2 adsorption on high surface area activated carbon modified by N2, H2 and ammonia. Chem. Eng. J. 2010, 160, 571–577. [Google Scholar] [CrossRef]
- Wen, R.; Pan, G.B.; Wan, L.J. Oriented Organic Islands and One-Dimensional Chains on a Au(111) Surface Fabricated by Electrodeposition: An STM Study. J. Am. Chem. Soc. 2008, 130, 12123–12127. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.N.; Liu, X.; Liu, X.R.; Chen, T.; Yan, H.; Zhong, Y.; Wang, D.; Wan, L. Bilayer molecular assembly at a solid/liquid interface as triggered by a mild electric field. Angew. Chem. 2014, 53, 13395–13399. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Zhang, Z.Y.; Liu, C.Y. Construction of needle-like crystalline AgO ordered structures from Ag nanoparticles and their properties. New J. Chem. 2018, 42, 5376–5381. [Google Scholar] [CrossRef]
- Xu, W.; Wang, S.Q.; Zhang, Q.Y.; Ma, C.Y.; Li, X.N.; Wang, Q.; Wen, D.H. Abnormal Oxidation of Ag Films and Its Application to Fabrication of Photocatalytic Films with a-TiO2/h-Ag2O Heterostructure. J. Phys. Chem. C 2017, 121, 9901–9909. [Google Scholar] [CrossRef]
- Sobhani-Nasab, A.; Behpour, M. Synthesis and characterization of AgO nanostructures by precipitation method and its photocatalyst application. J. Mater. Sci. Mater. Electron. 2016, 27, 1191–1196. [Google Scholar] [CrossRef]
- Moghanni-Bavil-Olyaei, H.; Arjomandi, J. Performance of Al-1Mg-1Zn-0.1Bi-0.02In as anode for the Al-AgO battery. RSC Adv. 2015, 5, 91273–91279. [Google Scholar] [CrossRef]
- Rahbar, M.; Behpour, M. Fluorite type La2Pb2O7 nanoparticles coated onto AgO as enhanced performance cathode active material for alkaline primary cell. J. Power Sources 2022, 521, 230887. [Google Scholar] [CrossRef]
- Yoshizawa, S.; Takehera, Z. Elecrode phenomena of silver-silver oxide system in alkaline battery. J. Electrochem. Soc. Jpn. 1963, 31, 91–104. [Google Scholar] [CrossRef]
- Takeda, K.; Hattori, T. Optimization of the Amount of Additives to AgO Cathodes on High-Drain Pulse Performance of Zn/AgO Cells. J. Electrochem. Soc. 2001, 148, A44. [Google Scholar] [CrossRef]
- Gu, J.Y.; Cai, Z.F.; Wang, D.; Wan, L.J. Single-Molecule Imaging of Iron-Phthalocyanine-Catalyzed Oxygen Reduction Reaction by in Situ Scanning Tunneling Microscopy. ACS Nano 2016, 10, 8746–8750. [Google Scholar] [CrossRef]
- Liu, H.T.; Xia, X.; Guo, Z.P. A novel silver oxide electrode and its charge–discharge performance. J. Appl. Electrochem. 2002, 32, 275–279. [Google Scholar] [CrossRef]
Sintered Silver Oxide Electrodes | Pressed Silver Oxide Electrodes | Thin-Film Silver Oxide Electrodes | |
---|---|---|---|
Process core | Silver powder is formed, high-temperature sintered, and electrochemically transformed | Silver oxide powder is directly cold-pressed into shape without the need for high-temperature treatment | Preparation of ultra-thin coatings using spin coating/inkjet printing and other technologies |
Structure characteristics | Three-dimensional porous structure with good connectivity | Particle stacking structure, evenly distributed | Dense thin-film structure, excellent interface contact |
Utilization rate of active substances | Highly porous structure promotes electrolyte penetration | Medium, dependent on the contact area between particles | High, as ultra-thin thickness reduces ion diffusion distance |
Impact on battery performance | High specific energy, excellent discharge stability | Medium specific energy, moderate power density | Outstanding power density, high rate discharge performance |
Production costs | Relatively high (high energy consumption and complex process for high-temperature sintering) | Low (simple process, no need for high-temperature equipment) | High (high requirements for thin-film preparation technology, low material utilization rate) |
Productivity | Low (multi-step process, long cycle) | High (one-step molding, suitable for mass production) | Medium (relying on precision equipment, difficult to mass-produce) |
Limitation | High temperatures can easily cause AgO decomposition, requiring precise control of sintering parameters | The mechanical strength is relatively low, and polarization is obvious during high rate discharge | The thickness limitation leads to a low total capacity, which is not suitable for large capacity requirements |
Cathode | Type | Working Voltage (V) | Comment |
---|---|---|---|
AgO | Compound | 1.5–1.7 | High specific capacity, high conductivity, high voltage and strong environmental adaptability |
AgCl | Compound | 1.3–1.55 | Instability, high cost |
CuCl | Compound | 1.1–1.3 | Storage difficulty, low energy density |
Hg2Cl2 | Compound | 1.2–1.55 | Storage difficulty, low energy density |
Pt/C | Catalyst | ~ | High cost |
Fe–N–C | Catalyst | 1.18 | In low oxygen conditions, presents strong reduction ability |
CoP/Co2P | Catalyst | 0.55 (HER) | High HER activity |
Ni–MoO2 | Catalyst | 0.32–0.41 (HER) | High HER activity |
Electrode Code | Silver Oxide (wt%) | Carbon (wt%) | Resin (wt%) |
---|---|---|---|
A | 94.9 | 5 | Balance |
B | 89.9 | 10 | Balance |
C | 84.9 | 15 | Balance |
D | 79.9 | 20 | Balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Zheng, Q.; Wang, C.; Dai, P.; Yin, Y.; Chen, J.; Wang, X.; Xu, W.; Ruan, M. Progress in Al/AgO Electrode Materials for Seawater-Activated Batteries. Energies 2025, 18, 4007. https://doi.org/10.3390/en18154007
Chen P, Zheng Q, Wang C, Dai P, Yin Y, Chen J, Wang X, Xu W, Ruan M. Progress in Al/AgO Electrode Materials for Seawater-Activated Batteries. Energies. 2025; 18(15):4007. https://doi.org/10.3390/en18154007
Chicago/Turabian StyleChen, Peiqiang, Qun Zheng, Changfu Wang, Penglin Dai, Yujuan Yin, Jinmao Chen, Xudong Wang, Wanli Xu, and Man Ruan. 2025. "Progress in Al/AgO Electrode Materials for Seawater-Activated Batteries" Energies 18, no. 15: 4007. https://doi.org/10.3390/en18154007
APA StyleChen, P., Zheng, Q., Wang, C., Dai, P., Yin, Y., Chen, J., Wang, X., Xu, W., & Ruan, M. (2025). Progress in Al/AgO Electrode Materials for Seawater-Activated Batteries. Energies, 18(15), 4007. https://doi.org/10.3390/en18154007