Study on the Effect of Different Cathodic Protection Potentials on the Growth of Mixed Bacteria and Cathodic Protection Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrode Material
2.1.1. Working Electrode
2.1.2. Auxiliary Anode
2.2. Bacteria and Media
2.3. Electrochemical Tests
2.4. Weight Loss Tests
2.5. Surface Morphology Analysis
2.5.1. Scanning Electron Microscope (SEM) Observation
2.5.2. Fluorescence Microscopy Observation
2.5.3. Confocal Laser Scanning Microscope (CLSM) Observation
3. Results and Discussion
3.1. Effects of Different Cathodic Protection Potentials on the Growth Metabolism of IOBs in Synergistic Coexistence with Srbs
3.2. Effect of Synergistic Coexistence of IOB and SRB on the Corrosion Rate of Protected Metals at Different Cathodic Protection Potentials
3.3. Effect of Different Cathodic Protection Potentials on the Colonization of Mixed Strains on Cathodes and Anodes
3.3.1. Mixed Bacterial Colonization on the Anode Surface at Different Cathodic Protection Potentials
3.3.2. Mixed Bacterial Colonization of Cathode Surface at Different Cathodic Protection Potentials
3.3.3. Analysis of Cathodic Fracture Morphology and Corrosion Products at Different Cathodic Protection Potentials
3.4. Effect of Synergistic IOB and SRB on Cathodic Protection Efficiency at Different Cathodic Protection Potentials
4. Conclusions
- Among the three cathodic protection potentials used in the experiment, the −0.85 V (SCE) potential exhibited the weakest inhibitory effect on the mixed bacteria, even promoting their growth. Under this condition, the mixed bacteria tended to adhere to the cathode surface and form a biofilm. In contrast, the −1.05 V (SCE) cathodic protection potential effectively suppressed the growth of the mixed bacteria, resulting in minimal bacterial attachment on both the cathode and anode. Therefore, in a marine environment containing IOB and SRB, an appropriate negative shift in the cathodic protection potential can leverage the inhibitory effect of more negative potentials on microbial activity as well as the bacterial tendency to adhere under different protection potentials to effectively mitigate the threat of MIC;
- In a marine environment containing IOB and SRB, the corrosion products formed during cathodic protection of metals become increasingly stable as the cathodic protection potential shifts negatively. This phenomenon is closely related to the metabolic activity of the mixed bacteria. More positive cathodic protection potentials promote bacterial metabolic activity, leading to the formation of loose and compositionally diverse corrosion products. As the cathodic protection potential shifts negatively, bacterial metabolism is inhibited, resulting in the formation of denser and more stable corrosion products;
- At a more negative cathodic protection potential, a crystalline corrosion film primarily composed of corrosion products forms on the cathode surface, with Fe2O3 and Fe(OH)3 as its main components. Experimental results demonstrated that this corrosion film effectively isolates the metal surface from the external liquid environment, providing a protective effect on the metal. Additionally, the more negative cathodic protection potential inhibits SRB adhesion and metabolism on the metal surface, mitigating the corrosion threat caused by microbial attachment. Furthermore, due to the presence of the corrosion film, overprotection does not occur at this potential, thereby improving the efficiency of cathodic protection.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rong, H.; Zhao, X.; Zhao, Z.; Sun, H.; Fu, Q.; Ding, R.; Yang, J.; Fan, W.; Xiao, F. Effect of Acinetobacter Sp. on Corrosion Behavior of 10MnNiCrCu Steel in Simulated Marine Environment. Int. J. Electrochem. Sci. 2021, 16, 210638. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, H.; Fan, Y.; Xu, D. Microbially Influenced Corrosion of Steel in Marine Environments: A Review from Mechanisms to Prevention. Microorganisms 2023, 11, 2299. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Liang, T.; Liu, Y.; Shi, Y.; Zhang, H.; Li, H.; Guo, S.; Pan, H.; Yang, K.; Zhao, Y. Microbiologically Influenced Corrosion Mechanism of Ferrous Alloys in Marine Environment. Metals 2022, 12, 1458. [Google Scholar] [CrossRef]
- Knisz, J.; Eckert, R.; Gieg, L.M.; Koerdt, A.; Lee, J.S.; Silva, E.R.; Skovhus, T.L.; Stepec, B.A.A.; Wade, S.A. Microbiologically influenced corrosion—More than just microorganisms. FEMS Microbiol. Rev. 2023, 47, fuad041. [Google Scholar] [CrossRef]
- Javaherdashti, R. Editorial: Microbiologically influenced corrosion (MIC): Its mechanisms, technological, economic, and environmental impacts. Front. Microbiol. 2023, 14, 1249565. [Google Scholar] [CrossRef]
- Zuo, Z.; Zhang, J.; Mathivanan, K.; Wang, F.; Duan, J.; Hou, B. Advances in understanding biofilm-based marine microbial corrosion. Corros. Rev. 2024. [Google Scholar] [CrossRef]
- Lv, M.; Du, M. A review: Microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria. Rev. Env. Sci. Biotechnol. 2018, 17, 431–446. [Google Scholar] [CrossRef]
- Jia, R.; Unsal, T.; Xu, D.; Lekbach, Y.; Gu, T. Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. Int. Biodeterior. Biodegrad. 2019, 137, 42–58. [Google Scholar] [CrossRef]
- Yao, G.; He, X.; Liu, J.; Guo, Z.; Chen, P. Test Study of the Bridge Cable Corrosion Protection Mechanism Based on Impressed Current Cathodic Protection. Lubricants 2023, 11, 30. [Google Scholar] [CrossRef]
- Dargahi, M.; Mahidashti, Z.; Rezaei, M. Corrosion prevention of storage tank bottom using impressed current cathodic protection—Experimental and simulation study. Eng. Fail. Anal. 2024, 158, 107982. [Google Scholar] [CrossRef]
- Gurrappa, I.; Yashwanth, I.V.S.; Mounika, I. Cathodic Protection Technology for Protection of Naval Structures Against Corrosion. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2015, 85, 1–18. [Google Scholar] [CrossRef]
- Erdogan, C.; Swain, G. The Effects of Biofouling and Corrosion Products on Impressed Current Cathodic Protection System Design for Offshore Monopile Foundations. J. Mar. Sci. Eng. 2022, 10, 1670. [Google Scholar] [CrossRef]
- Lv, M.; Li, X.; Du, M. The effect of cathodic polarization on the corrosion behavior of X65 steel in seawater containing sulfate-reducing bacteria. Mater. Corros. 2020, 71, 2038–2051. [Google Scholar] [CrossRef]
- Liduino, V.; Galvão, M.; Brasil, S.; Sérvulo, E. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection. Colloids Surf. B Biointerfaces 2021, 202, 111701. [Google Scholar] [CrossRef]
- Beech, I.B.; Sunner, J. Biocorrosion: Towards understanding interactions between biofilms and metals. Curr. Opin. Biotechnol. 2004, 15, 181–186. [Google Scholar] [CrossRef]
- Li, Y.; Xu, D.; Chen, C.; Li, X.; Jia, R.; Zhang, D.; Sand, W.; Wang, F.; Gu, T. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review. J. Mater. Sci. Technol. 2018, 34, 1713–1718. [Google Scholar] [CrossRef]
- Lv, M.; Du, M.; Li, Z. Investigation of mixed species biofilm on corrosion of X65 steel in seawater environment. Bioelectrochemistry 2022, 143, 107951. [Google Scholar] [CrossRef]
- Jogdeo, P.; Chai, R.; Shuyang, S.; Saballus, M.; Constancias, F.; Wijesinghe, S.L.; Thierry, D.; Blackwood, D.J.; McDougald, D.; Rice, S.A.; et al. Onset of Microbial Influenced Corrosion (MIC) in Stainless Steel Exposed to Mixed Species Biofilms from Equatorial Seawater. J. Electrochem. Soc. 2017, 164, C532–C538. [Google Scholar] [CrossRef]
- Lv, M.; Du, M.; Li, X.; Yue, Y.; Chen, X. Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria. J. Mater. Res. Technol. 2019, 8, 4066–4078. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Song, Y.; Liu, W.; Zhang, J.; Li, N.; Dong, K.; Cai, Y.; Han, E.-H. The respective roles of sulfate-reducing bacteria (SRB) and iron-oxidizing bacteria (IOB) in the mixed microbial corrosion process of carbon steel pipelines. Corros. Sci. 2024, 240, 112479. [Google Scholar] [CrossRef]
- Gu, T.; Jia, R.; Unsal, T.; Xu, D. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria. J. Mater. Sci. Technol. 2019, 35, 631–636. [Google Scholar] [CrossRef]
- Anandkumar, B.; George, R.P.; Maruthamuthu, S.; Parvathavarthini, N.; Mudali, U.K. Corrosion characteristics of sulfate-reducing bacteria (SRB) and the role of molecular biology in SRB studies: An overview. Corros. Rev. 2016, 34, 41–63. [Google Scholar] [CrossRef]
- Jin, J.; Li, Y.; Huang, H.; Xiang, Y.; Yan, W. Symbiosis of Sulfate-Reducing Bacteria and Total General Bacteria Affects Microbiologically Influenced Corrosion of Carbon Steel. Coatings 2024, 14, 788. [Google Scholar] [CrossRef]
- Dong, Z.H.; Shi, W.; Ruan, H.M.; Zhang, G.A. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique. Corros. Sci. 2011, 53, 2978–2987. [Google Scholar] [CrossRef]
- Guan, F.; Zhai, X.; Duan, J.; Zhang, M.; Hou, B. Influence of Sulfate-Reducing Bacteria on the Corrosion Behavior of High Strength Steel EQ70 under Cathodic Polarization. PLoS ONE 2016, 11, e0162315. [Google Scholar] [CrossRef]
- Xu, D.; Gu, T. Bioenergetics Explains When and Why More Severe MIC Pitting by SRB Can Occur, Corrosion/Paper. 2011. Available online: http://www.researchgate.net/publication/266345253_Bioenergetics_Explains_When_and_Why_More_Severe_MIC_Pitting_by_SRB_Can_Occur (accessed on 17 February 2025).
- Sachan, R.; Singh, A.K. Comparison of microbial influenced corrosion in presence of iron oxidizing bacteria (strains DASEWM1 and DASEWM2). Constr. Build. Mater. 2020, 256, 119438. [Google Scholar] [CrossRef]
- Ashassi-Sorkhabi, H.; Moradi-Haghighi, M.; Zarrini, G.; Javaherdashti, R. Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants. Biodegradation 2012, 23, 69–79. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, Y.; Kang, M.; Jia, S. Electrochemical mechanism of 317L stainless steel under biofilms with coexistence of iron-oxidizing bacteria and sulfatereducing bacteria. Int. J. Electrochem. Sci. 2019, 14, 10139–10152. [Google Scholar] [CrossRef]
- Junxi, Z.; Jinliang, L.; Licheng, Y.; Yu, F.; Lingsong, Z.; Yu, Z. The applicability of EIS to determine the optimal polarization potential for impressed current cathodic protection. Anti-Corros. Methods Mater. 2010, 57, 249–252. [Google Scholar] [CrossRef]
- ISO 6344-3; Coated Abrasives, Determination and Designation of Grain Size Distribution—Part 3: Microgrit Sizes P240 to P5000. International Organization for Standardization: Geneva, Switzerland, 2021.
- Liu, H.; Gu, T.; Zhang, G.; Wang, W.; Dong, S.; Cheng, Y.; Liu, H. Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors. Corros. Sci. 2016, 105, 149–160. [Google Scholar] [CrossRef]
- Dinh, H.T.; Kuever, J.; Mußmann, M.; Hassel, A.W.; Stratmann, M.; Widdel, F. Iron corrosion by novel anaerobic microorganisms. Nature 2004, 427, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Duan, J.; Du, X.; Huang, Y.; Hou, B. Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry. Electrochem. Commun. 2013, 26, 101–104. [Google Scholar] [CrossRef]
- Liu, H.; Fu, C.; Gu, T.; Zhang, G.; Lv, Y.; Wang, H.; Liu, H. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corros. Sci. 2015, 100, 484–495. [Google Scholar] [CrossRef]
- Yoon, J.H.; Shin, J.-H.; Park, J.H.; Park, T.H. Effect of light intensity on the correlation between cell mass concentration and optical density in high density culture of a filamentous microorganism. Korean J. Chem. Eng. 2015, 32, 1842–1846. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Chien, W.-S.; Duan, K.-J.; Chang, P.R. Effect of aeration timing and interval during very-high-gravity ethanol fermentation. Process Biochem. 2011, 46, 1025–1028. [Google Scholar] [CrossRef]
- Abe, H.; Kobayakawa, T.; Maruyama, H.; Wakabayashi, T.; Nakayama, M. Thin Film Coating of Mg-Intercalated Layered MnO2 to Suppress Chlorine Evolution at an IrO2 Anode in Cathodic Protection. Electrocatalysis 2019, 10, 195–202. [Google Scholar] [CrossRef]
- Chen, J.; Gan, L.; Han, Y.; Owens, G.; Chen, Z. Ferrous sulfide nanoparticles can be biosynthesized by sulfate-reducing bacteria: Synthesis, characterization and removal of heavy metals from acid mine drainage. J. Hazard. Mater. 2024, 466, 133622. [Google Scholar] [CrossRef]
- Xiaojing, D.; Haodan, P.; Maocheng, Y.; Udowo, V.M.; Xiaoxu, L. Microbial Corrosion of X60 Pipeline Steel in Groundwater Containing Sulfate-Reducing Bacteria/Iron-Oxidizing Bacteria Mixed Colonies. J. Mater. Eng. Perform. 2024, 33, 11852–11862. [Google Scholar] [CrossRef]
- Ogawa, A.; Hosaka, S.; Kanematsu, H.; Yoshitake, M. Marine Biofilm Model Comprising a Loop-Type Biofilm Reactor and a Halomonas Strain HIG FST4 1, an Active Biofilm-Forming Bacterium. Coatings 2022, 12, 1605. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, Y.; Wan, J.; Zhao, P. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water. Appl. Surf. Sci. 2015, 357, 236–247. [Google Scholar] [CrossRef]
- Liu, W.; Bi, W.; Hu, Y.; Lu, W.; Feng, W.; Wang, Y.; Li, Y.; Liu, J. Influence of initial pH and sulfate-reducing bacteria concentration on the microbiologically influenced corrosion of buried pipeline steel. Mater. Corros. 2024, 75, 1193–1203. [Google Scholar] [CrossRef]
- Little, B.J.; Wagner, P.A. The Interrelationship between Marine Biofouling and Cathodic Protection. Mater. Perform. 2007, 32, 8. [Google Scholar] [CrossRef]
- Fatemi, H.; Hadigheh, S.A.; Tao, Y.; Adam, G. Development of a novel and specialised cementitious matrix overlay for anode embedment in impressed current cathodic protection (ICCP) systems for reinforced concrete bridges. Case Stud. Constr. Mater. 2024, 20, e02908. [Google Scholar] [CrossRef]
- Castelli, F.; Delucchi, M.; Valenza, F.; Garaventa, F.; Faimali, M.; Turturro, T.; Benedetti, A. Behavior of biocide-free foul control paints for ships’ hulls in the immediate proximity of ICCP anodes. J. Coat. Technol. Res. 2024, 21, 383–399. [Google Scholar] [CrossRef]
- Dai, K.; Li, S.; Hu, P.; Jiang, N.; Wang, D. Effect of outer rust layer on cathodic protection and corrosion behavior of high-strength wire hangers with sheath crack in marine rainfall environment. Case Stud. Constr. Mater. 2023, 18, e02043. [Google Scholar] [CrossRef]
- Lu, J.C.; Wang, Z.B.; Hu, H.X.; Zheng, Y.G. Understanding localized corrosion mechanism of 90/10 copper-nickel alloy in flowing NaCl solution induced by partial coverage of corrosion products films. Corros. Sci. 2024, 227, 111716. [Google Scholar] [CrossRef]
- Huang, F.; Cheng, P.; Zhao, X.Y.; Liu, J.; Hu, Q.; Cheng, Y.F. Effect of sulfide films formed on X65 steel surface on hydrogen permeation in H2S environments. Int. J. Hydrogen Energy 2017, 42, 4561–4570. [Google Scholar] [CrossRef]
- Yue, Y.; Lv, M.; Du, M. The corrosion behavior and mechanism of X65 steel induced by iron-oxidizing bacteria in the seawater environment. Mater. Corros. 2019, 70, 1852–1861. [Google Scholar] [CrossRef]
- Pal, A.; Thinaharan, C.; Krishna, N.G.; Shankar, A.R.; Philip, J. Studies on localized electrochemical activity of 304L SS-Zr-4 dissimilar joints using alternating current scanning electrochemical microscopy. Appl. Surf. Sci. 2022, 578, 151958. [Google Scholar] [CrossRef]
- Orozco-Cruz, R.; Bohórquez-Rico, J.; Marin, D.; Almeraya-Calderón, F.; Espinoza-Vázquez, A.; Carmona-Hernández, A.; Galván-Martínez, R. Effect of seawater pH variation on the growth of calcareous deposits and its effect on an impressed current cathodic protection system. J. Solid State Electrochem. 2023, 27, 3003–3016. [Google Scholar] [CrossRef]
- Hua, W.; Sun, R.; Wang, X.; Zhang, Y.; Li, J.; Qiu, R.; Gao, Y. Corrosion of Q235 carbon steel induced by sulfate-reducing bacteria in groundwater: Corrosion behavior, corrosion product, and microbial community structure. Environ. Sci. Pollut. Res. 2023, 31, 4269–4279. [Google Scholar] [CrossRef]
- Kim, J.-G.; Kim, Y.-W. Cathodic protection criteria of thermally insulated pipeline buried in soil. Corros. Sci. 2001, 43, 2011–2021. [Google Scholar] [CrossRef]
- Qin, M.; Liao, K.; He, G.; Ye, N.; Zhao, S.; Zhang, S. Flow Influenced Initiation and Propagation of SRB Corrosion on L360N Carbon Steel. Arab. J. Sci. Eng. 2022, 47, 11469–11480. [Google Scholar] [CrossRef]
- Li, F.; An, M.; Duan, D. Corrosion inhibition of stainless steel by a sulfate-reducing bacteria biofilm in seawater. Int. J. Min. Met. Mater. 2012, 19, 717–725. [Google Scholar] [CrossRef]
- Wu, S.; Gao, Z.; Liu, Y.; Hu, W. Effect of cathodic protection potential on stress corrosion susceptibility of X80 steel. Corros. Sci. 2023, 218, 111184. [Google Scholar] [CrossRef]
- Zulkafli, R.; Othman, N.K.; Yaakob, N. Pencirian Permukaan Kakisan Keluli Karbon dengan Kehadiran Konsortium Bakteria Penurun Sulfat dalam Persekitaran Bergas CO2. JSM 2022, 51, 3113–3123. [Google Scholar] [CrossRef]
Element | C | Si | Mn | S | P | Cu | Fe |
---|---|---|---|---|---|---|---|
Composition (wt.%) | 0.19 | 0.18 | 0.59 | 0.015 | 0.015 | 0.15 | 98.86 |
Experimental Solution Type | SRB Strains (mL) | IOB Strains (mL) | SRB Culture Medium (mL) | IOB Culture Medium (mL) | Sterile Natural Seawater (mL) | Total Volume (mL) |
---|---|---|---|---|---|---|
Mixed Bacterial Seawater Solution | 10 | 10 | 40 | 40 | 900 | 1000 |
SRB Seawater Solution | 10 | 0 | 90 | 0 | 900 | 1000 |
IOB Seawater Solution | 0 | 10 | 0 | 90 | 900 | 1000 |
Condition | −0.85 V (SCE) | −0.95 V (SCE) | −1.05 V (SCE) |
---|---|---|---|
Icorr (μA·cm−2) | 22.91 | 33.11 | 42.66 |
Ecorr (mV vs. SCE) | −920 | −892 | −941 |
ba (mV dec−1) | 5447.39 | 3171.41 | 2008.00 |
Ia (μA cm−2) | 24.53 | 30.05 | 32.00 |
Specimen | Rs Ω cm2 | Qc S secn cm−2 nc | Rpore.s Ω cm2 | Qdl S secncm−2 ndl | Rct Ω cm2 |
---|---|---|---|---|---|
−0.85 V (SCE) | 5.241 | 9.973 × 10−3 8.747 × 10−1 | 1.512 × 102 | 3.619 × 10−2 9.642 × 10−1 | 2.159 × 102 |
−0.95 V (SCE) | 5.158 | 8.930 × 10−3 8.302 × 10−1 | 1.357 × 102 | 9.547 × 10−3 9.676 × 10−1 | 8.128 × 102 |
−1.05 V (SCE) | 4.752 | 2.624 × 10−3 7.983 × 10−1 | 1.776 × 103 | 9.651 × 10−3 8.869 × 10−1 | 1.586 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, Z.; Zhang, J.; Hou, Q.; Zhang, C.; Wang, K.; Duan, J.; Chen, X.; Hou, B. Study on the Effect of Different Cathodic Protection Potentials on the Growth of Mixed Bacteria and Cathodic Protection Efficiency. Chemistry 2025, 7, 54. https://doi.org/10.3390/chemistry7020054
Zuo Z, Zhang J, Hou Q, Zhang C, Wang K, Duan J, Chen X, Hou B. Study on the Effect of Different Cathodic Protection Potentials on the Growth of Mixed Bacteria and Cathodic Protection Efficiency. Chemistry. 2025; 7(2):54. https://doi.org/10.3390/chemistry7020054
Chicago/Turabian StyleZuo, Zeyu, Jie Zhang, Qingle Hou, Chengjun Zhang, Ke Wang, Jizhou Duan, Xilei Chen, and Baorong Hou. 2025. "Study on the Effect of Different Cathodic Protection Potentials on the Growth of Mixed Bacteria and Cathodic Protection Efficiency" Chemistry 7, no. 2: 54. https://doi.org/10.3390/chemistry7020054
APA StyleZuo, Z., Zhang, J., Hou, Q., Zhang, C., Wang, K., Duan, J., Chen, X., & Hou, B. (2025). Study on the Effect of Different Cathodic Protection Potentials on the Growth of Mixed Bacteria and Cathodic Protection Efficiency. Chemistry, 7(2), 54. https://doi.org/10.3390/chemistry7020054