Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (386)

Search Parameters:
Keywords = porous shells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5801 KB  
Article
Copper-Decorated Catalytic Carbon/Ceramic Hollow Fibers for NO Reduction: Enhanced Performance via Tangential Flow Reactor Design and Process Intensification
by George V. Theodorakopoulos, Sergios K. Papageorgiou, Fotios K. Katsaros, Konstantinos G. Beltsios and George Em. Romanos
Fibers 2025, 13(9), 112; https://doi.org/10.3390/fib13090112 (registering DOI) - 22 Aug 2025
Viewed by 53
Abstract
In this study, high-yield biopolymer/ceramic hollow fibers were fabricated via a facile, modified polyol process in a spinneret setup, enabling the controlled adsorption of Cu2+ ions. Post sintering transformed these into catalytic copper-decorated carbon/ceramic (alumina) composite hollow fibers, with alginate serving as [...] Read more.
In this study, high-yield biopolymer/ceramic hollow fibers were fabricated via a facile, modified polyol process in a spinneret setup, enabling the controlled adsorption of Cu2+ ions. Post sintering transformed these into catalytic copper-decorated carbon/ceramic (alumina) composite hollow fibers, with alginate serving as both a metal ion binder and a copper nanoparticle stabilizer. The resulting hollow fibers featured porous walls with a high surface area and were densely decorated with copper nanoparticles. Their structural and morphological characteristics were analyzed, and their NO reduction performance was assessed in a continuous flow configuration, where the gas stream passed through both the shell and lumen sides of a fiber bundle in a tangential flow mode. This study also examined the stability, longevity and regeneration potential of the catalytic fibers, including the mechanisms of deactivation and reactivation. Carbon content was found to be decisive for catalytic performance. High-carbon fibers exhibited a light-off temperature of 250 °C, maintained about 90% N2 selectivity and sustained a consistently high NO reduction efficiency for over 300 h, even without reducing gases like CO. In contrast, low-carbon fibers displayed a higher light-off temperature of 350 °C and a reduced catalytic efficiency. The results indicate that carbon enhances both activity and selectivity, counterbalancing deactivation effects. Owing to their scalability, durability and effectiveness, these catalytic fibers and their corresponding bundle-type reactor configuration represent a promising technology for advanced NO abatement. Full article
Show Figures

Figure 1

40 pages, 3825 KB  
Review
Three-Dimensional SERS Substrates: Architectures, Hot Spot Engineering, and Biosensing Applications
by Xiaofeng Zhou, Siqiao Liu, Hailang Xiang, Xiwang Li, Chunyan Wang, Yu Wu and Gen Li
Biosensors 2025, 15(9), 555; https://doi.org/10.3390/bios15090555 - 22 Aug 2025
Viewed by 271
Abstract
Three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates have demonstrated remarkable abilities of ultrasensitive and reproducible molecular detection. The combination of both electromagnetic and chemical enhancement processes, light trapping, and multiple scattering effects of 3D structures are what enhance their performance. The principles of [...] Read more.
Three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates have demonstrated remarkable abilities of ultrasensitive and reproducible molecular detection. The combination of both electromagnetic and chemical enhancement processes, light trapping, and multiple scattering effects of 3D structures are what enhance their performance. The principles of underlying enhancements are summarized systematically, and the main types of 3D substrates—vertically aligned nanowires, dendritic and fractal nanostructures, porous frameworks and aerogels, core–shell and hollow nanospheres, and hierarchical hybrid structures—are categorized in this review. Advances in fabrication techniques, such as template-assisted growth, electrochemical and galvanic deposition, dealloying and freeze-drying, self-assembly, and hybrid integration, are critically evaluated in terms of structural tunability and scalability. Novel developments in the field of biosensing are also highlighted, including non-enzymatic glucose sensing, tumor biomarker sensing, and drug delivery. The remaining limitations, such as low reproducibility, mechanical stability, and substrate standardization, are also noted, and future directions, such as stimuli-responsive designs, multifunctional hybrid platforms, and data-driven optimization strategies of SERS technologies, are also included. Full article
(This article belongs to the Special Issue Surface-Enhanced Raman Scattering in Biosensing Applications)
Show Figures

Figure 1

18 pages, 6481 KB  
Article
Integrating Carbon-Coated Cu/Cu2O Nanoparticles with Biochars Enabled Efficient Capture and Electrocatalytic Reduction of CO2
by Yutong Hong, Xiaokai Zhou and Fangang Zeng
Catalysts 2025, 15(8), 767; https://doi.org/10.3390/catal15080767 - 11 Aug 2025
Viewed by 453
Abstract
Because the interfacial Cu0/Cu+ in Cu-based electrocatalyst promotes CO2 electroreduction activity, it would be highly desirable to physically separate Cu-based nanoparticles through coating shells and load them onto porous carriers. Herein, multilayered graphene-coated Cu (Cu@G) nanoparticles with tailorable core [...] Read more.
Because the interfacial Cu0/Cu+ in Cu-based electrocatalyst promotes CO2 electroreduction activity, it would be highly desirable to physically separate Cu-based nanoparticles through coating shells and load them onto porous carriers. Herein, multilayered graphene-coated Cu (Cu@G) nanoparticles with tailorable core diameters (28.2–24.2 nm) and shell thicknesses (7.8–3.0 layers) were fabricated via lased ablation in liquid. A thin Cu2O layer was confirmed between the interface of the Cu core and the graphene shell, providing an interfacial Cu0/Cu+. Cu@G cross-linked biochars (Cu@G/Bs) with developed porosity (31.8–155.9 m2/g) were synthesized. Morphology, crystalline structure, porosity, and elemental chemical states of Cu@G and Cu@G/Bs were characterized. Cu@G/Bs captured CO2 with a maximum sorption capacity of 107.03 mg/g at 0 °C. Furthermore, 95.3–97.1% capture capacity remained after 10 cycles. Cu@G/Bs exhibited the most superior performance with 40.7% of FEC2H4 and 21.7 mA/cm2 of current density at −1.08 V vs. RHE, which was 1.7 and 2.7 times higher than Cu@G. Synergistic integration of developed porosity for efficient CO2 capture and the fast charge transfer rate of interfacial Cu2O/Cu enabled this improvement. Favorable long-term stability of the phase/structure and CO2 electroreduction activity were present. This work provides new insight for integrating Cu@G and a biochar platform to efficiently capture and electro-reduce CO2. Full article
Show Figures

Graphical abstract

25 pages, 4087 KB  
Review
Progress in High-Entropy Alloy-Based Microwave Absorbing Materials
by Chengkun Ma and Yuying Zhang
Symmetry 2025, 17(8), 1286; https://doi.org/10.3390/sym17081286 - 10 Aug 2025
Viewed by 457
Abstract
The rational design of high-performance microwave absorbers with broadband coverage, superior attenuation, and environmental durability is critical for addressing challenges in both defense and civilian technologies. High-entropy alloys (HEAs) exhibit atomic-scale asymmetric arrangements, demonstrating exceptional potential for microwave absorption through their unique lattice [...] Read more.
The rational design of high-performance microwave absorbers with broadband coverage, superior attenuation, and environmental durability is critical for addressing challenges in both defense and civilian technologies. High-entropy alloys (HEAs) exhibit atomic-scale asymmetric arrangements, demonstrating exceptional potential for microwave absorption through their unique lattice distortion, high entropy, sluggish diffusion, and “cocktail effect”. This critical review article provides an overview of the progress made in the development and understanding of HEA-based microwave absorbing materials. Initially, the microwave dissipation mechanisms for HEAs were analyzed, where atomic-scale distortions enhance polarization loss and broaden resonance bandwidth. Subsequently, key synthesis techniques like mechanical alloying and carbothermal shock are discussed, highlighting non-equilibrium processing for phase engineering. Building on these foundations, the discussion then progresses to evaluate four principal material design approaches: (1) compositionally-tuned powders, (2) multifunctional core–shell structures, (3) phase-controlled architectures, and (4) two-dimensional/porous configurations, each demonstrating distinct performance advantages. Finally, the discussion concludes by addressing current challenges in quantitative property modeling and industrial scalability while outlining future directions, including machine learning-assisted design and flexible integration, providing comprehensive guidance for developing next-generation high-performance microwave absorbing materials. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

17 pages, 3442 KB  
Article
Generating Strongly Basic Sites on C/Fe3O4 Core–Shell Structure: Preparation of Magnetically Responsive Mesoporous Solid Strong Bases Catalysts
by Tiantian Li, Xiaowen Li, Guangxia Shi, Yajun Gao, Qiang Guan, Guodong Kang, Yizhi Zeng and Dingming Xue
Catalysts 2025, 15(8), 743; https://doi.org/10.3390/catal15080743 - 4 Aug 2025
Viewed by 422
Abstract
Novel solid strong base catalysts have attracted considerable attention in fine chemical synthesis owing to their unique advantages. In this work, a magnetic solid strong base catalyst with controlled morphology and porous carbon shell structure was successfully fabricated using low-cost carbon sources combined [...] Read more.
Novel solid strong base catalysts have attracted considerable attention in fine chemical synthesis owing to their unique advantages. In this work, a magnetic solid strong base catalyst with controlled morphology and porous carbon shell structure was successfully fabricated using low-cost carbon sources combined with Fe3O4 nanoparticles. KOH was used to introduce strong basic sites through ultrasonic-assisted impregnation. The carbon shell acted as a protective barrier to suppress detrimental interactions between basic species and the support while maintaining structural integrity after high-temperature activation without morphology degradation. The obtained K/C/Fe3O4 catalyst exhibits excellent catalytic performance and near-ideal superparamagnetic behavior. In the transesterification reaction for dimethyl carbonate (DMC) synthesis, the K/C/Fe3O4 catalyst provides superior performance than conventional solid base catalysts and maintains stable activity over six consecutive cycles. Notably, efficient solid–liquid separation was achieved successfully via magnetic separation, demonstrating practical applicability for the K/C/Fe3O4 catalyst. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Applications of Advanced Porous Materials)
Show Figures

Graphical abstract

13 pages, 4712 KB  
Article
Adsorptive Removal Behavior of Two Activated Carbons for Bis(2-ethylhexyl) Phosphate Dissolved in Water
by Lifeng Chen, Jing Tang, Zhuo Wang, Hongling Wang, Wannian Feng, Junjie Chen, Qingqing Yan, Shunyan Ning, Wenlong Li, Yuezhou Wei and Di Wu
Toxics 2025, 13(8), 624; https://doi.org/10.3390/toxics13080624 - 25 Jul 2025
Viewed by 368
Abstract
Bis(2-ethylhexyl) phosphate (P204) is widely used in extraction processes in the nuclear and rare earth industries. However, its high solubility in water results in high levels of total organic carbon and phosphorus in aqueous environments, and may also lead to radioactive contamination when [...] Read more.
Bis(2-ethylhexyl) phosphate (P204) is widely used in extraction processes in the nuclear and rare earth industries. However, its high solubility in water results in high levels of total organic carbon and phosphorus in aqueous environments, and may also lead to radioactive contamination when it is used to combine with radionuclides. In this paper, we characterized a coconut shell activated carbon (CSAC) and a coal-based activated carbon (CBAC) for the adsorption of P204 and then evaluated their adsorption performance through batch and column experiments. The results found that, except for the main carbon matrix, CSAC and CBAC carried rich oxygen-containing functional groups and a small amount of inorganic substances. Both adsorbents had porous structures with pore diameters less than 4 nm. CSAC and CBAC showed good removal performance for P204 under low pH conditions, with removal efficiencies significantly higher than those of commonly used adsorption resins (XAD-4 and IRA900). The adsorption kinetics of P204 conformed to the pseudo-second-order kinetic model, and the adsorption isotherms conformed to the Langmuir model, indicating a monolayer chemical reaction mechanism. Both adsorbents exhibited strong anti-interference capabilities; their adsorption performance for P204 did not change greatly with the ambient temperature or the concentrations of common interfering ions. Column experiments demonstrated that CSAC could effectively fix dissolved P204 with a removal efficiency exceeding 90%. The fixed P204 could be desorbed with acetone. The findings provide an effective method for the recovery of P204 and the regeneration of spent activated carbon, which shows promise for practical applications in the future. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

37 pages, 3768 KB  
Review
Mechanochemical Preparation of Biomass-Derived Porous Carbons
by Jerzy Choma, Barbara Szczęśniak and Mietek Jaroniec
Molecules 2025, 30(15), 3125; https://doi.org/10.3390/molecules30153125 - 25 Jul 2025
Viewed by 605
Abstract
Conventional methods for the synthesis of porous carbons are typically time- and energy-consuming and often contribute to the excessive accumulation of waste solvents. An alternative approach is to employ environmentally friendly procedures, such as mechanochemical synthesis, which holds great potential for large-scale production [...] Read more.
Conventional methods for the synthesis of porous carbons are typically time- and energy-consuming and often contribute to the excessive accumulation of waste solvents. An alternative approach is to employ environmentally friendly procedures, such as mechanochemical synthesis, which holds great potential for large-scale production of advanced carbon-based materials in coming years. This review covers mechanochemical syntheses of highly porous carbons, with a particular focus on new adsorbents and catalysts that can be obtained from biomass. Mechanochemically assisted methods are well suited for producing highly porous carbons (e.g., ordered mesoporous carbons, hierarchical porous carbons, porous carbon fibers, and carbon–metal composites) from tannins, lignin, cellulose, coconut shells, nutshells, bamboo waste, dried flowers, and many other low-cost biomass wastes. Most mechanochemically prepared porous carbons are proposed for applications related to adsorption, catalysis, and energy storage. This review aims to offer researchers insights into the potential utilization of biowastes, facilitating the development of cost-effective strategies for the production of porous carbons that meet industrial demands. Full article
(This article belongs to the Special Issue New Insights into Porous Materials in Adsorption and Catalysis)
Show Figures

Graphical abstract

81 pages, 10454 KB  
Review
Glancing Angle Deposition in Gas Sensing: Bridging Morphological Innovations and Sensor Performances
by Shivam Singh, Kenneth Christopher Stiwinter, Jitendra Pratap Singh and Yiping Zhao
Nanomaterials 2025, 15(14), 1136; https://doi.org/10.3390/nano15141136 - 21 Jul 2025
Viewed by 592
Abstract
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic [...] Read more.
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic nanostructures, such as aligned, tilted, zigzag, helical, and multilayered nanorods, with tunable surface area and diffusion pathways optimized for gas detection. This review provides a comprehensive synthesis of recent advances in GLAD-based gas sensor design, focusing on how structural engineering and material integration converge to enhance sensor performance. Key materials strategies include the construction of heterojunctions and core–shell architectures, controlled doping, and nanoparticle decoration using noble metals or metal oxides to amplify charge transfer, catalytic activity, and redox responsiveness. GLAD-fabricated nanostructures have been effectively deployed across multiple gas sensing modalities, including resistive, capacitive, piezoelectric, and optical platforms, where their high aspect ratios, tailored porosity, and defect-rich surfaces facilitate enhanced gas adsorption kinetics and efficient signal transduction. These devices exhibit high sensitivity and selectivity toward a range of analytes, including NO2, CO, H2S, and volatile organic compounds (VOCs), with detection limits often reaching the parts-per-billion level. Emerging innovations, such as photo-assisted sensing and integration with artificial intelligence for data analysis and pattern recognition, further extend the capabilities of GLAD-based systems for multifunctional, real-time, and adaptive sensing. Finally, current challenges and future research directions are discussed, emphasizing the promise of GLAD as a scalable platform for next-generation gas sensing technologies. Full article
Show Figures

Graphical abstract

14 pages, 4370 KB  
Article
Fabrication of Zwitterionized Nanocellulose/Polyvinyl Alcohol Composite Hydrogels Derived from Camellia Oleifera Shells for High-Performance Flexible Sensing
by Jingnan Li, Weikang Peng, Zhendong Lei, Jialin Jian, Jie Cong, Chenyang Zhao, Yuming Wu, Jiaqi Su and Shuaiyuan Han
Polymers 2025, 17(14), 1901; https://doi.org/10.3390/polym17141901 - 9 Jul 2025
Viewed by 496
Abstract
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia [...] Read more.
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia oleifera shells and modified with 2-chloropropyl chloride to obtain a nanocellulose-based initiator (Init-NC) for atomic transfer radical polymerization (ATRP). Subsequently, sulfonyl betaine methacrylate (SBMA) was polymerized by Init-NC initiating to yield zwitterion-functionalized nanocellulose (NC-PSBMA). Finally, the NC-PSBMA/PVA hydrogel was fabricated by blending NC-PSBMA with PVA. A Fourier transform infrared spectrometer (FT-IR), proton nuclear magnetic resonance spectrometer (1H-NMR), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), universal mechanical testing machine, and digital source-meter were used to characterize the chemical structure, surface microstructure, and sensing performance. The results indicated that: (1) FT-IR and 1H NMR confirmed the successful synthesis of NC-PSBMA; (2) SEM, TEM, and alternating current (AC) impedance spectroscopy verified that the NC-PSBMA/PVA hydrogel exhibits a uniform porous structure (pore diameter was 1.1737 μm), resulting in significantly better porosity (15.75%) and ionic conductivity (2.652 S·m−1) compared to the pure PVA hydrogel; and (3) mechanical testing combined with source meter testing showed that the tensile strength of the composite hydrogel increased by 6.4 times compared to the pure PVA hydrogel; meanwhile, it showed a high sensitivity (GF = 1.40, strain range 0–5%; GF = 1.67, strain range 5–20%) and rapid response time (<0.05 s). This study presents a novel approach to developing bio-based, flexible sensing materials. Full article
(This article belongs to the Special Issue Polysaccharide-Based Materials: Developments and Properties)
Show Figures

Graphical abstract

17 pages, 2409 KB  
Article
Synthesis of Physically Activated Carbons from Vitellaria paradoxa Shells for Supercapacitor Electrode Applications
by Joshua Atta Alabi, Neda Nazari, Daniel Nframah Ampong, Frank Ofori Agyemang, Mark Adom-Asamoah, Richard Opoku, Rene Zahrhuber, Christoph Unterweger and Kwadwo Mensah-Darkwa
Inorganics 2025, 13(7), 224; https://doi.org/10.3390/inorganics13070224 - 2 Jul 2025
Viewed by 593
Abstract
This study investigates the processing of shea nut shells (SNSs), an abundant agricultural waste, into porous activated carbon for supercapacitor electrodes through a two-stage thermal treatment involving pyrolysis and physical activation with CO2 and steam. The aim was to develop sustainable, high-performance [...] Read more.
This study investigates the processing of shea nut shells (SNSs), an abundant agricultural waste, into porous activated carbon for supercapacitor electrodes through a two-stage thermal treatment involving pyrolysis and physical activation with CO2 and steam. The aim was to develop sustainable, high-performance electrode materials while addressing waste management. Carbonization followed by activation yielded 16.5% (CO2) and 11.3% (steam) activation yields, with total yields of 4.3% and 2.9%, respectively. CO2 activation produced carbon (AC_CO2) with a specific surface area (SBET) of 1528 m2 g−1 and a total pore volume of 0.72 cm3 g−1, a graphitization degree (ID/IG = 1.0), and low charge transfer resistance (9.05 Ω), delivering a specific capacitance of 47.5 F g−1 at 0.5 A g−1, an energy density of 9.5 Wh kg−1 at 299 W kg−1, and a fast discharge time of 2.10 s, ideal for power-intensive applications. Steam activation yielded carbon (AC_H2O) with a higher specific surface area (1842 m2 g−1) and pore volume (1.57 cm3 g−1), achieving a superior specific capacitance of 102.2 F g−1 at 0.5 A g−1 and a power density of 204 W kg−1 at 9.2 Wh kg−1, suited for energy storage. AC_CO2 also exhibited exceptional cyclic stability (90% retention after 10,000 cycles). These findings demonstrate SNS-derived activated carbon as a versatile, eco-friendly material, with CO2 activation optimizing power delivery and steam activation enhancing energy capacity, offering tailored solutions for supercapacitor applications and sustainable waste utilization. Full article
Show Figures

Figure 1

19 pages, 3128 KB  
Article
Slow Translation and Rotation of a Composite Sphere Parallel to One or Two Planar Walls
by Yu F. Chou and Huan J. Keh
Fluids 2025, 10(6), 154; https://doi.org/10.3390/fluids10060154 - 12 Jun 2025
Viewed by 746
Abstract
A semi-analytical investigation is conducted to examine the coupled translational and rotational motions of a composite spherical particle (consisting of an impermeable hard core surrounded by a permeable porous shell) immersed in a viscous fluid parallel to one or two planar boundaries under [...] Read more.
A semi-analytical investigation is conducted to examine the coupled translational and rotational motions of a composite spherical particle (consisting of an impermeable hard core surrounded by a permeable porous shell) immersed in a viscous fluid parallel to one or two planar boundaries under the steady condition of a low Reynolds number. The fluid flow is described using the Stokes equations outside the porous shell and the Brinkman equation within it. A general solution is formulated by employing fundamental solutions in both spherical and Cartesian coordinate systems. The boundary conditions on the planar walls are implemented using the Fourier transform method, while those on the inner and outer boundaries of the porous shell are applied via a collocation technique. Numerical calculations yield hydrodynamic force and torque results with good convergence across a broad range of physical parameters. For validation, the results corresponding to an impermeable hard sphere parallel to one or two planar walls are shown to be in close agreement with established solutions from the literature. The hydrodynamic drag force and torque experienced by the composite particle increase steadily with larger values of the ratio of the particle radius to the porous shell’s permeation length, the ratio of the core radius to the total particle radius, and the separations between the particle and the walls. It has been observed that the influence of the walls on translational motion is significantly stronger than that on rotational motion. When comparing motions parallel versus normal to the walls, the planar boundaries impose weaker hydrodynamic forces but stronger torques during parallel motions. The coupling between the translation and rotation of the composite sphere parallel to the walls exhibits complex behavior that does not vary monotonically with changes in system parameters. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

13 pages, 2832 KB  
Article
The Synthesis of B-Doped Porous Carbons via a Sodium Metaborate Tetrahydrate Activating Agent: A Novel Approach for CO2 Adsorption
by Junting Wang, Yingyi Wang, Xiaohan Liu, Qiang Xiao, Muslum Demir, Mohammed K. Almesfer, Suleyman Gokhan Colak, Linlin Wang, Xin Hu and Ya Liu
Molecules 2025, 30(12), 2564; https://doi.org/10.3390/molecules30122564 - 12 Jun 2025
Cited by 1 | Viewed by 524
Abstract
The CO2 capture from flue gas using biomass-derived porous carbons presents an environmentally friendly and sustainable strategy for mitigating carbon emissions. However, the conventional fabrication of porous carbons often relies on highly corrosive activating agents like KOH and ZnCl2, posing [...] Read more.
The CO2 capture from flue gas using biomass-derived porous carbons presents an environmentally friendly and sustainable strategy for mitigating carbon emissions. However, the conventional fabrication of porous carbons often relies on highly corrosive activating agents like KOH and ZnCl2, posing environmental and safety concerns. To address this challenge, in the present work sodium metaborate tetrahydrate (NaBO2·4H2O) has been utilized as an alternative, eco-friendly activating agent for the first time. Moreover, a water chestnut shell (WCS) is used as a sustainable precursor for boron-doped porous carbons with varied microporosity and boron concentration. It was found out that pyrolysis temperature significantly determines the textural features, elemental composition, and CO2 adsorption capacity. With a narrow micropore volume of 0.27 cm3/g and a boron concentration of 0.79 at.% the representative adsorbent presents the maximum CO2 adsorption (2.51 mmol/g at 25 °C, 1 bar) and a CO2/N2 selectivity of 18 in a 10:90 (v/v) ratio. Last but not least, the as-prepared B-doped carbon adsorbent possesses a remarkable cyclic stability over five cycles, fast kinetics (95% equilibrium in 6.5 min), a modest isosteric heat of adsorption (22–39 kJ/mol), and a dynamic capacity of 0.80 mmol/g under simulated flue gas conditions. This study serves as a valuable reference for the fabrication of B-doped carbons using an environmentally benign activating agent for CO2 adsorption application. Full article
(This article belongs to the Special Issue Porous Carbons for CO2 Adsorption and Capture)
Show Figures

Figure 1

29 pages, 10025 KB  
Article
A Comprehensive Numerical and Experimental Study on Improving the Thermal Performance of a Shell and Helically Coiled Heat Exchanger Utilizing Hybrid Magnetic Nanofluids and Porous Spiral-Type Fins
by Ahmet Yağız Bacak, Ataollah Khanlari, Azim Doğuş Tuncer, Adnan Sözen, Halil İbrahim Variyenli and Kambiz Vafai
Fluids 2025, 10(6), 141; https://doi.org/10.3390/fluids10060141 - 27 May 2025
Viewed by 1455
Abstract
In this work, a novel type of shell and helically coiled heat exchangers (SHCHEXs) that are used extensively in numerous applications has been numerically and experimentally studied. A low-cost and easily applicable design for enhancing the heat exchange rate in a shell and [...] Read more.
In this work, a novel type of shell and helically coiled heat exchangers (SHCHEXs) that are used extensively in numerous applications has been numerically and experimentally studied. A low-cost and easily applicable design for enhancing the heat exchange rate in a shell and helically coiled heat exchanger has been developed within the scope of this study. In this context, a SHCHEX has been developed with an internal guiding pipe and spirally formed fins with the purpose of leading the fluid in the cold loop over the coil where hot fluid flows inside it. Numerical simulations were carried out in this study for determining how the new changes including nonporous and porous spiral fins affected heat transfer in the system. In the experimental part of the current research, a heat exchanger with a guiding pipe and nonporous spiral fins has been fabricated and its thermal behavior tested at various conditions utilizing water and MnFe2O4-ZnFe2O4/water hybrid-type nanofluid. Both numerical and experimental findings of this research exhibited positive effects of using new modifications including spiral fin integration. Overall findings of this work clearly exhibited a significant effect of the spiral fin medication and MnFe2O4-ZnFe2O4/water-hybrid magnetic nanofluid utilization on the thermal performance improvement in the heat exchanger. Experimentally determined findings showed that using MnFe2O4-ZnFe2O4/water in the hot loop of the SHCHEX improved the heat transfer coefficient of the heat exchanger by an average ratio of 16.2%. In addition, mean variation between the experimentally obtained exit temperature and numerically achieved one was 3.9%. Full article
(This article belongs to the Collection Challenges and Advances in Heat and Mass Transfer)
Show Figures

Figure 1

14 pages, 2678 KB  
Article
Doping of Hollow Urchin-like MnO2 Nanoparticles in Beta-Tricalcium Phosphate Scaffold Promotes Stem Cell Osteogenic Differentiation
by Enze Qian, Ahmed Eltawila and Yunqing Kang
Int. J. Mol. Sci. 2025, 26(11), 5092; https://doi.org/10.3390/ijms26115092 - 26 May 2025
Viewed by 434
Abstract
Effective osteogenesis for bone regeneration is still considerably challenging for a porous β-tricalcium phosphate (β-TCP) scaffold to achieve. To overcome this challenge, hollow manganese dioxide (H-MnO2) nanoparticles with an urchin-like shell structure were prepared and added in the porous β-TCP scaffold. [...] Read more.
Effective osteogenesis for bone regeneration is still considerably challenging for a porous β-tricalcium phosphate (β-TCP) scaffold to achieve. To overcome this challenge, hollow manganese dioxide (H-MnO2) nanoparticles with an urchin-like shell structure were prepared and added in the porous β-TCP scaffold. A template-casting method was used to prepare the porous H-MnO2/β-TCP scaffolds. As a control, solid manganese dioxide (S-MnO2) nanoparticles were also added into β-TCP scaffolds. Human bone mesenchymal stem cells (hBMSC) were seeded in the porous scaffolds and characterized through cell viability assay and alkaline phosphatase (ALP) assay. Results from in vitro protein loading and releasing experiments showed that H-MnO2 can load significantly higher proteins and release more proteins compared to S-MnO2 nanoparticles. When they were doped into β-TCP, MnO2 nanoparticles did not significantly change the surface wettability and mechanical properties of porous β-TCP scaffolds. In vitro cell viability results showed that MnO2 nanoparticles promoted cell proliferation in a low dose, but inhibited cell growth when the added concentration went beyond 0.5%. At a range of lower than 0.5%, H-MnO2 doped β-TCP scaffolds promoted the early osteogenesis of hBMSCs. These results suggested that H-MnO2 in the porous β-TCP scaffold has promising potential to stimulate osteogenesis. More studies would be performed to demonstrate the other functions of urchin-like H-MnO2 nanoparticles in the porous β-TCP. Full article
Show Figures

Figure 1

22 pages, 6198 KB  
Article
Engineering a Dual-Function Starch–Cellulose Composite for Colon-Targeted Probiotic Delivery and Synergistic Gut Microbiota Regulation in Type 2 Diabetes Therapeutics
by Ruixiang Liu, Yikang Ding, Yujing Xu, Qifeng Wu, Yanan Chen, Guiming Yan, Dengke Yin and Ye Yang
Pharmaceutics 2025, 17(5), 663; https://doi.org/10.3390/pharmaceutics17050663 - 17 May 2025
Viewed by 907
Abstract
Objectives: This study engineered a colon-targeted drug delivery system (CTDS) using the dual pharmaceutical and edible properties of Pueraria lobata to encapsulate Lactobacillus paracasei for Type 2 diabetes mellitus (T2DM) therapy. Methods: The CTDS was designed as a core–shell composite through microwave–hydrothermal engineering, [...] Read more.
Objectives: This study engineered a colon-targeted drug delivery system (CTDS) using the dual pharmaceutical and edible properties of Pueraria lobata to encapsulate Lactobacillus paracasei for Type 2 diabetes mellitus (T2DM) therapy. Methods: The CTDS was designed as a core–shell composite through microwave–hydrothermal engineering, comprising the following: (1) a retrograded starch shell with acid/enzyme-resistant crystallinity to protect probiotics from gastric degradation; (2) a porous cellulose core derived from Pueraria lobata’s natural microstructure, serving as a colonization scaffold for probiotics. Results: Structural characterization confirmed the shell’s resistance to acidic/pancreatic conditions and the core’s hierarchical porosity for bacterial encapsulation. pH/enzyme-responsive release kinetics were validated via fluorescence imaging, demonstrating targeted probiotic delivery to the colon with minimal gastric leakage. In diabetic models, the CTDS significantly reduced fasting blood glucose and improved dyslipidemia, while histopathological analysis revealed restored hepatic and pancreatic tissue architecture. Pharmacologically, the system acted as both a probiotic delivery vehicle and a microbiota modulator, selectively enriching Allobaculum and other short-chain fatty acid (SCFA)-producing bacteria to enhance SCFA biosynthesis and metabolic homeostasis. The CTDS further exhibited direct compression compatibility, enabling its translation into scalable oral dosage forms (e.g., tablets). Conclusions: By integrating natural material engineering, microbiota-targeted delivery, and tissue repair, this platform bridges the gap between pharmaceutical-grade probiotic protection and metabolic intervention in T2DM. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

Back to TopTop