Progress in High-Entropy Alloy-Based Microwave Absorbing Materials
Abstract
1. Introduction
2. Microwave Absorption Mechanisms of HEAs
2.1. Interaction Between Microwave and Absorbing Materials
2.2. Dielectric Loss Mechanisms in Microwave Absorption
2.3. Magnetic Loss Mechanisms in Microwave Absorption
2.4. Microwave Absorption Advantages of HEAs
3. Synthesis Methods for HEAs-Based Microwave Absorbing Materials
3.1. Mechanical Alloying Method
3.2. Melt Spinning Method
3.3. Wet Chemical Method
3.4. Electrospinning Method
3.5. Carbothermal Shock Technology
3.6. Artificial Intelligence (AI)-Assisted Design of HEAs
4. Research Progress on HEA Microwave Absorption Materials
4.1. Powder-Based HEAs for Microwave Absorption
4.2. Core–Shell-Based HEAs for Microwave Absorption
4.3. Phase Structure Engineering in HEAs for Microwave Absorption
4.4. Two-Dimensional and Porous Architecture HEAs for Microwave Absorption
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akdeniz, M.R.; Liu, Y.; Samimi, M.K.; Sun, S.; Rangan, S.; Rappaport, T.S.; Erkip, E. Millimeter Wave Channel Modeling and Cellular Capacity Evaluation. IEEE J. Sel. Area Commun. 2014, 32, 1164–1179. [Google Scholar] [CrossRef]
- Lv, H.; Yang, Z.; Pan, H.; Wu, R. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946. [Google Scholar] [CrossRef]
- Belpomme, D.; Hardell, L.; Belyaev, I.; Burgio, E.; Carpenter, D.O. Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. Environ. Pollut. 2018, 242, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Galeev, A.L. The effects of microwave radiation from mobile telephones on humans and animals. Neurosci. Biobehav. Physiol. 2000, 30, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Breckenkamp, J.; Berg, G.; Blettner, M. Biological effects on human health due to radiofrequency/microwave exposure: A synopsis of cohort studies. Radiat. Environ. Biophys. 2003, 42, 141–154. [Google Scholar] [CrossRef]
- Zuo, D.; Jia, Y.; Xu, J.; Fu, J. High-Performance Microwave Absorption Materials: Theory, Fabrication, and Functionalization. Ind. Eng. Chem. Res. 2023, 62, 14791–14817. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Drew, M.G.B. Wave mechanics of microwave absorption in films: A short review. Opt. Laser Technol. 2024, 178, 111211. [Google Scholar] [CrossRef]
- Wang, T.G.; Gong, J.; Du, H.; Liu, J.G.; Sun, C.; Wen, L.S. Study on electromagnetic wave transmission performances of ultra-thin metallic films. Acta Metall. Sin. 2005, 41, 814–818. [Google Scholar]
- Duan, Y.; Ma, B.; Huang, L.; Ma, X.; Wang, M. Moth-Eye-Inspired Gradient Impedance Microwave Absorption Materials with Multiband Compatible Stealth Characteristic. Adv. Mater. Technol. 2023, 8, 202202172. [Google Scholar] [CrossRef]
- Hou, Z.-L.; Gao, X.; Zhang, J.; Wang, G. A perspective on impedance matching and resonance absorption mechanism for electromagnetic wave absorbing. Carbon 2024, 222, 118935. [Google Scholar] [CrossRef]
- Bao, R.; Peng, X.; Yang, Y.; Xiong, N.; Tao, Y.; Wu, J.; Liu, D. Investigation of Beat Wave Propagation along Lossy Dielectric Bar for Wind Tunnel Microwave Experiments. Appl. Sci. 2023, 13, 619. [Google Scholar] [CrossRef]
- Prihoda, M.; Hoffmann, K. Novel Multimode Planar Absorbing Structure. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 7–9. [Google Scholar] [CrossRef]
- Mashadi; Winatapura, D.S.; Setiawan, J.; Mulyawan, A.; Yunasfi; Adi, W.A. Radar absorbing material of Co1-xCuxFe2O4: Structural, magnetic properties and absorption characteristic. Mater. Chem. Phys. 2025, 339, 130647. [Google Scholar] [CrossRef]
- Tian, H.; Guo, Q.; Liu, S.; Jiao, K.; Ren, X.; Liu, J.; Hao, H.; Yin, J.; Long, J.; Wang, Y.; et al. Robust Single-Walled Carbon Nanotube-Coated Aramid Fibers with Tunable Conductivities for Broadband Radar Absorption in Honeycomb Structures. ACS Nano 2025, 19, 21729–21738. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, R.; Xiong, Z.; Wang, D.; Zhang, Z.; Liu, C.; Zeng, X.; Chen, D.; Che, R.; Nie, X. Metal-Organic Gel Leading to Customized Magnetic-Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances. Nano-Micro Lett. 2024, 16, 42. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.F.; Liu, Z.P.; Ren, J.N.; Fan, X.Y.; Zhou, H.M.; Oleksandr, M.; Zhu, M.W.; Li, W.; Lu, S.W. Fabrication and structural optimization of integrated gradient honeycombs with the conductive/absorbing coatings for ultra-wideband microwave absorption. Funct. Mater. Lett. 2025; accepted. [Google Scholar] [CrossRef]
- Mohapatra, P.P.; Singh, H.K.; Dobbidi, P. Advancements in electromagnetic microwave absorbers: Ferrites and carbonaceous materials. Sci. Adv. Colloid Interface Sci. 2025, 337, 103381. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Wang, Y.; Huang, Y. Advances in conductive filler-integrated hydrogels and derived aerogels: Innovative strategies for electromagnetic interference shielding. Mater. Horiz. 2025, accepted. [Google Scholar] [CrossRef]
- Di, J.; Duan, Y.; Bo, L.; Gu, S.; Pang, H.; Jia, H. The Co/CoNi sequential configurations based on transparent basalt substrates toward excellent microwave absorption. Chem. Eng. J. 2024, 481, 148207. [Google Scholar] [CrossRef]
- Du, Z.; Zhou, C.; Zhang, H.; Zhao, R. Co-Ni doped lignin-derived carbon-based materials with “mosaic” structure for efficient microwave absorption. Mater. Lett. 2025, 386, 138215. [Google Scholar] [CrossRef]
- Zhou, L.; Hu, P.; Bai, M.; Leng, N.; Cai, B.; Peng, H.-L.; Zhao, P.-Y.; Guo, Y.; He, M.; Wang, G.-S.; et al. Harnessing the Electronic Spin States of Single Atoms for Precise Electromagnetic Modulation. Adv. Mater. 2025, 37, 2418321. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Gao, H.; Qin, L.; Yuan, J.-T.; Tang, L.-X.; Wang, Z.-R.; Li, W.-J.; Feng, Z.-H.; Wang, Y.; Xie, A.M. High efficiency electromagnetic waves absorption of ferrite/polypyrrole composite based on precise structural control of rare earth doping. Rare Met. 2025, 44, 5621–5632. [Google Scholar] [CrossRef]
- Guo, Z.; Lan, D.; Jia, Z.; Gao, Z.; Shi, X.; He, M.; Guo, H.; Wu, G.; Yin, P. Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption. Nano-Micro Lett. 2025, 17, 23. [Google Scholar] [CrossRef]
- Guo, Y.; Ruan, K.; Wang, G.; Gu, J. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212. [Google Scholar] [CrossRef]
- Thomassin, J.-M.; Jerome, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R 2013, 74, 211–232. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, Z.; Wan, W.; Gogotsi, Y.; Qiu, J. Ultralight and Highly Compressible Graphene Aerogels. Adv. Mater. 2013, 25, 2219–2223. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Zhang, T.; Chang, H.; Xiao, P.; Chen, H.; Huang, Z.; Chen, Y. Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam. Adv. Mater. 2015, 27, 2049–2053. [Google Scholar] [CrossRef]
- Cao, M.-S.; Cai, Y.-Z.; He, P.; Shu, J.-C.; Cao, W.-Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Wu, N.; Han, M.; Liu, W.; Liu, J.; Zeng, Z. Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding. Nano-Micro Lett. 2023, 15, 240. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Cui, J.; Chen, Z.; Zhang, Z.; Deng, N.; Zeng, Y.; Zhou, Z.; Zhou, Z. Broadband Microwave Absorption of Nb2CTxNanosheets by a One-Step Hydrothermal Method. Inorg. Chem. 2025, 64, 9435–9446. [Google Scholar] [CrossRef]
- Ren, J.; Shi, P.; Zu, X.; Ding, L.; Liu, F.; Wang, Y.; Wu, Y.; Shi, G.; Wu, Y.; Li, L. Challenges and future prospects of the 2D material-based composites for microwave absorption. Nanoscale 2025, 17, 13622–13645. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, Q.; Wang, W.; Gong, P.; Zhang, Y.; Wang, Q.; Han, G.; Zhang, J.; Zhang, W. Synthesis and electromagnetic wave absorption performance of h-BN composites. J. Mater. Sci. Mater. Electron. 2025, 36, 50. [Google Scholar] [CrossRef]
- Wang, F.; Bai, C.; Chen, L.; Yu, Y. Boron nitride nanocomposites for microwave absorption: A review. Mater. Today Nano 2021, 13, 100108. [Google Scholar] [CrossRef]
- Zhong, B.; Cheng, Y.; Wang, M.; Bai, Y.; Huang, X.; Yu, Y.; Wang, H.; Wen, G. Three dimensional hexagonal boron nitride nanosheet/carbon nanotube composites with light weight and enhanced microwave absorption performance. Compos. Part A Appl. Sci. Manuf. 2018, 112, 515–524. [Google Scholar] [CrossRef]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Jin, J.; Zheng, Y.; Hu, J.; Jiang, L.; Jia, L.; Liu, H.; Zhou, H. Surface phosphating modification of FeCoNiMn high-entropy alloys for efficient electromagnetic-wave absorption performances. J. Alloys Compd. 2024, 1005, 175980. [Google Scholar] [CrossRef]
- Rajhi, A.A.; Duhduh, A.A. Rational construction of decorated CoFeCuNiCr HEA and hierarchical mesoporous Cu3P in gradient double-layer nanocomposite configuration with highly efficient microwave absorption performance. J. Alloys Compd. 2025, 1014, 175980. [Google Scholar] [CrossRef]
- Divilov, S.; Eckert, H.; Hicks, D.; Oses, C.; Toher, C.; Friedrich, R.; Esters, M.; Mehl, M.J.; Zettel, A.C.; Lederer, Y.; et al. Disordered enthalpy-entropy descriptor for high-entropy ceramics discovery. Nature 2024, 625, 66–73. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Li, B.; Yuan, Z.; Yang, T.; Liu, Y.; Gao, H.; Xu, L.; Yu, X.; Luo, Q.; et al. Enhanced energy storage in high-entropy ferroelectric polymers. Nat. Mater. 2025, 24, 1066–1073. [Google Scholar] [CrossRef]
- Zeng, Y.; Ouyang, B.; Liu, J.; Byeon, Y.-W.; Cai, Z.; Miara, L.J.; Wang, Y.; Ceder, G. High-entropy mechanism to boost ionic conductivity. Science 2022, 378, 1320–1324. [Google Scholar] [CrossRef]
- Shome, S.; Ray, N. High-Entropy Alloys for Next-Generation Electromagnetic Shielding Applications. Adv. Eng. Mater. 2025, 2500361. [Google Scholar] [CrossRef]
- Tian, J.; Yang, X.; Song, J.; Wei, L.; Tian, Q.; Wang, M.; Wu, S.; Feng, J.; Chen, Z. Research progress and future prospects of high-entropy alloys as microwave-absorbing materials: Review. J. Mater. Sci. Mater. Electron. 2025, 36, 92. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, L.; Wu, H. Exploration of Twin-Modified Grain Boundary Engineering in Metallic Copper Predominated Electromagnetic Wave Absorber. Small 2022, 18, 2203620. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Ding, C.; Liu, Y.; Ma, Y.; Zhang, L.; Ren, X.; Wu, S.; Zhong, B.; Wen, G.; Huang, X. Grain boundary capacitance effect in Iron-based magnetic composites for superior C-band microwave absorption. Chem. Eng. J. 2023, 466, 143162. [Google Scholar] [CrossRef]
- Li, P.; Feng, X.; Yu, H.; Liu, Y.; Huang, J.; Zhou, P.; Wu, S.; Li, H. Enhancing absorption performance of Nd-doped BaFe12O19/MWCNTs/PDMS composites through stress control and defect engineering via ultrasonic cavitation. Carbon 2025, 242, 120462. [Google Scholar] [CrossRef]
- Yao, P.; Qian, Y.; Li, W.; Li, C.; Zuo, J.; Xu, J.; Li, M. Exploration of dielectric and microwave absorption properties of quaternary MAX phase ceramic (Cr2/3Ti1/3)3AlC2. Ceram. Int. 2020, 46, 22919–22926. [Google Scholar] [CrossRef]
- Duan, Y.; Cui, Y.; Zhang, B.; Ma, G.; Wang, T. A novel microwave absorber of FeCoNiCuAl high-entropy alloy powders: Adjusting electromagnetic performance by ball milling time and annealing. J. Alloys Compd. 2019, 773, 194–201. [Google Scholar] [CrossRef]
- Yi, P.; Yao, Z.; Zhou, J.; Wei, B.; Lei, L.; Tan, R.; Fan, H. Facile synthesis of 3D Ni@C nanocomposites derived from two kinds of petal-like Ni-based MOFs towards lightweight and efficient microwave absorbers. Nanoscale 2021, 13, 3119–3135. [Google Scholar] [CrossRef]
- Zhang, M.; Han, C.; Cao, W.-Q.; Cao, M.-S.; Yang, H.-J.; Yuan, J. A Nano-Micro Engineering Nanofiber for Electromagnetic Absorber, Green Shielding and Sensor. Nano-Micro Lett. 2021, 13, 27. [Google Scholar] [CrossRef]
- Duan, Y.; Wen, X.; Zhang, B.; Ma, G.; Wang, T. Optimizing the electromagnetic properties of the FeCoNiAlCrx high entropy alloy powders by composition adjustment and annealing treatment. J. Magn. Magn. Mater. 2020, 497, 165947. [Google Scholar] [CrossRef]
- Zeng, X.; Cheng, X.; Yu, R.; Stucky, G.D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606–623. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; He, L.; Guo, H.; Xia, W.; Sun, B.; Cao, C.; Sha, L.; Zhou, D. MoS2-Based Nanocomposites for Microwave Absorption: A Review. ACS Appl. Nano Mater. 2024, 7, 5761–5775. [Google Scholar] [CrossRef]
- Lv, Z.; Yang, W.; Yao, L.; Chen, X.; Zhou, J.; Li, R.; Mei, H.; Cheng, L.; Zhang, L. Electromagnetic response mechanism of BaTiO3-based metamaterials: Transition between microwave absorption and shielding capacity. Addit. Manuf. 2024, 95, 104558. [Google Scholar] [CrossRef]
- Verma, A.; Gotra, S.; Singh, D.; Das Varma, G.; Dhawan, N. Microwave absorption properties of CI and E-waste based heterogenous mixtures. Ceram. Int. 2024, 50, 20879–20893. [Google Scholar] [CrossRef]
- Li, J.; Zhou, D.; Wang, P.-J.; Du, C.; Liu, W.-F.; Su, J.-Z.; Pang, L.-X.; Cao, M.-S.; Kong, L.-B. Recent progress in two-dimensional materials for microwave absorption applications. Chem. Eng. J. 2021, 425, 131558. [Google Scholar] [CrossRef]
- Zhang, H.; Kuang, K.; Zhang, Y.; Sun, C.; Yuan, T.; Yin, R.; Fan, Z.; Che, R.; Pan, L. Multifunctional Carbon Foam with Nanoscale Chiral Magnetic Heterostructures for Broadband Microwave Absorption in Low Frequency. Nano-Micro Lett. 2025, 17, 133. [Google Scholar] [CrossRef]
- Ghasemi, A.; Liu, X.; Morisako, A. Effect of Additional Elements on the Structural Properties, Magnetic Characteristics and Natural Resonance Frequency of Strontium Ferrite Nanoparticles/Polymer Composite. IEEE Trans. Magn. 2009, 45, 4420–4423. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, H.; Lv, H.; Yang, L.; Liang, G.; Zhang, J.; Lai, Y.; Cheng, H.-W.; Che, R. Recent progress in carbon-based materials and loss mechanisms for electromagnetic wave absorption. Carbon 2024, 219, 118834. [Google Scholar] [CrossRef]
- Yang, H.; Ye, T.; Lin, Y.; Zhu, J.; Wang, F. Microwave absorbing properties of the ferrite composites based on graphene. J. Alloys Compd. 2016, 683, 567–574. [Google Scholar] [CrossRef]
- He, P.; Hou, Z.-L.; Zhang, K.-L.; Li, J.; Yin, K.; Feng, S.; Bi, S. Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J. Mater. Sci. 2017, 52, 8258–8267. [Google Scholar] [CrossRef]
- Hu, R.; Pan, D.; Xu, X.; Xiao, B.; Wang, H. Tunable natural resonances via synergistic effects of two phases in Fex(CoyNi1-y)100-x for multi-band microwave absorption. J. Mater. 2023, 9, 90–98. [Google Scholar]
- Yang, Y.; Xu, C.-L.; Qiao, L.; Li, X.-H.; Li, F.-S. Microwave Magnetic Properties and Natural Resonance of ε-Co Nanoparticles. Chin. Phys. Lett. 2010, 27, 057501. [Google Scholar] [CrossRef]
- Yuan, M.; Weible, A.H.; Azadi, F.; Li, B.; Cui, J.; Lv, H.; Che, R.; Wang, X. Advancements in high-entropy materials for electromagnetic wave absorption. Mater. Horiz. 2025, 12, 1033–1057. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Liu, X.; Yang, T.; Wang, J.; Wang, Y.; Ma, W.; Huang, Y. Synergistic Enhancement of Electromagnetic Wave Absorption and Corrosion Resistance Properties of High Entropy Alloy Through Lattice Distortion Engineering. Adv. Funct. Mater. 2024, 34, 2400220. [Google Scholar] [CrossRef]
- Li, Z.; Duan, Y.; Liu, X.; Pang, H.; Dou, C.; Shi, Y.; Chen, W. Strategy-Induced Strong Exchange Interaction for Enhancing High-Temperature Magnetic Loss in High-Entropy Alloy Powders. Adv. Funct. Mater. 2025, 2507152. [Google Scholar] [CrossRef]
- ul Hassan, S.; Zafar, S.; Hou, L.; Qamar, T.H.; Yang, Y.; Kuang, D.; Wang, S. Compositional engineering nanoparticles and microwave absorption tuning of C-coated high-entropy alloy nanoparticles via vapor-phase synthesis. Sci. China Mater. 2025, 68, 2056–2070. [Google Scholar] [CrossRef]
- He, E.; Zhao, K.; Cheng, Y.; Gao, Q.; Ye, X.; Ye, Y.; Wu, H. Study on the microwave absorption properties of FeCoNiCrMn/PLA 3D printed composites. Mater. Today Commun. 2024, 40, 109961. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Li, Z.; Chu, H.; Pan, Z.; Pan, H.; Zhao, S.; Li, D. Enhanced Interband Transition in FeCoNiAlTi High-Entropy Alloy for Ultrafast Nonlinear Optical Applications. Adv. Opt. Mater. 2024, 12, 2302043. [Google Scholar] [CrossRef]
- Liu, X.; Duan, Y.; Yang, X.; Huang, L.; Gao, M.; Wang, T. Enhancement of magnetic properties in FeCoNiCr0.4Cux high entropy alloys through the cocktail effect for megahertz electromagnetic wave absorption. J. Alloys Compd. 2021, 872, 159602. [Google Scholar] [CrossRef]
- Liu, X.; Duan, Y.; Guo, Y.; Pang, H.; Li, Z.; Sun, X.; Wang, T. Microstructure Design of High-Entropy Alloys Through a Multistage Mechanical Alloying Strategy for Temperature-Stable Megahertz Electromagnetic Absorption. Nano-Micro Lett. 2022, 14, 142. [Google Scholar] [CrossRef]
- Yang, P.; Liu, Y.; Zhao, X.; Cheng, J.; Li, H. Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling. J. Mater. Res. 2016, 31, 2398–2406. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Qin, Q.; Li, W. Synthesis of FeCoNiCuZn single-phase high-entropy alloy by high-frequency electromagnetic-field assisted ball milling. J. Magn. Magn. Mater. 2020, 498, 166151. [Google Scholar]
- Zhou, H.; Jiang, L.; Jia, L.; Tang, Z.; Wang, L.; Wu, A.; Zhang, X. Ultrawide-frequency electromagnetic-wave absorption based on FeCoNiCuxMn high entropy alloys synthesized through swing ball-milling. J. Mater. Chem. 2022, 10, 16696–16705. [Google Scholar] [CrossRef]
- Okumus, M.; Demir, M.E.; Onat, C. Investigation of Solid-Solution Phase Formation in AlCuNiSi Medium Entropy Alloys and its Effect on Microstructural, Thermal, and Microhardness Properties. Adv. Eng. Mater. 2025, 27, 2402843. [Google Scholar] [CrossRef]
- Okumus, M.; Kaya, F. Effect of Ti content and ball-milling time on the microstructural, thermal, and microhardness properties of AlCoCuNiTi high entropy alloys. Mater. Chem. Phys. 2024, 311, 128591. [Google Scholar] [CrossRef]
- Chong, K.; Gao, Y.; Zhang, Z.; Liang, X.; Zou, Y. (ZrTiHfNi)85Nb15 high-entropy amorphous alloy preparation and APS coating wear and corrosion resistance. J. Non-Cryst. Solids 2025, 658, 123536. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, P.; Chen, H.; Ma, D.; Zhang, Z. Effects of adding niobium on the multifunctional properties of [(Fe1/4Co1/4Ni1/4)(Si0.3B0.7)1/4]100-xNbx high entropy metallic glasses. Mater. Lett. 2025, 383, 137975. [Google Scholar] [CrossRef]
- Ziewiec, K.; Blachowski, A.; Prusik, K.; Jasinski, M.; Ziewiec, A.; Wojciechowska, M. Thermal and Structural Analysis of a High-Entropy Cr16Mn16Fe16Co16Ni16P20 Alloy-Influence of Cooling Rates on Phase Transformations. Materials 2024, 17, 5772. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.; Chen, S.; Yang, H.; Wang, C.; Wu, C.; Haleem, Y.A.; Duan, S.; Lu, J.; Ge, B.; et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, J.; Lian, G.; Ren, S.; Du, Y.; Chen, R.; You, W.; Che, R. Nano FeCoNi-based high-entropy alloy for microwave absorbing with high magnetic loss and corrosion resistance. J. Alloys Compd. 2024, 988, 174175. [Google Scholar] [CrossRef]
- Geng, R.; Wei, R.; Wei, X.; Zhang, X.; Li, Y.; Shen, Z.; Wang, Y.; Wang, L.; Yin, S. Self-complementary effect through d-d orbital coupling in high-entropy alloy nanowires boosting electrocatalytic biomass upgrading. Appl. Catal. B-Environ. Energy 2025, 365, 124979. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, H.; Yu, R.; Hong, J.; Zhang, Y.; Xia, Z.; Wang, Y. Unconventional Interconnected High-Entropy Alloy Nanodendrites for Remarkably Efficient C-C Bond Cleavage toward Complete Ethanol Oxidation. Angew. Chem. Int. Ed. 2025, 64, e202420752. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yu, P.; Liu, Z.; Liu, K.; Mu, Z.; Wen, Z.; She, J.; Bai, Y.; Zhang, Q.; Cheng, T.; et al. Off-Equilibrium Hydrothermal Synthesis of High-Entropy Alloy Nanoparticles. J. Am. Chem. Soc. 2025, 147, 9640–9652. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cao, F.; Gao, J.; Lv, G.; Du, N.; Rong, J.; Ruan, C.; Qin, G. Electrospinning synthesis of N-doped graphene encapsulated FeCoNiCrCu high-entropy alloy nanoparticles for efficient nitrobenzene hydrogenation. Appl. Catal. B-Environ. Energy 2025, 377, 125473. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Mu, Y.; Fan, J.; Yang, X.; Yu, C.; Guo, B.; Zeng, G. Mesoporous high-entropy-alloy electrocatalysts via electrospinning for enhanced alkaline water electrolysis. Fuel 2025, 391, 134800. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Q.; Li, S.; Huang, F.; Zhang, H. Joule-Heating-Driven Synthesis of a Honeycomb-Like Porous Carbon Nanofiber/High Entropy Alloy Composite as an Ultralightweight Electromagnetic Wave Absorber. ACS Nano 2024, 18, 5040–5050. [Google Scholar] [CrossRef]
- Huang, Z.; Li, T.; Li, B.; Dong, Q.; Smith, J.; Li, S.; Xu, L.; Wang, G.; Chi, M.; Hu, L. Tailoring Local Chemical Ordering via Elemental Tuning in High-Entropy Alloys. J. Am. Chem. Soc. 2024, 146, 2167–2173. [Google Scholar] [CrossRef]
- Kormanyos, A.; Dong, Q.; Xiao, B.; Li, T.; Savan, A.; Jenewein, K.; Priamushko, T.; Koerner, A.; Boehm, T.; Hutzler, A.; et al. Stability of high-entropy alloys under electrocatalytic conditions. iScience 2023, 26, 107775. [Google Scholar] [CrossRef]
- Moniri, S.; Yang, Y.; Ding, J.; Yuan, Y.; Zhou, J.; Yang, L.; Zhu, F.; Liao, Y.; Yao, Y.; Hu, L.; et al. Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys. Nature 2023, 624, 564–569. [Google Scholar] [CrossRef]
- Yao, Y.; Dong, Q.; Brozena, A.; Luo, J.; Miao, J.; Chi, M.; Wang, C.; Kevrekidis, I.G.; Ren, Z.J.; Greeley, J.; et al. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. Science 2022, 376, 6589. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, Z.; Xie, P.; Lacey, S.D.; Jacob, R.J.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M.; et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Yang, C.; Li, B.; Dong, Q.; Wu, M.; Hwang, S.; Xie, H.; Wang, X.; Wang, G.; Hu, L. High-Entropy Metal Sulfide Nanoparticles Promise High-Performance Oxygen Evolution Reaction. Adv. Energy Mater. 2021, 11, 2002887. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, C.-L.; Li, X.-D.; Pan, L.; Liang, C.-J.; Liu, W.-J. Machine Learning-Based High Entropy Alloys-Algorithms and Workflow: A Review. Acta Metall. Sin. (Engl. Lett.), 2025; accepted. [Google Scholar] [CrossRef]
- Eldabah, N.M.; Pratap, A.; Pandey, A.; Sardana, N.; Sidhu, S.S.; Gepreel, M.A.-H. Design Approaches of High-Entropy Alloys Using Artificial Intelligence: A Review. Adv. Eng. Mater. 2025, 27, 2402504. [Google Scholar] [CrossRef]
- Sun, Y.; Ni, J. Machine Learning Advances in High-Entropy Alloys: A Mini-Review. Entropy 2024, 26, 1119. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, L.; Zhu, S.; Wang, L.; Hu, Y.; Zhang, X.; Wu, A. Excellent electromagnetic-wave absorbing performances and great harsh-environment resistance of FeCoNiCrxMn high entropy alloys. J. Alloys Compd. 2023, 936, 168282. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Z.; Zhou, H.; Jia, L.; Wu, A.; Jiang, L. Enhanced Electromagnetic-Wave Absorbing Performances and Corrosion Resistance via Tuning Ti Contents in FeCoNiCuTix High-Entropy Alloys. ACS Appl. Mater. Interfaces 2022, 14, 12375–12384. [Google Scholar] [CrossRef]
- Duan, Y.; Gao, M.; Pang, H.; Wang, T. FeCoNiMnAl high-entropy alloy: Improving electromagnetic wave absorption properties. J. Mater. Res. 2021, 36, 2107–2117. [Google Scholar] [CrossRef]
- Li, G.; Zhao, H.; Wang, H.; Zhou, Z.; Gao, L.; Su, W.; Dong, C. Enhanced microwave absorption performances of FeCoNiCuCr high entropy alloy by optimizing particle size dehomogenization. J. Alloys Compd. 2023, 941, 168822. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, L.; Jia, L.; Zhu, S.; Wang, L.; Wu, A.; Zhang, X. Interstitial boron-doped FeCoNiCr high entropy alloys with excellent electromagnetic-wave absorption and resistance to harsh environments. J. Alloys Compd. 2023, 959, 170579. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, L.; Zhu, S.; Jia, L.; Wu, A.; Zhang, X. Structure evolution and electromagnetic-wave absorption performances of multifunctional FeCoNiMnVx high entropy alloys with harsh- environment resistance. J. Alloys Compd. 2023, 946, 169402. [Google Scholar] [CrossRef]
- Wu, H.; Lan, D.; Li, B.; Zhang, L.; Fu, Y.; Zhang, Y.; Xing, H. High-entropy alloy@air@Ni-NiO core-shell microspheres for electromagnetic absorption applications. Compos. Part B Eng. 2019, 179, 107524. [Google Scholar] [CrossRef]
- Li, Y.; Liao, Y.; Ji, L.; Hu, C.; Zhang, Z.; Zhang, Z.; Zhao, R.; Rong, H.; Qin, G.; Zhang, X. Quinary High-Entropy-Alloy@Graphite Nanocapsules with Tunable Interfacial Impedance Matching for Optimizing Microwave Absorption. Small 2022, 18, 2107265. [Google Scholar] [CrossRef]
- ul Hassan, S.; Hou, L.; Yang, Y.; Qamar, T.H.; Wang, S. Optimizing the electromagnetic wave attenuation properties of carbon encapsulated FeCoNiCuMnx high entropy alloy nanoparticles. Carbon 2024, 229, 119502. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Liu, X. Enhanced microwave absorption performances of onion-like carbon coated FeNiCoCuTi high-entropy alloys nanocapsules. J. Alloys Compd. 2022, 920, 165960. [Google Scholar] [CrossRef]
- ul Hassan, S.; Yang, Y.; Qamar, T.H.; Shah, M.; Khan, I.; Hou, L.; Wang, S. Core-shell designed high entropy alloy CoNiFeCuV-C nanoparticles for enhanced microwave absorption. Appl. Phys. Lett. 2024, 124, 121902. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, L.; Sun, K.; Lei, Y.; Yang, P.; Liu, H.; Qi, X.; Fan, R. Microwave absorption properties and mechanism analyses of core-shell structured high-entropy oxides coated with PPy. J. Alloys Compd. 2024, 988, 174151. [Google Scholar] [CrossRef]
- Gao, S.; Pang, X.; Mu, S.; Pu, J.; Chen, C. Design and fabrication of laser cladding pomegranate bionic structure FeCoNiCrAl high entropy alloy/AlN ceramic high temperature radar-infrared compatible hidden composite coating. J. Alloys Compd. 2025, 1018, 179166. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, L.; Wu, X. Phase transition enhanced electromagnetic wave absorption in Cs(Pb,Fe,Co,Ni,Mn)Br3-based high-entropy compounds. J. Am. Ceram. Soc. 2024, 107, 3970–3988. [Google Scholar] [CrossRef]
- Dai, G.; You, X.; Deng, R.; Zhang, T.; Ouyang, H.; Song, L. Evaluation and Failure Mechanism of High-Temperature Microwave Absorption for Heterogeneous Phase Enhanced High-Entropy Transition Metal Oxides. Adv. Funct. Mater. 2024, 34, 2308710. [Google Scholar] [CrossRef]
- Duan, Y.; Li, M.; Guo, Y.; Zhu, N.; Pang, H.; Dou, C. Improving electromagnetic wave absorption performance by adjusting the proportion of brittle BCC phase in FeCoNiCr0.4Mnx high-entropy alloys. Mater. Today Phys. 2024, 49, 101596. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, M.; Lin, S.; Song, W.; Liu, H.; Liu, Q.; Zhu, X.; Sun, Y. High-entropy enhanced microwave absorption in MAX phases. J. Appl. Phys. 2023, 133, 235101. [Google Scholar] [CrossRef]
- Zhang, B.; Duan, Y.; Wen, X.; Ma, G.; Wang, T.; Dong, X.; Zhang, H.; Jia, N.; Zeng, Y. FeCoNiSixAl0.4 high entropy alloy powders with dual-phase microstructure: Improving microwave absorbing properties via controlling phase transition. J. Alloys Compd. 2019, 790, 179–188. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, Y.; Sun, L.; Sun, P.; Wei, J.; Gan, Q. A heterojunction of high-entropy alloy and nitrogen-doped carbon nanospheres for efficient electromagnetic wave absorption. J. Mater. Chem. 2025, 13, 7205–7218. [Google Scholar] [CrossRef]
- Hui, S.; Zhou, X.; Zhang, L.; Wu, H. Constructing Multiphase-Induced Interfacial Polarization to Surpass Defect-Induced Polarization in Multielement Sulfide Absorbers. Adv. Sci. 2024, 11, 2307649. [Google Scholar] [CrossRef]
- Gang, S.; He, H.; Long, H.; Wei, Y.; Zhang, W.; Li, X.; Qian, Y.; Luo, Y.; Yang, J. 2D-high entropy alloys embedded in 3D-carbon foam towards light-weight electromagnetic wave absorption and hydrophobic thermal insulation. Nano Energy 2025, 135, 110642. [Google Scholar] [CrossRef]
- Gui, B.; Wang, J.; Zhu, Y.; Zhang, L.; Feng, M.; Wang, J.; Ma, H.; Qu, S. High temperature infrared-radar compatible stealthy metamaterial based on an ultrathin high-entropy alloy. Opt. Express 2022, 30, 45426–45435. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, G.; Wei, Z.; Feng, Y.; Wang, C.; Wang, P.; Zhong, B.; Wu, G. Hierarchically Porous FeCoNiCrAl/CNF Nanocomposites for Enhanced Electromagnetic Wave Absorption. ACS Appl. Nano Mater. 2025, 8, 10242–10247. [Google Scholar] [CrossRef]
- Lan, D.; Zhao, Z.; Gao, Z.; Kou, K.; Wu, G.; Wu, H. Porous high entropy alloys for electromagnetic wave absorption. J. Magn. Magn. Mater. 2020, 512, 167065. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Zhang, Y. Progress in High-Entropy Alloy-Based Microwave Absorbing Materials. Symmetry 2025, 17, 1286. https://doi.org/10.3390/sym17081286
Ma C, Zhang Y. Progress in High-Entropy Alloy-Based Microwave Absorbing Materials. Symmetry. 2025; 17(8):1286. https://doi.org/10.3390/sym17081286
Chicago/Turabian StyleMa, Chengkun, and Yuying Zhang. 2025. "Progress in High-Entropy Alloy-Based Microwave Absorbing Materials" Symmetry 17, no. 8: 1286. https://doi.org/10.3390/sym17081286
APA StyleMa, C., & Zhang, Y. (2025). Progress in High-Entropy Alloy-Based Microwave Absorbing Materials. Symmetry, 17(8), 1286. https://doi.org/10.3390/sym17081286