Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = polar nanoregions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3552 KiB  
Article
The Size Effect on the Phase Transition and Dielectric Properties of Poly(vinylidene Fluoride) Ferroelectric Polymers
by Xiaofang Zhao, Min Yu and Xining Zhang
Polymers 2025, 17(9), 1286; https://doi.org/10.3390/polym17091286 - 7 May 2025
Viewed by 450
Abstract
Multi-scale characterization techniques have been employed to analyze the size effect of microstructure on the phase transition behavior and dielectric properties of poly(vinylidene fluoride) (PVDF) films. The results show that oriented amorphous fraction layers are prone to form in the vicinity of the [...] Read more.
Multi-scale characterization techniques have been employed to analyze the size effect of microstructure on the phase transition behavior and dielectric properties of poly(vinylidene fluoride) (PVDF) films. The results show that oriented amorphous fraction layers are prone to form in the vicinity of the grain boundaries of nano-grained films, while the interfacial polarization and electrostriction effect play a major role. Polar nano-regions are prone to form in micro-grained films, and the maximum fraction of polar crystalline phase and maximal dielectric constant can be achieved due to the balance between the intrinsic effect and extrinsic effect of the material. On the contrary, the extrinsic effect corresponding to interfacial charges greatly influences the phase transition behavior between beta and alpha phases for coarse-grained PVDF films, while the dielectric properties are mainly influenced by the intrinsic electrostatic field and van der Waal interaction of the material. Hence, the dielectric behavior of nano-grained films can be adjusted by the copolymerization technique, that of micro-grained films can be adjusted by both the copolymerization technique and the controlling of microstructure morphology, and that of coarse-grained films can be adjusted by the doping technique. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

12 pages, 4423 KiB  
Article
Enhanced Energy Storage Properties of the Relaxor and Antiferroelectric Crossover Ceramic Enabled by a High Entropy Design
by Yinghao Li, Wei Xiong, Xuefan Zhou, Hang Luo, Ru Guo and Dou Zhang
Materials 2025, 18(9), 1937; https://doi.org/10.3390/ma18091937 - 24 Apr 2025
Viewed by 503
Abstract
In this work, we introduce a high entropy effect in designing a relaxor ferroelectric (RFE)–antiferroelectric (AFE) crossover ceramic by incorporating a high entropy relaxor-like oxide (Pb0.25Ba0.25Sr0.25Ca0.25)TiO3 with antiferroelectric NaNbO3. The results show [...] Read more.
In this work, we introduce a high entropy effect in designing a relaxor ferroelectric (RFE)–antiferroelectric (AFE) crossover ceramic by incorporating a high entropy relaxor-like oxide (Pb0.25Ba0.25Sr0.25Ca0.25)TiO3 with antiferroelectric NaNbO3. The results show that the relaxor ferroelectricity of the system is enhanced with increasing NaNbO3, and when the new composition reaches the highest configurational entropy, stable energy storage properties can be achieved. This is enabled by a high breakdown strength due to the small grain size and stable slim ferroelectric hysteresis loop with high efficiency due to entropy-stabilized short-range ordered polar nanoregions (PNRs). These findings showcase the potential of this strategy for exploiting new compositions of high-performance electrostatic capacitors. Full article
(This article belongs to the Special Issue Advanced Science and Technology of High Entropy Materials)
Show Figures

Figure 1

14 pages, 6304 KiB  
Article
Insight into the Structure Evolution and Performance Optimization of Bi0.5Na0.5TiO3-Based Ceramics for Energy Storage Application
by Qian Wang, Lin Zhang, Rui Li, Hui Yang, Chuanhui Wang, Zhao Xiong and Chunwu Liu
Materials 2025, 18(8), 1801; https://doi.org/10.3390/ma18081801 - 15 Apr 2025
Viewed by 422
Abstract
The excellent temperature stability and high saturation polarization of Bi0.5Na0.5TiO3 (BNT) make it a promising candidate for energy storage capacitors. However, its disadvantages, such as low breakdown strength, high remnant polarization, and a complex sintering process, limit its [...] Read more.
The excellent temperature stability and high saturation polarization of Bi0.5Na0.5TiO3 (BNT) make it a promising candidate for energy storage capacitors. However, its disadvantages, such as low breakdown strength, high remnant polarization, and a complex sintering process, limit its further development. To address this, (1 − x) Bi0.5Na0.5TiO3−x Sr(Mg1/3Nb2/3)O3 ceramics were fabricated, where ion doping was employed to modify the domain structure, reduce the grain size, and improve the energy storage performance. With the increase in dopant concentration, the evolution from long-range-ordered ferroelectric micro-domains into short-range-ordered randomly oriented polar nanoregions (PNRs) was revealed, as demonstrated by XRD and Raman spectroscopy. This resulted in a diffuse phase transition peak and a significant reduction in remnant polarization. However, the saturation polarization also decreased. Finally, the optimal energy storage performance was achieved at a medium dopant concentration (x = 0.10), accompanied by reduced grain size and a dense microstructure. This composition exhibited a discharged energy density of 1.64 J/cm3 at a low electric field of 150 kV/cm, representing a notable improvement over pure BNT, which showed a highly lossy P-E loop and a discharged energy density of only 0.14 J/cm3 at the same electric field. Full article
Show Figures

Figure 1

12 pages, 4379 KiB  
Article
Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties
by Srinivas Pattipaka, Yeseul Lim, Yundong Jeong, Mahesh Peddigari, Yuho Min, Jae Won Jeong, Jongmoon Jang, Sung-Dae Kim and Geon-Tae Hwang
Materials 2024, 17(20), 5044; https://doi.org/10.3390/ma17205044 - 15 Oct 2024
Viewed by 1375
Abstract
Ceramic capacitors have received great attention for use in pulse power systems owing to their ultra-fast charge–discharge rate, good temperature stability, and excellent fatigue resistance. However, the low energy storage density and low breakdown strength (BDS) of ceramic capacitors limit the practical applications [...] Read more.
Ceramic capacitors have received great attention for use in pulse power systems owing to their ultra-fast charge–discharge rate, good temperature stability, and excellent fatigue resistance. However, the low energy storage density and low breakdown strength (BDS) of ceramic capacitors limit the practical applications of energy storage technologies. In this work, we present a series of relaxor ferroelectric ceramics (1−x) [0.94 Bi0.5Na0.5TiO3 –0.06BaTiO3]– x Sr0.7Bi0.2TiO3 (1-x BNT-BT- x SBT; x = 0, 0.20, 0.225, 0.25, 0.275 and 0.30) with improved energy storage performances by combining relaxor and antiferroelectric properties. XRD, Raman spectra, and SEM characterizations of BNT-BT-SBT ceramics revealed a rhombohedral–tetragonal phase, highly dynamic polar nanoregions, and a reduction in grain size with a homogeneous and dense microstructure, respectively. A high dielectric constant of 1654 at 1 kHz and low remnant polarization of 1.39 µC/cm2 were obtained with the addition of SBT for x = 0.275; these are beneficial for improving energy storage performance. The diffuse phase transition of these ceramics displays relaxor behavior, which is improved with SBT and confirmed by modified the Curie–Weiss law. The combining relaxor and antiferroelectric properties with fine grain size by the incorporation of SBT enables an enhanced maximum polarization of a minimized P-E loop, leading to an improved BDS. As a result, a high recoverable energy density Wrec of 1.02 J/cm3 and a high energy efficiency η of 75.98% at 89 kV/cm were achieved for an optimum composition of 0.725 [0.94BNT-0.06BT]-0.275 SBT. These results demonstrate that BNT-based relaxor ferroelectric ceramics are good candidates for next-generation ceramic capacitors and offer a potential strategy for exploiting novel high-performance ceramic materials. Full article
Show Figures

Figure 1

24 pages, 31908 KiB  
Article
Fabrication of Textured 0.685(Na0.5Bi0.5)TiO3-0.065BaTiO3-0.25SrTiO3 Electrostrictive Ceramics by Templated Grain Growth Using NaNbO3 Templates and Characterization of Their Electrical Properties
by Kiran Andleeb, Doan Thanh Trung, John G. Fisher, Tran Thi Huyen Tran, Jong-Sook Lee, Woo-Jin Choi and Wook Jo
Crystals 2024, 14(10), 861; https://doi.org/10.3390/cryst14100861 - 30 Sep 2024
Viewed by 1575
Abstract
Electrostrictive materials based on (Na0.5Bi0.5)TiO3 are promising lead-free candidates for high-precision actuation applications, yet their properties require further improvement. This study aims to enhance the electromechanical properties of a predominantly electrostrictive composition, 0.685(Na0.5Bi0.5)TiO3 [...] Read more.
Electrostrictive materials based on (Na0.5Bi0.5)TiO3 are promising lead-free candidates for high-precision actuation applications, yet their properties require further improvement. This study aims to enhance the electromechanical properties of a predominantly electrostrictive composition, 0.685(Na0.5Bi0.5)TiO3-0.065BaTiO3-0.25SrTiO3, by using templated grain growth. Textured ceramics were prepared with 1~9 wt% NaNbO3 templates. A high Lotgering factor of 95% was achieved with 3 wt% templates and sintering at 1200 °C for 12 h. Polarization and strain hysteresis loops confirmed the ergodic nature of the system at room temperature, with unipolar strain significantly improving from 0.09% for untextured ceramics to 0.23% post-texturing. A maximum normalized strain, Smax/Emax (d33*), of 581 pm/V was achieved at an electric field of 4 kV/mm for textured ceramics. Textured ceramics also showed enhanced performance over untextured ceramics at lower electric fields. The electrostrictive coefficient Q33 increased from 0.017 m4C−2 for untextured ceramics to 0.043 m4C−2 for textured ceramics, accompanied by reduced strain hysteresis, making the textured 0.685(Na0.5Bi0.5)TiO3-0.065BaTiO3-0.25SrTiO3 composition suitable for high-precision actuation applications. Dielectric properties measured between −193 °C and 550 °C distinguished the depolarization, Curie–Weiss and Burns temperatures, and activation energies for polar nanoregion transitions and dc conduction. Dispersive dielectric constants were found to observe the “two” law exhibiting a temperature dependence double the value of the Curie–Weiss constant, with shifts of about 10 °C per frequency decade where the non-dispersive THz limit was identified. Full article
(This article belongs to the Special Issue Advanced Ferroelectric, Piezoelectric and Dielectric Ceramics)
Show Figures

Figure 1

10 pages, 3052 KiB  
Article
Excellent Energy Storage and Photovoltaic Performances in Bi0.45Na0.45Ba0.1TiO3-Based Lead-Free Ferroelectricity Thin Film
by Jianhua Wu, Tiantian Zhang, Xing Gao, Lei Ning, Yanhua Hu, Xiaojie Lou, Yunying Liu, Ningning Sun and Yong Li
Ceramics 2024, 7(3), 1043-1052; https://doi.org/10.3390/ceramics7030068 - 1 Aug 2024
Cited by 2 | Viewed by 1331
Abstract
Inorganic dielectric films have attracted extensive attention in the field of microelectronic and electrical devices because of their wide operating temperature range, small size, and easy integration. Here, we designed and prepared eco-friendly (1-x)Bi0.45Na0.45Ba0.1TiO3-xBi(Mg1/3 [...] Read more.
Inorganic dielectric films have attracted extensive attention in the field of microelectronic and electrical devices because of their wide operating temperature range, small size, and easy integration. Here, we designed and prepared eco-friendly (1-x)Bi0.45Na0.45Ba0.1TiO3-xBi(Mg1/3Nb2/3)O3 multifunctional ferroelectric thin films for energy storage and photovoltaic. The results show that Bi(Mg1/3Nb2/3)O3 can effectively improve the energy storage performance. At x = 0.05, the energy storage density and efficiency are as high as 73.1 J/cm3 and 86.2%, respectively, and can operate stably in a wide temperature range. The breakdown field strength of the thin films increased significantly, and the analysis showed that the addition of Bi(Mg1/3Nb2/3)O3 caused a change in the internal conduction mechanism. At the same time, the generation of polar nanoregions increases the relaxation characteristics, thus improving the energy storage properties. In addition, the thin film material also has excellent ferroelectric photovoltaic properties. This work represents a new design paradigm that can serve as an effective strategy for developing advanced multi-functional materials. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Graphical abstract

30 pages, 10186 KiB  
Article
Critical Insight into Pretransitional Behavior and Dielectric Tunability of Relaxor Ceramics
by Sylwester J. Rzoska, Aleksandra Drozd-Rzoska, Weronika Bulejak, Joanna Łoś, Szymon Starzonek, Mikołaj Szafran and Feng Gao
Materials 2023, 16(24), 7634; https://doi.org/10.3390/ma16247634 - 13 Dec 2023
Cited by 7 | Viewed by 2140
Abstract
This model discussion focuses on links between the unique properties of relaxor ceramics and the basics of Critical Phenomena Physics and Glass Transition Physics. It indicates the significance of uniaxiality for the appearance of mean-field type features near the paraelectric-to-ferroelectric phase transition. Pretransitional [...] Read more.
This model discussion focuses on links between the unique properties of relaxor ceramics and the basics of Critical Phenomena Physics and Glass Transition Physics. It indicates the significance of uniaxiality for the appearance of mean-field type features near the paraelectric-to-ferroelectric phase transition. Pretransitional fluctuations, that are increasing up to the size of a grain and leading to inter-grain, random, local electric fields are responsible for relaxor ceramics characteristics. Their impact yields the pseudospinodal behavior associated with “weakly discontinuous” local phase transitions. The emerging model redefines the meaning of the Burns temperature and polar nanoregions (PNRs). It offers a coherent explanation of “dielectric constant” changes with the “diffused maximum” near the paraelectric-to-ferroelectric transition, the sensitivity to moderate electric fields (tunability), and the “glassy” dynamics. These considerations are challenged by the experimental results of complex dielectric permittivity studies in a Ba0.65Sr0.35TiO3 relaxor ceramic, covering ca. 250 K, from the paraelectric to the “deep” ferroelectric phase. The distortion-sensitive and derivative-based analysis in the paraelectric phase and the surrounding paraelectric-to-ferroelectric transition reveal a preference for the exponential scaling pattern for ε(T) changes. This may suggest that Griffith-phase behavior is associated with mean-field criticality disturbed by random local impacts. The preference for the universalistic “critical & activated” evolution of the primary relaxation time is shown for dynamics. The discussion is supplemented by a coupled energy loss analysis. The electric field-related tunability studies lead to scaling relationships describing their temperature changes. Full article
Show Figures

Figure 1

12 pages, 4017 KiB  
Article
Enhanced Energy Storage Performance and Efficiency in Bi0.5(Na0.8K0.2)0.5TiO3-Bi0.2Sr0.7TiO3 Relaxor Ferroelectric Ceramics via Domain Engineering
by Srinivas Pattipaka, Hyunsu Choi, Yeseul Lim, Kwi-Il Park, Kyeongwoon Chung and Geon-Tae Hwang
Materials 2023, 16(14), 4912; https://doi.org/10.3390/ma16144912 - 9 Jul 2023
Cited by 10 | Viewed by 2790
Abstract
Dielectric materials are highly desired for pulsed power capacitors due to their ultra-fast charge-discharge rate and excellent fatigue behavior. Nevertheless, the low energy storage density caused by the low breakdown strength has been the main challenge for practical applications. Herein, we report the [...] Read more.
Dielectric materials are highly desired for pulsed power capacitors due to their ultra-fast charge-discharge rate and excellent fatigue behavior. Nevertheless, the low energy storage density caused by the low breakdown strength has been the main challenge for practical applications. Herein, we report the electric energy storage properties of (1 − x) Bi0.5(Na0.8K0.2)0.5TiO3-xBi0.2Sr0.7TiO3 (BNKT-BST; x = 0.15–0.50) relaxor ferroelectric ceramics that are enhanced via a domain engineering method. A rhombohedral-tetragonal phase, the formation of highly dynamic PNRs, and a dense microstructure are confirmed from XRD, Raman vibrational spectra, and microscopic investigations. The relative dielectric permittivity (2664 at 1 kHz) and loss factor (0.058) were gradually improved with BST (x = 0.45). The incorporation of BST into BNKT can disturb the long-range ferroelectric order, lowering the dielectric maximum temperature Tm and inducing the formation of highly dynamic polar nano-regions. In addition, the Tm shifts toward a high temperature with frequency and a diffuse phase transition, indicating relaxor ferroelectric characteristics of BNKT-BST ceramics, which is confirmed by the modified Curie-Weiss law. The rhombohedral-tetragonal phase, fine grain size, and lowered Tm with relaxor properties synergistically contribute to a high Pmax and low Pr, improving the breakdown strength with BST and resulting in a high recoverable energy density Wrec of 0.81 J/cm3 and a high energy efficiency η of 86.95% at 90 kV/cm for x = 0.45. Full article
Show Figures

Figure 1

28 pages, 4721 KiB  
Review
Brillouin Scattering Study of Electro-Optic KTa1−xNbxO3 Crystals
by Md. Mijanur Rahaman and Seiji Kojima
Materials 2023, 16(2), 652; https://doi.org/10.3390/ma16020652 - 9 Jan 2023
Cited by 6 | Viewed by 1963
Abstract
The functionality enhancement of ferroelectrics by local polar clusters called polar nanoregions (PNRs) is one of the current interests in materials science. KTa1−xNbxO3 (KTN) with perovskite structure is a well-known electro-optic crystal with a large Kerr effect. [...] Read more.
The functionality enhancement of ferroelectrics by local polar clusters called polar nanoregions (PNRs) is one of the current interests in materials science. KTa1−xNbxO3 (KTN) with perovskite structure is a well-known electro-optic crystal with a large Kerr effect. The existence of PNRs in relaxor-like ferroelectric Nb-rich KTN with homovalent B-site cations is controversial. This paper reviews recent progress in understanding precursor dynamics in Nb-rich KTN crystals studied using Brillouin scattering. The intense central peak (CP) and significant softening of sound velocity are observed above the Curie temperature (TC) due to the polarization fluctuations in PNRs. The effects of Li-doping, defects, and electric fields on the growth and/or creation of PNRs are found using changes in acoustic properties. The electric-field-induced TC, which is shifted to higher values with increases in applied voltage, including critical endpoint (CEP) and field gradient by trapped electrons, are discussed as well. This new knowledge may give new insight into advanced functionality in perovskite ferroelectrics. Full article
(This article belongs to the Special Issue 100th Anniversary of Brillouin Scattering)
Show Figures

Figure 1

24 pages, 6743 KiB  
Review
Anomalies of Brillouin Light Scattering in Selected Perovskite Relaxor Ferroelectric Crystals
by Venkatasubramanian Sivasubramanian, Sarveswaran Ganesamoorthy and Seiji Kojima
Materials 2023, 16(2), 605; https://doi.org/10.3390/ma16020605 - 8 Jan 2023
Cited by 2 | Viewed by 2079
Abstract
Compositionally disordered perovskite compounds have been one of the exotic topics of research during the past several years. Colossal piezoelectric and electrostrictive effects have been observed in disordered perovskite ferroelectric materials. The key ingredient in the physical behavior of disordered perovskites is the [...] Read more.
Compositionally disordered perovskite compounds have been one of the exotic topics of research during the past several years. Colossal piezoelectric and electrostrictive effects have been observed in disordered perovskite ferroelectric materials. The key ingredient in the physical behavior of disordered perovskites is the nucleation and growth of the local dipolar regions called polar nanoregions (PNRs). PNRs begin to nucleate far above the temperature of the dielectric maximum Tm and exhibit varied relaxation behavior with temperature. The evidence for the existence of various stages in the relaxation dynamics of PNRs was revealed through the study of the temperature evolution of optical phonons by Raman scattering. The quasi-static regime of PNRs is characterized by the strong coupling between the local polarization and strain with the local structural phase transition and the critical slowing of the relaxation time. Strong anomalies in the frequency and the width of the acoustic phonons, and emergence of the central peak in the quasi-static region of the relaxation dynamics of PNRs have been observed through Brillouin scattering studies. In this review, we discuss the anomalies observed in Brillouin scattering in selected disordered perovskite ferroelectrics crystals such as Pb(Mg1/3Ta2/3)O3, Pb(Sc1/2Ta1/2)O3, 0.65PIN-0.35PT and Sr0.97Ca0.03TiO3 to understand dynamical behavior of PNRs. Full article
(This article belongs to the Special Issue 100th Anniversary of Brillouin Scattering)
Show Figures

Figure 1

8 pages, 3686 KiB  
Article
Explaining the Frequency Dependence of the DC-Biased Dielectric Response of Polar Nanoregions by Field-Enhanced Correlation Length
by Jianwei Zhang, Xiaoping Du, Jiguang Zhao and Yongsheng Duan
Nanomaterials 2022, 12(8), 1293; https://doi.org/10.3390/nano12081293 - 11 Apr 2022
Cited by 1 | Viewed by 2013
Abstract
Understanding the effects of polar nanoregions (PNRs) dynamics on dielectric properties is a complex question of essential importance for both fundamental studies of relaxor ferroelectrics and their applications to electro-optic devices. The frequency dependence of dielectric response to the bias electric field opens [...] Read more.
Understanding the effects of polar nanoregions (PNRs) dynamics on dielectric properties is a complex question of essential importance for both fundamental studies of relaxor ferroelectrics and their applications to electro-optic devices. The frequency dependence of dielectric response to the bias electric field opens a brand new window for the study of this problem. A novel model from mesoscopic to macroscopic, revealing the relationship between the dielectric permittivity to the applied electric field, temperature, and PNRs, was established based on mean field approximation and the theory of continuum percolation, and not only validates the field-induced percolation and the relaxation time divergency at the freezing temperature, but also predicts the frequency dependence of dielectric response. Unexpectedly, the model reveals the field-enhanced correlation length results in the nonmonotonic behavior of dielectric response, and implies that the increased orientation consistency of dipolar clusters and coercive fields originated from inherent inhomogeneity slow down the relaxation time of PNR reorientation. Considering the multi-scale heterogeneity of PNRs in relaxor, we found that the increased heterogeneity degree reduces the dielectric permittivity, but changes the slope of dielectric response to the bias electric field. Full article
(This article belongs to the Topic Advanced Nanomaterials for Sensing Applications)
Show Figures

Figure 1

11 pages, 2360 KiB  
Article
Raman Response of Quantum Critical Ferroelectric Pb-Doped SrTiO3
by Ekaterina D. Linnik, Alexey S. Mikheykin, Diego Rubi, Vladimir B. Shirokov, Daoud Mezzane, Svitlana V. Kondovych, Igor A. Lukyanchuk and Anna G. Razumnaya
Crystals 2021, 11(12), 1469; https://doi.org/10.3390/cryst11121469 - 26 Nov 2021
Cited by 5 | Viewed by 3274
Abstract
A quantum paraelectric SrTiO3 is a material situated in close proximity to a quantum critical point (QCP) of ferroelectric transition in which the critical temperature to the ferroelectric state is suppressed down to 0 K. However, the understanding of the behavior of [...] Read more.
A quantum paraelectric SrTiO3 is a material situated in close proximity to a quantum critical point (QCP) of ferroelectric transition in which the critical temperature to the ferroelectric state is suppressed down to 0 K. However, the understanding of the behavior of the phase transition in the vicinity of this point remains challenging. Using the concentration x of Pb in solid solution Sr1−xPbxTiO3 (PSTx) as a tuning parameter and applying the combination of Raman and dielectric spectroscopy methods, we approach the QCP in PSTx and study the interplay of classical and quantum phenomena in the region of criticality. We obtain the critical temperature of PSTx and the evolution of the temperature-dependent dynamical properties of the system as a function of x to reveal the mechanism of the transition. We show that the ferroelectric transition occurs gradually through the emergence of the polar nanoregions inside the non-polar tetragonal phase with their further expansion on cooling. We also study the ferroelastic cubic-to-tetragonal structural transition, occurring at higher temperatures, and show that its properties are almost concentration-independent and not affected by the quantum criticality. Full article
(This article belongs to the Special Issue Research and Development of Ferroelectric Material)
Show Figures

Figure 1

11 pages, 2930 KiB  
Article
Measurement of the Quadratic Electro-Optic Coefficient of KTN Crystal with an Electro-Optic Modulation System in the Presence of Polar Nano-Regions
by Lie-Kun Yang, Bing Liu, Pan-Yu Qiao, Hua-Jian Yu, Xu-Ping Wang, Jing Li, Yu-Guo Yang, Yuan-Yuan Zhang, Cheng-Cheng Qiu and Hua-Di Zhang
Crystals 2021, 11(10), 1234; https://doi.org/10.3390/cryst11101234 - 13 Oct 2021
Cited by 4 | Viewed by 2682
Abstract
An electro-optic modulation system was adopted for measuring the quadratic electro-optic coefficient of KTN crystal. Theoretical analysis and experimental results verified the feasibility of this method. The quadratic electro-optic coefficient of a KTN crystal chip, which has a Curie temperature of 0 °C, [...] Read more.
An electro-optic modulation system was adopted for measuring the quadratic electro-optic coefficient of KTN crystal. Theoretical analysis and experimental results verified the feasibility of this method. The quadratic electro-optic coefficient of a KTN crystal chip, which has a Curie temperature of 0 °C, was measured using this system in the temperature range of 2 °C to 18 °C (Tc = 0 °C). The influences of temperature, AC voltage and frequency on the quadratic electro-optic coefficient were discussed. It was found that the relaxation effect of PNRs (polar nano-regions) played an important role in the determination of the quadratic electro-optic coefficient of KTN crystal. Full article
(This article belongs to the Special Issue Crystals for Optoelectronics)
Show Figures

Figure 1

27 pages, 2188 KiB  
Article
Perovskite Crystals: Unique Pseudo-Jahn–Teller Origin of Ferroelectricity, Multiferroicity, Permittivity, Flexoelectricity, and Polar Nanoregions
by Isaac B. Bersuker and Victor Polinger
Condens. Matter 2020, 5(4), 68; https://doi.org/10.3390/condmat5040068 - 2 Nov 2020
Cited by 37 | Viewed by 5152
Abstract
In a semi-review paper, we show that the local pseudo-Jahn–Teller effect (PJTE) in transition metal B ion center of ABO3 perovskite crystals, notably BaTiO3, is the basis of all their main properties. The vibronic coupling between the ground and excited [...] Read more.
In a semi-review paper, we show that the local pseudo-Jahn–Teller effect (PJTE) in transition metal B ion center of ABO3 perovskite crystals, notably BaTiO3, is the basis of all their main properties. The vibronic coupling between the ground and excited electronic states of the local BO6 center results in dipolar distortions, leading to an eight-well adiabatic potential energy surface with local tunneling or over-the-barrier transitions between them. The intercenter interaction between these dipolar dynamic units results in the formation of the temperature-dependent three ferroelectric and one paraelectric phases with order–disorder phase transitions. The local PJTE dipolar distortion is subject to the presence of sufficiently close in energy local electronic states with opposite parity but the same spin multiplicity, thus limiting the electronic structure and spin of the B(dn) ions that can trigger ferroelectricity. This allowed us to formulate the necessary conditions for the transition metal perovskites to possess both ferroelectric and magnetic (multiferroic) properties simultaneously. It clarifies the role of spin in the spontaneous polarization. We also show that the interaction between the independently rotating dipoles in the paraelectric phase may lead to a self-assembly process resulting in polar nanoregions and relaxor properties. Exploring interactions of PJTE ferroelectrics with external perturbations, we revealed a completely novel property—orientational polarization in solids—a phenomenon first noticed by P. Debye in 1912 as a possibility, which was never found till now. The hindered rotation of the local dipole moments and their ordering along an external field is qualitatively similar to the behavior of polar molecules in liquids, thus adding a new dimension to the properties of solids—notably, the perovskite ferroelectrics. We estimated the contribution of the orientational polarization to the permittivity and flexoelectricity of perovskite crystals in different limiting conditions. Full article
Show Figures

Graphical abstract

11 pages, 2535 KiB  
Article
Relaxor Phase Evolution of (Bi0.5Na0.5-xKx)TiO3 Ceramics due to K Ion Substitution and Their Corresponding Electrical Properties
by Sam Yeon Cho, Eun-Young Kim, Sun Yong Kim, Thuy Linh Pham, Jin Kyu Han, Da Som Song, Ha-Kyun Jung, Jong-Sook Lee, Ki-Seok An, Jongsun Lim and Sang Don Bu
Energies 2020, 13(2), 455; https://doi.org/10.3390/en13020455 - 17 Jan 2020
Cited by 19 | Viewed by 3173
Abstract
We synthesized lead-free piezoelectric (Bi0.5Na0.5-xKx)TiO3 (BNKT) ceramics using a conventional solid-state reaction method. We have investigated the structural and electrical properties of the materials with x = 0.05 to 0.40. The X-ray diffraction (XRD) analysis [...] Read more.
We synthesized lead-free piezoelectric (Bi0.5Na0.5-xKx)TiO3 (BNKT) ceramics using a conventional solid-state reaction method. We have investigated the structural and electrical properties of the materials with x = 0.05 to 0.40. The X-ray diffraction (XRD) analysis suggests that the BNKT ceramics show the transition from rhombohedral to tetragonal structure. The ratio of the tetragonal structure increased continuously in accordance with the increasing composition of x. The sample of x = 0.10 showed a similar ratio between the tetragonal and rhombohedral structures. Frequency-dependent dielectric measurements showed a sort of relaxor properties emerged with increasing x composition, this effect may be interpreted in terms of the formation of polar nano-regions (PNRs) in samples. The value of remnant polarization (Pr) decreases rapidly as x increases beyond the point of x = 0.10 from 25.3 μC/cm2 to 5.9 μC/cm2. On the contrary, as for inverse piezoelectric coefficient (d33*), a higher value of d33* (336 pm/V) at x = 0.10, was observed when compared with x = 0.05 (d33* = 51 pm/V). These results can be explained by the formation of PNRs and their variations with the external applied field. We here propose a possible mechanism showing the effects of dipolar defects, which can be resulted from the K ion substitution on (Bi,Na)TiO3 (BNT) ceramics. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

Back to TopTop