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Abstract: Dielectric materials are highly desired for pulsed power capacitors due to their ultra-fast
charge-discharge rate and excellent fatigue behavior. Nevertheless, the low energy storage density
caused by the low breakdown strength has been the main challenge for practical applications. Herein,
we report the electric energy storage properties of (1 − x) Bi0.5(Na0.8K0.2)0.5TiO3-xBi0.2Sr0.7TiO3

(BNKT-BST; x = 0.15–0.50) relaxor ferroelectric ceramics that are enhanced via a domain engineering
method. A rhombohedral-tetragonal phase, the formation of highly dynamic PNRs, and a dense
microstructure are confirmed from XRD, Raman vibrational spectra, and microscopic investigations.
The relative dielectric permittivity (2664 at 1 kHz) and loss factor (0.058) were gradually improved
with BST (x = 0.45). The incorporation of BST into BNKT can disturb the long-range ferroelectric order,
lowering the dielectric maximum temperature Tm and inducing the formation of highly dynamic
polar nano-regions. In addition, the Tm shifts toward a high temperature with frequency and a diffuse
phase transition, indicating relaxor ferroelectric characteristics of BNKT-BST ceramics, which is
confirmed by the modified Curie-Weiss law. The rhombohedral-tetragonal phase, fine grain size, and
lowered Tm with relaxor properties synergistically contribute to a high Pmax and low Pr, improving the
breakdown strength with BST and resulting in a high recoverable energy density Wrec of 0.81 J/cm3

and a high energy efficiency η of 86.95% at 90 kV/cm for x = 0.45.

Keywords: lead-free ceramic capacitors; dielectric; relaxor ferroelectric; domain engineering;
energy storage

1. Introduction

Materials with high energy and power have received extensive attention for high-
power applications, such as microwaves, electromagnetic devices, pulsed power devices,
hybrid electric vehicles, high-frequency inverters, and other energy storage devices [1–3].
In particular, dielectric ceramics are the most promising materials for energy storage ap-
plications due to their super-fast charge-discharge rate and excellent temperature stability
compared to electrochemical energy storage devices (batteries and electrochemical capac-
itors) and dielectric polymers [4–6]. However, the dielectric capacitor’s energy storage
density and efficiency are much lower than those of polymers/batteries due to their low
dielectric breakdown strength (DBS), which restricts their practical application in energy
storage devices.

The recoverable energy density (Wrec) of a dielectric capacitor is governed by the
applied electric field (E) and induced polarization (P), expressed by the following equation,
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usually estimated from the P-E loop, and it is schematically shown in Figure 1a by the
shaded area with cyan color [7–10].

Wrec =
∫ Pmax

Pr
E dP (1)

where Pmax and Pr are the maximum polarization and remnant polarization, respectively
(Figure 1a). Energy efficiency (η) can be estimated by the following equation [8–10].

η =
Wrec

Wrec + Wloss
(2)

where Wloss is the hysteresis loss. According to Equation (1), the energy storage properties
can be significantly enhanced by increasing the difference between Pr and Pmax (∆P). The
breakdown electric field (EBD) is also an essential factor for energy storage; i.e., a higher
DBS is responsible for a large energy storage density.
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Linear dielectrics (LDEs), ferroelectrics (FEs), relaxor ferroelectrics (RFEs), and anti-
ferroelectrics (AFEs) have been widely explored for electrostatic energy storage applica-
tions [11]. LDEs (Al2O3 and SrTiO3) typically show low relative dielectric permittivity and
loss factor, high EBD, and free hysteresis loop with low polarization, resulting in poor Wrec
and high η [11–13]. The AFEs (PbZrO3, PbHfO3, AgNbO3, and NaNbO3) display elevated
polarization and substantial hysteresis because of phase transition between AFE and FE
phases induced by the external field, leading to extremely high Wrec and low η [14–18].
The RFEs (Bi0.5Na0.5TiO3 (BNT), BaTiO3 (BT), and BiFeO3 (BFO)) display moderate Pmax
and small Pr (Figure 1b), arising from widespread PNRs, which generally exhibit highly
dynamic short-range FE orders. However, these PNRs gradually transform into long-range
FE orders with an increasing field, resulting in large Pmax. After eliminating the electric field,
the induced FE orders will easily revert to PNRs, leading to small Pr [19–22]. Hence, the
RFEs usually show high Wrec and η. Therefore, lead-based RFE materials have been widely
investigated for energy storage applications [23,24]. However, lead is hazardous to the
environment and human health due to its toxicity, which has motivated the development
of alternative lead-free materials. In recent years, lead-free perovskite-structured (ABO3)
RFEs, such as BT [25–27], BNT [6,28–31], BFO [32–34], and other lead-free perovskite RFEs,
such as Bi4Ti3O12 [35], Sr1.25Bi2.75Nb1.25Ti1.75O12 [36], and Sr0.6Ba0.4Nb2O6 [37] based ma-
terials with boosted energy storage performance, have been reported for applications in
energy storage devices.

Perovskite-structured BNT-based ceramics exhibit a strong ferroelectric response, since
Bi3+ has a lone pair of electrons (6s2), which strongly hybridizes with the oxygen 2p or-
bital [38]. Furthermore, the formation of highly dynamic polar nano-regions (PNRs) are
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facilitated by local random fields induced by valency differences and compositional inhomo-
geneity [39,40]. Moreover, the relaxor behavior of the material can be improved by adding
another phase with a similar perovskite to form a solid solution or modifying the base
compound with a suitable dopant, which enables slim P-E loops [41]. Sayyed et al. [42] in-
vestigated the local structural deformation and dielectric anomalies near the morphotropic
phase boundary (MPB) of (1 − x) Na0.5Bi0.5TiO3-xSrTiO3 ceramics. The ferroelectric re-
sponse of (1 − x) Na0.5Bi0.5TiO3-SrTiO3-xAgNbO3 ceramics is similar to the antiferroelectric
response and improved energy storage performance [43]. Shi et al. [44] reported that Zr- and
Sm-doped 0.74Na0.5Bi0.5TiO3-0.26SrTiO3 ceramics significantly enhanced energy storage
performance and the DBS. Bi0.2Sr0.7TiO3 (BST) exhibits strong polarization and a wide-
phase transition temperature with diffused dielectric maxima. It was incorporated into
BNT ceramics, suppressing the field-generated ferroelectric phase and achieving a large
Pmax and small Pr [45,46]. Recently, Li et al. reported a synergistic approach to enhance
the energy storage response in BNT-based RFEs by introducing PNRs and lowering the
transition temperature by stabilizing the AFE responses at low temperatures [9].

In this work, we investigate a domain engineering process to improve the energy
storage performance by modifying Bi0.5(Na0.8K0.2)0.5TiO3 (BNKT) RFEs with BST, since
Bi0.5(Na1−xKx)0.5TiO3 exhibits a stronger ferroelectric response with relaxor behavior at
the MPB at x = 0.16–0.2 [47,48] than pure BNT. It is revealed that the addition of BST can
disturb the long-range ferroelectric order and transform the ferroelectric microdomains
of BNKT into highly dynamic PNRs. This results in a macroscopic ferroelectric to relaxor
ferroelectric transition, as schematically illustrated in Figure 1b. The favorable relaxor
ferroelectric state formed by the domain engineering method simultaneously produces a
large Pmax and reduced Pr, which facilitates the enhancement in DBS with the BST, resulting
in high energy density and high efficiency of the BNKT-BST RFEs.

2. Materials and Methods

(1 − x) Bi0.5(Na0.8K0.2)0.5TiO3–xBi0.2Sr0.7TiO3 (BNKT-BST; x = 0.15, 0.30, 0.40, 0.45,
and 0.50) RFE ceramics were fabricated via a conventional solid-state reaction method. To
prepare BNKT and BST, high-purity raw materials of Bi2O3 (Sigma-Aldrich, St. Louis,
MI, USA, 99.9%), Na2CO3 (Sigma-Aldrich, St. Louis, MI, USA, 99.5%), K2CO3 (Sigma-
Aldrich, St. Louis, MI, USA, 99%), TiO2, (Sigma-Aldrich, St. Louis, MI, USA, 99%), and
SrCO3 (Sigma-Aldrich, St. Louis, MI, USA, 98%) were weighed according to the nominal
stoichiometric compositions and then ball-milled using a planetary ball mill for 24 h with
ZrO2 balls in ethanol. After the slurries were dried at 120 ◦C, the mixture of BNKT and BST
powders was calcined at 800 ◦C and 950 ◦C for 2 h and 3 h, respectively, to form a pure
phase of Bi0.5(Na0.8K0.2)0.5TiO3 and Bi0.2Sr0.7TiO3. Both BNKT and BST calcined powders
were mixed and ball-milled for 12h to prepare a BNKT-BST composition. Further, these
powders were granulated with 5 wt.% polyvinyl alcohol (Sigma-Aldrich, 99%, St. Louis,
MI, USA,) and uniaxially pressed into disks, at a pressure of 10 MPa, of 10 mm diameter
and ~0.5 mm thickness, followed by sintering at 1100 ◦C for 3 h. To perform electrical
measurements, a silver paste (ELCOAT, Electroconductives) was coated on both sides of
the sintered disks.

The phase formation of the BNKT-BST ceramic samples was examined using an X-ray
diffractometer (Rigaku, Tokyo, Japan, TTRAX III 18 kW) with monochromatic Cu-Kα

radiation (λ = 1.5406 Å). Raman spectra were recorded using a Raman spectrometer (JOBIN
YVON, Oberursel, Germany, LABRAM HR800) with a laser wavelength of 532.06 nm.
Surface morphology was investigated using a field emission scanning electron microscope
(FESEM) (JEOL, Tokyo, Japan, JSM-7610F). Temperature- and frequency-dependent dielec-
tric properties were measured from room temperature (RT) to 450 ◦C and 1 kHz–1 MHz
using an impedance analyzer (Hewlett Packard, Palo Alto, CA, USA, 4294A). P-E, I-E loops,
and fatigue behavior were measured using a ferroelectric tester (AixACCT Systems GmbH,
Aachen, Germany, TF Analyzer 2000).
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3. Results and Discussion
3.1. Phase Evolution and Microstructure

Figure 2a shows the X-ray diffraction (XRD) patterns of BNKT-BST ceramics (x = 0.15–0.50)
in the 2θ range of 20–70◦. All of the samples revealed a rhombohedral and tetragonal
crystal structure, indicating the diffusion of BST into BNKT and the formation of BNKT-BST
as a homogeneous solid solution. At RT, the BNKT system exhibits a rhombohedral and
tetragonal crystal structure near MPB at x = 0.16–0.2 [47,48]. The formation of MPB in
BNKT-BST ceramics is confirmed by the splitting of the (021)/(111) and (122)/(211) peaks
at 2θ around 40◦ and 58◦, respectively, which is shown in Figure 2b. Similar splitting
and formation of MPB were observed in Bi0.5(Na1–xKx)0.5TiO3]-BiAlO3 [49], Bi0.5Na0.5TiO3-
Bi0.5K0.5TiO3-Bi0.5Li0.5TiO3 [50], and (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-BaTiO3 [51] ceramics.
In addition, both the (021) and (122) peaks shifted slightly toward lower angles with
increasing BST into BNKT, demonstrating enhanced lattice parameters (Figure 2b). The
enhancement in lattice parameters can be attributed to the ionic radius of Sr2+ (1.44 Å),
which is larger than that of Bi3+ (1.36 Å), Na+ (1.39 Å), and K+ (1.38 Å), respectively, at
the A-site [52–54].
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Figure 2c shows the Raman spectra of BNKT-BST along with spectral de-convolution
in the Raman shift of 50–1000 cm−1. The Raman spectra of all compositions are similar to
the previous reports of BNKT-based ceramics [51,55]. The Raman active bands are divided
into four Raman vibration modes, as shown at the top of Figure 2c. (i) The modes below
200 cm−1 are related to the vibration of the A-site (Bi-O, Na-O, K-O, and Sr-O); (ii) the
modes between 200 and 440 cm−1 correspond to the vibrations of B-O (Ti-O); (iii) the
modes between 440 and 700 cm−1 correspond to the vibrations of BO6 (TiO6)-octahedra;
and (iv) the modes above 700 cm−1 are related to the A1 and E (longitudinal optical)
overlapping modes [55]. The modes appearing at 124–172 cm−1 and 768 cm−1 are shifted
to the higher wavenumbers of 128–189 cm−1 and 779 cm−1 with BST, associated with the
A-site and A1 + E vibrations caused by A-site disorder. Such a disorder is induced by the
incorporation of BST (Bi3+ and Sr2+) into the BNKT (Bi3+, Na+, and K+) system [56]. In
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addition, a noticeable change at 250 and 320 cm−1 shifted toward a lower wavenumber
of 233 and 305 cm−1 with BST, which is caused by an increase in the B-site disorder in
the BNKT-BST system [53]. Moreover, these modes are slightly broadened, confirming
the disturbance of the long-range ferroelectric order and the formation of highly dynamic
PNRs, improving the relaxor characteristics of BNKT-BST [44]. This result is consistent
with the XRD and electrical properties presented in Sections 3.2 and 3.3.

Figure 3 shows FESEM images of the BNKT-BST ceramics. All of the ceramics dis-
play rectangular-shaped grains, which are homogeneously distributed. Figure 3d clearly
shows that the x = 0.45 composition exhibits a highly dense microstructure and is more
compact with smaller grains, as compared to the other samples of BNKT-BST (x < 0.45 and
x = 0.50). To prove that all of the samples are homogeneous and highly dense, the density
of sintered BNKT-BST ceramic samples was calculated using the Archimedes principle. It
increased with BST from 5.58 g/cm3 to 5.73 g/cm3 for x = 0.15 to 0.45 and further decreased
(5.54 g/cm3) for x = 0.50. The calculated relative density of BNKT-BST ranged from 94.96%
to 98.17% of the theoretical density [57], confirming that these samples are homogeneous
and highly dense. Further, the average grain size of the BNKT-BST ceramics was esti-
mated using Image-J software (Wayne Rasband and contributors, National Institutes of
Health, USA, ImageJ 1.53t) via the linear intercept method and found to be 1.37 µm for
the x = 0.15 composition; it gradually enhanced to 1.6 µm with the incorporation of BST.
Grain size enhancement is caused by the generation of oxygen vacancies by Sr2+ entering
the perovskite of BNKT and being substituted at the A-site of Bi3+, Na+, and K+ [58]. Pre-
vious reports have investigated that the fine grain size with a homogeneous and dense
microstructure can withstand higher electric fields, leading to high DBS, and improve
energy storage performance [59,60].
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(d) x = 0.45, and (e) x = 0.50. The inset of (a–e) shows the average grain size versus counts (grain size
distribution histogram). (f) The variation in grain size with composition (x).

3.2. Dielectric Properties and Relaxor Behavior

Figure 4a displays the frequency variation in the relative dielectric permittivity (εr)
(solid line) and loss factor (tan δ) (dot line) of BNKT-BST ceramic capacitors, measured
at RT in the range of 1 kHz to 1 MHz. The sample x = 0.15 displayed a higher εr of 1481
and tan δ of 0.231 at 1 kHz than pure BNKT (εr of 1273 and tan δ of 0.047 at 1 kHz), as
reported in our previous report [48]. These εr values gradually enhanced to 2664, and
the tan δ values reduced to 0.058 for the x = 0.45 sample (Figure 4b). The enhancement
in the dielectric properties is attributed to the incorporation of BST into BNKT and the
dense microstructure.
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Figure 4c,d displays the temperature dependence of εr and tan δ of BNKT-BST for
the lower and higher compositions (x = 0.15 and 0.45), measured at various frequencies
(0.1 kHz to 1 MHz). It was observed that the dielectric maximum temperature (Tm) shifted
toward a lower temperature 53 ◦C with the incorporation of BST for x = 0.45 (Figure 4d),
as compared to x = 0.15 (Tm = 345 ◦C) (Figure 4c) and pure BNKT (300 ◦C) [48], and this
is similar to the 0.74 Na0.5Bi0.5TiO3-0.26 SrTiO3 ceramics reported by Shi et al. [44]. The
incorporation of BST into BNKT can disturb the long-range ferroelectric order, resulting in
a lowered Tm. This lower Tm leads to the formation of highly dynamic PNRs due to the
mismatch of the ionic radius at the A-site of BNKT-BST. In addition, the Tm shifted toward
higher temperatures, and dielectric peaks diffused with an increase in frequency. This
frequency dispersion with a diffuse phase transition reveals typical relaxor ferroelectric
characteristics [61,62]. The degree of the relaxor characteristics was determined using the
modified Curie-Weiss law via the following equation [52,63].(

1/
εr

)
−
(

1/
εm

r

)
= (T − Tm)

γ/
C (3)

where εm
r is the maximum relative dielectric permittivity at the maximum temperature Tm,

T is the temperature, γ is the degree of relaxation, and C is the Curie constant. Generally,
the γ value is 1 for normal ferroelectrics and between 1 and 2 for relaxor ferroelectrics [63].
The insets of Figure 4c,d show the log-log plots of (1/εr − 1/εm

r ) vs. (T − Tm) of BNKT-BST
for x = 0.15 and 0.45, measured at 1 MHz. The value of γ slightly increased from 1.80 to
1.83, proving that there is an increase in relaxor behavior with BST from x = 0.15 to 0.45,
leading to an increase in the energy storage performance. This is consistent with Raman’s
results and previous reports [4–6].

3.3. FE-RFE Transformation, Domain Evolution, and Energy Storage Performance

Figure 5 displays the RT bipolar P-E hysteresis loops and current (I)-electric field (E)
curves of BNKT-BST ceramic capacitors measured at various electric fields and 10 Hz. The
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BNKT-BST (x = 0.15) sample exhibits a typical ferroelectric (FE) characteristic, display-
ing high remnant polarization Pr of 19.89 µC/cm2, high maximum polarization Pmax of
31.46 µC/cm2, and a high coercive field Ec of 16.66 kV/cm. These values, listed in Table 1,
gradually decreased, whereas the Emax or EBD increased from 57.42 kV/cm to 90 kV/cm
with the incorporation of BST (x = 0.45), which is favorable for high energy storage density
(Figure 5f). It is evident that the two peaks in the I-E curves (x ≥ 0.30) and slim P-E loops
are attributed to the formation of highly dynamic PNRs, which can commonly be seen
in RFEs [64]. In general, the P-E loops present in normal FEs are due to the macroscopic
domain wall motion, while in RFEs, highly dynamic PNRs exist instead of macrodomains,
resulting in slim P-E loops [19].
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Table 1. List of all values of ferroelectric properties (Pr, Pmax, Ec, and EBD) and energy storage
performance (Wrec and η) of BNKT-BST ceramics for x = 0.15–0.50.

Composition Pr (µC/cm2) Pmax (µC/cm2) Ec (kV/cm) EBD (kV/cm) Wrec (J/cm3) η (%)

x = 0.15 19.89 31.46 16.66 57.42 0.20 18.67

x = 0.30 3.95 32.18 5.59 68.18 0.57 52.02

x = 0.40 0.92 23.91 2.98 74.57 0.73 85.30

x = 0.45 0.78 22.5 1.58 90 0.81 86.95

x = 0.50 0.96 17.79 2.94 71.54 0.56 85.23

Further, the Wrec was calculated via Equation (1) from P-E loops, which are shown in
Figure 6 (cyan shaded area). The Wloss is calculated by the enclosed area of the P-E loops
in the first quadrant (magenta shaded area), and η is calculated by Equation (2); they are
listed in Table 1. The Wrec values gradually increased, the Wloss values decreased with
the substitution of BST, and the composition x = 0.45 displays a high energy density of
0.81 J/cm3 at an EBD of 90 kV/cm and high energy efficiency of 86.95% (Figure 6f). The
improvement in the energy storage performance is achieved via the domain engineering
method by modifying BNKT with BST. It can be understood that the substitution of BST can
transform the ferroelectric microdomains of BNKT into highly dynamic PNRs, resulting in
a macroscopic FE to RFE transition. This domain evolution and transformation of FE to RFE
transition in the present samples is schematically shown in Figure 1b. The highly dynamic
PNRs induced large Pmax and low Pr, which improved the DBS with the incorporation of
BST, resulting in high energy storage density and high energy efficiency of the BNKT-BST
RFEs [65]. The obtained Wrec and η of 0.55 BNKT-0.45 BST are comparable/superior to
other lead-free RFEs and are promising for energy storage capacitors [64–69].
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Electrical fatigue endurance is an important property necessary for energy storage ap-
plications. Therefore, the fatigue behavior of BNKT-BST ceramic capacitors was measured
up to 106 electric cycles at a frequency of 10 Hz under an electric field of 90 kV/cm. Figure 7
shows the unipolar P-E loops of BNK-BST (x = 0.45) and corresponding Wrec (square line)
and η (circle line) values measured after various electric cycles (black, red and blue colour
P-E loops measured at 100 and 103 and 106, respectively, as shown in inset of Figure 7). It is
observed that the slender P-E loops are without significant change, revealing an excellent
fatigue-free response and negligible variations in Wrec and η.
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4. Conclusions

The domain-engineered relaxor ferroelectric BNKT-BST lead-free ceramics were fab-
ricated by a solid-state reaction method and demonstrated structural, microstructural,
dielectric, and ferroelectric properties in detail. XRD, Raman spectra, and FESEM studies
revealed the formation of a rhombohedral-tetragonal phase, highly dynamic PNRs, and
dense microstructure. The dielectric properties were improved with BST, and a high εr
of 2664 and low tan δ of 0.058 at 1 kHz were obtained for the x = 0.45 composition. The
incorporation of BST into BNKT can disturb the long-range ferroelectric order, causing
lowered Tm and the formation of highly dynamic PNRs. In addition, the Tm shifts toward a
high temperature with frequency and diffuse phase transition, indicating relaxor ferroelec-
tric characteristics of BNKT-BST ceramics, and is confirmed via the modified Curie-Weiss
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law. The rhombohedral-tetragonal phase, fine grain size, and lowered Tm with relaxor
properties simultaneously contribute to a high Pmax and low Pr. This improves the DBS
and gives rise to giant energy storage density and high energy efficiency of the BNKT-BST
RFEs, making this material a good candidate for pulse-driving energy storage applications.
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