Enhanced Energy Storage Performance and Efficiency in Bi0.5(Na0.8K0.2)0.5TiO3-Bi0.2Sr0.7TiO3 Relaxor Ferroelectric Ceramics via Domain Engineering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Evolution and Microstructure
3.2. Dielectric Properties and Relaxor Behavior
3.3. FE-RFE Transformation, Domain Evolution, and Energy Storage Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, Y.; Zhang, X.; Li, M.; Lin, Y.; Nan, C.-W. Polymer Nanocomposite Dielectrics for Electrical Energy Storage. Natl. Sci. Rev. 2017, 4, 23–25. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Song, Z.; Hao, H.; Yu, Z.; Cao, M.; Zhang, S.; Lanagan, M.T.; Liu, H. Homogeneous/Inhomogeneous-Structured Dielectrics and Their Energy-Storage Performances. Adv. Mater. 2017, 29, 1601727. [Google Scholar] [CrossRef]
- Palneedi, H.; Peddigari, M.; Hwang, G.-T.; Jeong, D.-Y.; Ryu, J. High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook. Adv. Funct. Mater. 2018, 28, 1803665. [Google Scholar] [CrossRef]
- Li, Q.; Chen, L.; Gadinski, M.R.; Zhang, S.; Zhang, G.; Li, H.U.; Iagodkine, E.; Haque, A.; Chen, L.-Q.; Jackson, T.N.; et al. Flexible High-Temperature Dielectric Materials from Polymer Nanocomposites. Nature 2015, 523, 576–579. [Google Scholar] [CrossRef]
- Kumar, N.; Ionin, A.; Ansell, T.; Kwon, S.; Hackenberger, W.; Cann, D. Multilayer Ceramic Capacitors Based on Relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3 for Temperature Stable and High Energy Density Capacitor Applications. Appl. Phys. Lett. 2015, 106, 252901. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Xu, Z.; Zhang, S. Multilayer Lead-Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency. Adv. Mater. 2018, 30, 1802155. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Zhang, S.; Zhang, Q.M. Polymer-Based Dielectrics with High Energy Storage Density. Annu. Rev. Mater. Res. 2015, 45, 433–458. [Google Scholar] [CrossRef]
- Xie, A.; Zuo, R.; Qiao, Z.; Fu, Z.; Hu, T.; Fei, L. NaNbO3-(Bi0.5 Li0.5 )TiO3 Lead-Free Relaxor Ferroelectric Capacitors with Superior Energy-Storage Performances via Multiple Synergistic Design. Adv. Energy Mater. 2021, 11, 2101378. [Google Scholar] [CrossRef]
- Li, T.; Jiang, X.; Li, J.; Xie, A.; Fu, J.; Zuo, R. Ultrahigh Energy-Storage Performances in Lead-Free Na0.5 Bi0.5 TiO3 -Based Relaxor Antiferroelectric Ceramics through a Synergistic Design Strategy. ACS Appl. Mater. Interfaces 2022, 14, 22263–22269. [Google Scholar] [CrossRef]
- Li, B.; Yan, Z.; Zhou, X.; Qi, H.; Koval, V.; Luo, X.; Luo, H.; Yan, H.; Zhang, D. Achieving Ultrahigh Energy Storage Density of La and Ta Codoped AgNbO3 Ceramics by Optimizing the Field-Induced Phase Transitions. ACS Appl. Mater. Interfaces 2023, 15, 4246–4256. [Google Scholar] [CrossRef]
- Yang, Z.; Du, H.; Jin, L.; Poelman, D. High-Performance Lead-Free Bulk Ceramics for Electrical Energy Storage Applications: Design Strategies and Challenges. J. Mater. Chem A Mater. 2021, 9, 18026–18085. [Google Scholar] [CrossRef]
- Okhay, O.; Vilarinho, P.M.; Tkach, A. Structure, Microstructure, and Dielectric Response of Polycrystalline Sr1-XZnxTiO3 Thin Films. Coatings 2023, 13, 165. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, W.; Guo, X.; Shi, R.; Yang, M.; Li, J. Enhancing the Energy Storage Properties of Ca0.5 Sr0.5 TiO3—Based Lead-Free Linear Dielectric Ceramics with Excellent Stability through Regulating Grain Boundary Defects. J. Mater. Chem. C Mater. 2019, 7, 14384–14393. [Google Scholar] [CrossRef]
- Chauhan, V.; Wang, B.-X.; Ye, Z.-G. Structure, Antiferroelectricity and Energy-Storage Performance of Lead Hafnate in a Wide Temperature Range. Materials 2023, 16, 4144. [Google Scholar] [CrossRef]
- Zhu, L.-F.; Deng, S.; Zhao, L.; Li, G.; Wang, Q.; Li, L.; Yan, Y.; Qi, H.; Zhang, B.-P.; Chen, J.; et al. Heterovalent-Doping-Enabled Atom-Displacement Fluctuation Leads to Ultrahigh Energy-Storage Density in AgNbO3-Based Multilayer Capacitors. Nat. Commun. 2023, 14, 1166. [Google Scholar] [CrossRef] [PubMed]
- Moradi, P.; Taheri-Nassaj, E.; Yourdkhani, A.; Mykhailovych, V.; Diaconu, A.; Rotaru, A. Enhanced Energy Storage Performance in Reaction-Sintered AgNbO3 Antiferroelectric Ceramics. Dalton Trans. 2023, 52, 4462–4474. [Google Scholar] [CrossRef] [PubMed]
- An, K.; Li, G.; Fan, T.; Huang, F.; Wang, W.; Wang, J. Enhanced Energy Storage Performance of AgNbO3:XCeO2 by Synergistic Strategies of Tolerance Factor and Density Regulations. Coatings 2023, 13, 534. [Google Scholar] [CrossRef]
- Zhang, M.-H.; Ding, H.; Egert, S.; Zhao, C.; Villa, L.; Fulanović, L.; Groszewicz, P.B.; Buntkowsky, G.; Kleebe, H.-J.; Albe, K.; et al. Tailoring High-Energy Storage NaNbO3-Based Materials from Antiferroelectric to Relaxor States. Nat. Commun. 2023, 14, 1525. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Kong, X.; Li, F.; Hao, H.; Cheng, Z.; Liu, H.; Li, J.-F.; Zhang, S. Perovskite Lead-Free Dielectrics for Energy Storage Applications. Prog. Mater. Sci. 2019, 102, 72–108. [Google Scholar] [CrossRef]
- Gui, D.-Y.; Ma, X.-Y.; Yuan, H.-D.; Wang, C.-H. Mn- and Yb-Doped BaTiO3-(Na0.5Bi0.5)TiO3 Ferroelectric Relaxor with Low Dielectric Loss. Materials 2023, 16, 2229. [Google Scholar] [CrossRef]
- Shi, H.; Li, K.; Li, F.; Ma, J.; Tu, Y.; Long, M.; Lu, Y.; Gong, W.; Wang, C.; Shan, L. Enhanced Piezoelectricity and Thermal Stability of Electrostrain Performance in BiFeO3-Based Lead-Free Ceramics. Nanomaterials 2023, 13, 942. [Google Scholar] [CrossRef]
- Ji, H.; Wang, D.; Bao, W.; Lu, Z.; Wang, G.; Yang, H.; Mostaed, A.; Li, L.; Feteira, A.; Sun, S.; et al. Ultrahigh Energy Density in Short-Range Tilted NBT-Based Lead-Free Multilayer Ceramic Capacitors by Nanodomain Percolation. Energy Storage Mater. 2021, 38, 113–120. [Google Scholar] [CrossRef]
- Zhang, G.; Zhu, D.; Zhang, X.; Zhang, L.; Yi, J.; Xie, B.; Zeng, Y.; Li, Q.; Wang, Q.; Jiang, S. High-Energy Storage Performance of (Pb0.87 Ba0.1 La0.02 )(Zr0.68 Sn0.24 Ti0.08 )O3 Antiferroelectric Ceramics Fabricated by the Hot-Press Sintering Method. J. Am. Ceram. Soc. 2015, 98, 1175–1181. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Peng, W.; Xu, C.; Dong, X.; Cao, F.; Wang, G. Temperature-Dependent Stability of Energy Storage Properties of Pb0.97 La0.02 (Zr0.58 Sn0.335 Ti0.085 )O3 Antiferroelectric Ceramics for Pulse Power Capacitors. Appl. Phys. Lett 2015, 106, 262901. [Google Scholar] [CrossRef]
- Yuan, Q.; Li, G.; Yao, F.-Z.; Cheng, S.-D.; Wang, Y.; Ma, R.; Mi, S.-B.; Gu, M.; Wang, K.; Li, J.-F.; et al. Simultaneously Achieved Temperature-Insensitive High Energy Density and Efficiency in Domain Engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 Lead-Free Relaxor Ferroelectrics. Nano Energy 2018, 52, 203–210. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, H.; Wu, L.; Chen, L.; Cai, Z.; Li, L.; Wang, X. High-Performance Relaxor Ferroelectric Materials for Energy Storage Applications. Adv. Energy Mater. 2019, 9, 1803048. [Google Scholar] [CrossRef]
- Asbani, B.; Gagou, Y.; Ben Moumen, S.; Dellis, J.-L.; Lahmar, A.; Amjoud, M.; Mezzane, D.; El Marssi, M.; Rozic, B.; Kutnjak, Z. Large Electrocaloric Responsivity and Energy Storage Response in the Lead-Free Ba(GexTi1−x)O3 Ceramics. Materials 2022, 15, 5227. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, Y.; Lv, X.; Wu, J. Ultrahigh Energy-Storage Potential under Low Electric Field in Bismuth Sodium Titanate-Based Perovskite Ferroelectrics. J. Mater. Chem. A Mater. 2018, 6, 9823–9832. [Google Scholar] [CrossRef]
- Qi, H.; Zuo, R. Linear-like Lead-Free Relaxor Antiferroelectric (Bi0.5 Na0.5 )TiO3-NaNbO3 with Giant Energy-Storage Density/Efficiency and Super Stability against Temperature and Frequency. J. Mater. Chem. A Mater. 2019, 7, 3971–3978. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, H.; Yang, H.; Fan, P.; Samart, C.; Takesue, N.; Tan, H. SPS-Prepared High-Entropy (Bi0.2Na0.2Sr0.2Ba0.2Ca0.2)TiO3 Lead-Free Relaxor-Ferroelectric Ceramics with High Energy Storage Density. Crystals 2023, 13, 445. [Google Scholar] [CrossRef]
- Jiang, Y.; Niu, X.; Liang, W.; Jian, X.; Shi, H.; Li, F.; Zhang, Y.; Wang, T.; Gong, W.; Zhao, X.; et al. Enhanced Energy Storage Performance in Na0.5Bi0.5TiO3-Based Relaxor Ferroelectric Ceramics via Compositional Tailoring. Materials 2022, 15, 5881. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, J.; Zhang, X.; Fan, Z.; Yang, F.; Feteira, A.; Zhou, D.; Sinclair, D.C.; Ma, T.; Tan, X.; et al. Ultrahigh Energy Storage Density Lead-Free Multilayers by Controlled Electrical Homogeneity. Energy Env. Sci. 2019, 12, 582–588. [Google Scholar] [CrossRef]
- Pan, H.; Li, F.; Liu, Y.; Zhang, Q.; Wang, M.; Lan, S.; Zheng, Y.; Ma, J.; Gu, L.; Shen, Y.; et al. Ultrahigh-Energy Density Lead-Free Dielectric Films via Polymorphic Nanodomain Design. Science 1979 2019, 365, 578–582. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, B.; Li, Y.; Hall, D.A. Enhancement of Nonlinear Dielectric Properties in BiFeO3-BaTiO3 Ceramics by Nb-Doping. Materials 2022, 15, 2872. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Zeng, M.; Zhang, C.; Li, H.; Yu, H.; Yuan, Y.; Zhang, S. Stabilizing Temperature-capacitance Dependence of (Sr, Pb, Bi)TiO3-Bi4Ti3O12 Solutions for Energy Storage. J. Am. Ceram. Soc. 2019, 102, 4029–4037. [Google Scholar] [CrossRef]
- Wendari, T.P.; Zulhadjri. Emriadi Observation of Relaxor Ferroelectric Behavior and Energy Storage Performances in Sr1.25Bi2.75Nb1.25Ti1.75O12 Aurivillius Ceramic Synthesized by Molten Salt Method. J. Solid State Chem. 2023, 325, 124150. [Google Scholar] [CrossRef]
- Luo, C.; Zheng, X.; Zheng, P.; Du, J.; Niu, Z.; Zhang, K.; Bai, W.; Fan, Q.; Zheng, L.; Zhang, Y. Realizing Excellent Energy Storage Performances in Tetragonal Tungsten Bronze Ceramics via a B-Site Engineering Strategy. J. Alloys Compd. 2023, 933, 167809. [Google Scholar] [CrossRef]
- Li, F.; Hou, X.; Wang, J.; Zeng, H.; Shen, B.; Zhai, J. Structure-Design Strategy of 0–3 Type (Bi0.32Sr0.42Na0.20)TiO3/MgO Composite to Boost Energy Storage Density, Efficiency and Charge-Discharge Performance. J. Eur. Ceram. Soc. 2019, 39, 2889–2898. [Google Scholar] [CrossRef]
- Liu, N.; Liang, R.; Zhou, Z.; Dong, X. Designing Lead-Free Bismuth Ferrite-Based Ceramics Learning from Relaxor Ferroelectric Behavior for Simultaneous High Energy Density and Efficiency under Low Electric Field. J. Mater. Chem. C Mater. 2018, 6, 10211–10217. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, Y.; Liu, N.; Peng, P.; Zhou, M.; Yan, S.; Cao, F.; Dong, X.; Wang, G. Enhanced Energy Storage Properties in Sodium Bismuth Titanate-Based Ceramics for Dielectric Capacitor Applications. J. Mater. Chem. C Mater. 2019, 7, 6222–6230. [Google Scholar] [CrossRef]
- Hu, Q.; Tian, Y.; Zhu, Q.; Bian, J.; Jin, L.; Du, H.; Alikin, D.O.; Shur, V.Y.; Feng, Y.; Xu, Z.; et al. Achieve Ultrahigh Energy Storage Performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 Relaxor Ferroelectric Ceramics via Nano-Scale Polarization Mismatch and Reconstruction. Nano Energy 2020, 67, 104264. [Google Scholar] [CrossRef]
- Sayyed, S.; Acharya, S.A.; Kautkar, P.; Sathe, V. Structural and Dielectric Anomalies near the MPB Region of Na0.5 Bi0.5 TiO3-SrTiO3 Solid Solution. RSC Adv. 2015, 5, 50644–50654. [Google Scholar] [CrossRef]
- Ma, W.; Zhu, Y.; Marwat, M.A.; Fan, P.; Xie, B.; Salamon, D.; Ye, Z.-G.; Zhang, H. Enhanced Energy-Storage Performance with Excellent Stability under Low Electric Fields in BNT-ST Relaxor Ferroelectric Ceramics. J. Mater. Chem. C Mater. 2019, 7, 281–288. [Google Scholar] [CrossRef]
- Shi, L.N.; Wang, Y.G.; Ren, Z.H.; Jain, A.; Jiang, S.S.; Chen, F.G. Significant Improvement in Electrical Characteristics and Energy Storage Performance of NBT-Based Ceramics. Ceram. Int. 2022, 48, 26973–26983. [Google Scholar] [CrossRef]
- Kong, X.; Yang, L.; Cheng, Z.; Zhang, S. Bi-modified SrTiO3-based Ceramics for High-temperature Energy Storage Applications. J. Am. Ceram. Soc. 2020, 103, 1722–1731. [Google Scholar] [CrossRef]
- Wei, T.; Liu, K.; Fan, P.; Lu, D.; Ye, B.; Zhou, C.; Yang, H.; Tan, H.; Salamon, D.; Nan, B.; et al. Novel NaNbO3-Sr0.7Bi0.2TiO3 Lead-Free Dielectric Ceramics with Excellent Energy Storage Properties. Ceram. Int. 2021, 47, 3713–3719. [Google Scholar] [CrossRef]
- Pham, K.-N.; Hussain, A.; Ahn, C.W.; Kim, W.; Jeong, S.J.; Lee, J.-S. Giant Strain in Nb-Doped Bi0.5(Na0.82K0.18)0.5TiO3 Lead-Free Electromechanical Ceramics. Mater. Lett. 2010, 64, 2219–2222. [Google Scholar] [CrossRef]
- Pattipaka, S.; James, A.R.; Dobbidi, P. Dielectric, Piezoelectric and Variable Range Hopping Conductivity Studies of Bi0.5(Na, K)0.5TiO3 Ceramics. J. Electron. Mater. 2018, 47, 3876–3890. [Google Scholar] [CrossRef]
- Ullah, A.; Ahn, C.W.; Hussain, A.; Lee, S.Y.; Kim, J.S.; Kim, I.W. Effect of Potassium Concentration on the Structure and Electrical Properties of Lead-Free Bi0.5 (Na,K)0.5 TiO3-BiAlO3 Piezoelectric Ceramics. J. Alloys Compd. 2011, 509, 3148–3154. [Google Scholar] [CrossRef]
- Sumang, R.; Cann, D.P.; Kumar, N.; Bongkarn, T. Large Strain in Lead-Free Piezoelectric (1 − x − y)Bi0.5Na0.5TiO3-XBi0.5K0.5TiO3-YBi0.5Li0.5TiO3 System near MPB Prepared via the Combustion Technique. Ceram. Int. 2015, 41, S127–S135. [Google Scholar] [CrossRef]
- Fernandez-Benavides, D.; Gutierrez-Perez, A.; Benitez-Castro, A.; Ayala-Ayala, M.; Moreno-Murguia, B.; Muñoz-Saldaña, J. Comparative Study of Ferroelectric and Piezoelectric Properties of BNT-BKT-BT Ceramics near the Phase Transition Zone. Materials 2018, 11, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.K.; McQuade, R.; Gibbons, B.; Mardilovich, P.; Cann, D.P. Electric Field-Induced Strain in Sr(Hf0.5Zr0.5)O3-Modified Bi0.5(Na0.8 K0.2)0.5 TiO3 Piezoelectric Ceramics. J. Appl. Phys. 2020, 127, 074104. [Google Scholar] [CrossRef]
- Pattipaka, S.; James, A.R.; Dobbidi, P. Enhanced Dielectric and Piezoelectric Properties of BNT-KNNG Piezoelectric Ceramics. J. Alloys Compd. 2018, 765, 1195–1208. [Google Scholar] [CrossRef]
- Tong, X.-Y.; Song, M.-W.; Zhou, J.-J.; Wang, K.; Guan, C.-L.; Liu, H.; Fang, J.-Z. Enhanced Energy Storage Properties in Nb-Modified Bi0.5Na0.5TiO3-SrTiO3 Lead-Free Electroceramics. J. Mater. Sci. Mater. Electron. 2019, 30, 5780–5790. [Google Scholar] [CrossRef]
- Jaita, P.; Saenkam, K.; Rujijanagul, G. Improvements in Piezoelectric and Energy Harvesting Properties with a Slight Change in Depolarization Temperature in Modified BNKT Ceramics by a Simple Technique. RSC Adv. 2023, 13, 3743–3758. [Google Scholar] [CrossRef]
- Chu, B.; Hao, J.; Li, P.; Li, Y.; Li, W.; Zheng, L.; Zeng, H. High-Energy Storage Properties over a Broad Temperature Range in La-Modified BNT-Based Lead-Free Ceramics. ACS Appl. Mater. Interfaces 2022, 14, 19683–19696. [Google Scholar] [CrossRef]
- Jaita, P.; Watcharapasorn, A.; Cann, D.P.; Jiansirisomboon, S. Dielectric, Ferroelectric and Electric Field-Induced Strain Behavior of Ba(Ti0.90Sn0.10)O3-Modified Bi0.5(Na0.80K0.20)0.5TiO3 Lead-Free Piezoelectrics. J. Alloys Compd. 2014, 596, 98–106. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, J.; Shen, J.; Yang, X.; Wu, C.; Han, K.; Zhao, Z.; Chen, W. Enhanced Piezoelectric Property and Promoted Depolarization Temperature in Fe Doped Bi1/2(Na0.8K0.2)1/2TiO3 Lead-Free Ceramics. Ceram. Int. 2017, 43, 16395–16402. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, C.; Wu, B.; Wu, J. Multifunctional BaTiO3 -Based Relaxor Ferroelectrics toward Excellent Energy Storage Performance and Electrostrictive Strain Benefiting from Crossover Region. ACS Appl. Mater. Interfaces 2020, 12, 23885–23895. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Z.; Tian, Y.; Wang, G.; Wang, W.; Yang, M.; Wang, X.; Zhang, F.; Pu, Y. Progress, Outlook, and Challenges in Lead-Free Energy-Storage Ferroelectrics. Adv. Electron. Mater 2020, 6, 1900698. [Google Scholar] [CrossRef]
- Shvartsman, V.V.; Lupascu, D.C. Lead-Free Relaxor Ferroelectrics. J. Am. Ceram. Soc. 2012, 95, 1–26. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Y.; Han, G.; Gao, J.; Yu, L.; Tang, M.; Li, Y.; Hu, J.; Jin, L.; Yan, Y. Enhanced Electrical Properties and Energy Storage Performances of NBT-ST Pb-Free Ceramics through Glass Modification. J. Alloys Compd. 2020, 836, 154961. [Google Scholar] [CrossRef]
- Uchino, K.; Nomura, S.; Cross, L.E.; Jang, S.J.; Newnham, R.E. Electrostrictive Effect in Lead Magnesium Niobate Single Crystals. J. Appl. Phys. 1980, 51, 1142–1145. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Yadav, A.K.; Fan, H. Large Electrostrictive Effect and Energy Storage Density in MnCO3 Modified Na0.325Bi0.395Sr0.245□0.035TiO3 Lead-Free Ceramics. Ceram. Int. 2020, 46, 3374–3381. [Google Scholar] [CrossRef]
- Wu, J.; Mahajan, A.; Riekehr, L.; Zhang, H.; Yang, B.; Meng, N.; Zhang, Z.; Yan, H. Perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3 Ceramics with Polar Nano Regions for High Power Energy Storage. Nano Energy 2018, 50, 723–732. [Google Scholar] [CrossRef]
- Yan, Y.; Zeng, X.; Deng, T.; Chen, F.; Yang, L.; He, Z.; Jin, L.; Liu, G. Rheological, Mechanical, and Electrical Properties of Sr0.7 Bi0.2 TiO3 Modified BaTiO3 Ceramic and Its Composites. J. Am. Ceram. Soc. 2023, 106, 3052–3065. [Google Scholar] [CrossRef]
- Nayak, S.; Venkateshwarlu, S.; Budisuharto, A.S.; Jørgensen, M.R.V.; Borkiewicz, O.; Beyer, K.A.; Pramanick, A. Effect of A-site Substitutions on Energy Storage Properties of BaTiO3-BiScO3 Weakly Coupled Relaxor Ferroelectrics. J. Am. Ceram. Soc. 2019, 102, 5919–5933. [Google Scholar] [CrossRef]
- Cao, W.P.; Li, W.L.; Dai, X.F.; Zhang, T.D.; Sheng, J.; Hou, Y.F.; Fei, W.D. Large Electrocaloric Response and High Energy-Storage Properties over a Broad Temperature Range in Lead-Free NBT-ST Ceramics. J. Eur. Ceram. Soc. 2016, 36, 593–600. [Google Scholar] [CrossRef]
- Jabeen, N.; Hussain, A.; Qaiser, M.A.; Ali, J.; Rehman, A.; Sfina, N.; Ali, G.A.; Tirth, V. Enhanced Energy Storage Performance by Relaxor Highly Entropic (Ba0.2Na0.2K0.2La0.2Bi0.2)TiO3 and (Ba0.2Na0.2K0.2Mg0.2Bi0.2)TiO3 Ferroelectric Ceramics. Appl. Sci. 2022, 12, 12933. [Google Scholar] [CrossRef]
Composition | Pr (µC/cm2) | Pmax (µC/cm2) | Ec (kV/cm) | EBD (kV/cm) | Wrec (J/cm3) | η (%) |
---|---|---|---|---|---|---|
x = 0.15 | 19.89 | 31.46 | 16.66 | 57.42 | 0.20 | 18.67 |
x = 0.30 | 3.95 | 32.18 | 5.59 | 68.18 | 0.57 | 52.02 |
x = 0.40 | 0.92 | 23.91 | 2.98 | 74.57 | 0.73 | 85.30 |
x = 0.45 | 0.78 | 22.5 | 1.58 | 90 | 0.81 | 86.95 |
x = 0.50 | 0.96 | 17.79 | 2.94 | 71.54 | 0.56 | 85.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pattipaka, S.; Choi, H.; Lim, Y.; Park, K.-I.; Chung, K.; Hwang, G.-T. Enhanced Energy Storage Performance and Efficiency in Bi0.5(Na0.8K0.2)0.5TiO3-Bi0.2Sr0.7TiO3 Relaxor Ferroelectric Ceramics via Domain Engineering. Materials 2023, 16, 4912. https://doi.org/10.3390/ma16144912
Pattipaka S, Choi H, Lim Y, Park K-I, Chung K, Hwang G-T. Enhanced Energy Storage Performance and Efficiency in Bi0.5(Na0.8K0.2)0.5TiO3-Bi0.2Sr0.7TiO3 Relaxor Ferroelectric Ceramics via Domain Engineering. Materials. 2023; 16(14):4912. https://doi.org/10.3390/ma16144912
Chicago/Turabian StylePattipaka, Srinivas, Hyunsu Choi, Yeseul Lim, Kwi-Il Park, Kyeongwoon Chung, and Geon-Tae Hwang. 2023. "Enhanced Energy Storage Performance and Efficiency in Bi0.5(Na0.8K0.2)0.5TiO3-Bi0.2Sr0.7TiO3 Relaxor Ferroelectric Ceramics via Domain Engineering" Materials 16, no. 14: 4912. https://doi.org/10.3390/ma16144912
APA StylePattipaka, S., Choi, H., Lim, Y., Park, K.-I., Chung, K., & Hwang, G.-T. (2023). Enhanced Energy Storage Performance and Efficiency in Bi0.5(Na0.8K0.2)0.5TiO3-Bi0.2Sr0.7TiO3 Relaxor Ferroelectric Ceramics via Domain Engineering. Materials, 16(14), 4912. https://doi.org/10.3390/ma16144912