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Abstract: An electro-optic modulation system was adopted for measuring the quadratic electro-optic
coefficient of KTN crystal. Theoretical analysis and experimental results verified the feasibility of this
method. The quadratic electro-optic coefficient of a KTN crystal chip, which has a Curie temperature
of 0 ◦C, was measured using this system in the temperature range of 2 ◦C to 18 ◦C (Tc = 0 ◦C). The
influences of temperature, AC voltage and frequency on the quadratic electro-optic coefficient were
discussed. It was found that the relaxation effect of PNRs (polar nano-regions) played an important
role in the determination of the quadratic electro-optic coefficient of KTN crystal.

Keywords: KTN single crystal; quadratic electro-optic coefficient; modulation; polar nano-regions

1. Introduction

Potassium tantalum niobate has the largest known quadratic electro-optic coefficient
in the paraelectric phase [1], which is about 70 times larger than that of lithium niobate [2].
KTN crystal has obvious advantages when it is used as an electro-optic deflector [3] or
modulator [4]. The KTN-based optic devices have broad application prospects in the fields
of optic communications, biomedical imaging, and radar scanning [5,6]. As early as 2003,
high-quality large KTN single crystal with a volume of over 30 cm3 has been grown using
the top seeded solution growth method. However, the incongruent melting behavior [7] of
KTN crystal growth causes the problem of growth-induced striation, which is generally
difficult to overcome. The quadratic electro-optic coefficient of a KTN crystals is usually
calculated by measuring its dielectric constant [8], but the obtained result by this method
is the average quadratic electro-optic coefficient of the KTN crystal. For the reason of
composition inhomogeneity, we cannot accurately measure the quadratic electro-optic
coefficient at a certain point by its dielectric constant. By contrast, an optic method is
preferred as the more suitable method for the accurate measurement of the quadratic EO
coefficient [9]. In this paper, an electro-optic modulation system was adopted for measuring
the quadratic electro-optic coefficient of KTN crystal. The influence of temperature, voltage,
and frequency on the measurement of the quadratic electro-optic coefficient was obtained.

It is generally believed that the KTN crystal undergoes a phase transition from the
paraelectric phase to the ferroelectric phase as the temperature decreases. It is in the
paraelectric phase above the Curie temperature, Tc, and in the ferroelectric phase below the
Curie temperature. However, recent studies show that the cubic-tetragonal phase transition
in KTN is a relaxor-like phase transition [10]. There exists a Burns temperature (TB) above
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the Curie point in the cubic phase of KTN. When Tc < T < TB, there are a large number
of nano-polar microdomains inside the crystal [11], which makes the paraelectric phase
KTN crystal exhibit certain relaxation characteristics. These relaxor-like behaviors also
have an impact on the accurate measurement of the quadratic electro-optic coefficient of
KTN crystal. This problem will also be discussed in this paper.

2. Theoretical Analysis

When a KTN crystal in its cubic phase is placed between a pair of crossed polarizers,
the output light intensity will be modulated by the applied electric field on the crystal.
Figure 1 is a typical modulation system with a polarizer-sample-analyzer arrangement.
The axis of the polarizer is at 45◦ of natural birefringence axes of the sample. The output
light intensity, I, from the analyzer can be expressed as

I = I0 sin θ2 ∆ϕ+ϕ0

2
=

I0

2

[
1− sin

(π
2
− ∆ϕ−ϕ0

)]
(1)

where I0 is the maximum light intensity, and ϕ0 is the phase difference caused by natural
birefringence [11]. ∆ϕ is the phase difference caused by the applied voltage under the
electro-optic effect, which can be obtained from the following equation [12]:

∆ϕ =
2π
λ

∆nl =
n3

0(s11 − s12)πl

λd2 V2 (2)

where λ is the laser wavelength, ∆n is the refractive index change, n0 is the refractive index
of the crystal when no electric field is applied, d is the distance between the electrodes, l
is the crystal length in the light direction, s11 − s12 (s11, s12, are the abbreviations for the
tensor describing the Kerr effect) is the effective quadratic electro-optic coefficient, and V is
the applied voltage.
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Figure 1. Schematic arrangement of an electro-optic modulation system.

According to Equations (1) and (2), the transmittance curve of a typical KTN modulator
is shown in Figure 2. We choose point M′0 as the operating point, which is corresponding
to the full transmittance at half maximum. The corresponding dc bias voltage at this point
is labeled as V0.
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In Formula (1), when π
2 −∆ϕ−ϕ0 approaches zero, that is, the modulator is operated

very close to point M′0, the small-angle approximation [13] can be used and Equation (1)
can be approximately rewritten as

I ≈ I0

2

(
1− π

2
+ ∆ϕ+ϕ0

)
. (3)

In practice, the DC bias voltage V0 is used to adjust the work point to M′0. Meanwhile,
a sinusoidal modulating voltage with an amplitude Um and a frequency ωm is applied
onto the sample at point M′0. According to Equations (2) and (3), the output light intensity
change ∆I caused by the dynamic voltage can be expressed.

∆I =
I0

2
n3

0(s11 − s12)πl

λd2

(
U2

m + 2V0Um

)
(4)

where Um is the AC modulation voltage, and V0 is the DC bias voltage. The effective
quadratic electro-optic coefficient s11 − s12 can be given by

s11 − s12 =
λd2

π ln3
0

(
U2

m + 2V0Um

) ∆I
I0/2

(5)

where the maximum light intensity I0, the dc bias voltage V0 at the half-maximum trans-
mittance point, and output light intensity change ∆I caused by the dynamic voltage can
be measured in the experiment. Hence, the effective quadratic electro-optic coefficient
s11 − s12 can be obtained using the electro-optic modulation system in Figure 1.

3. Results and Discussion

The high-quality KTa0.65Nb0.35O3 single crystal was grown from the mixed solution
of KTaO3 (KT) and KNbO3 (KN) with a top-seeded solution growth method. We confine
the three lengths of the block of 4 mm, 6 mm, and 2.5 mm to the three crystal axes x, y,
and z, respectively. Two parallel light transmission surfaces were polished. Another two
parallel surfaces normal to the direction of the applied electric field were sputtered with
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platinum electrode. The relative dielectric constant of the KTN crystal chip as a function of
temperature could be obtained by a LCR digital bridge (HIOKI 3532-50) which is shown in
Figure 3. Through the dielectric thermograph data, we get that the Curie temperature of
this KTN crystal chip is 0 ◦C.
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proportional to the maximum output light intensity. When AC voltage with amplitude 

Figure 3. Relative permittivity.

The experiment arrangement of the electro-optic modulation system for the quadratic
electro-optic coefficient of KTN crystal is shown in Figure 4. The temperature of the KTN
crystal chip was controlled by a TEC temperature controller with an accuracy of ±0.1 ◦C.
In order to ensure the temperature control accuracy and avoid water condensation on
the crystal surface, the KTN sample and the TEC module were placed in a vacuum box.
The light source is a linearly polarized He-Ne laser with λ = 632.8 nm. KTN crystal is
placed between the crossed polarizer (P) and analyzer (A). The polarizing direction of the
polarizer is set at 45◦ to the optic axis of the crystal. The voltage signal generated by the
signal generator (RIGOL DG4062) is applied to the crystal through a high voltage amplifier
(PINTECH HA-800). When the laser beam passes through the iris diaphragm and the
ND filter, the spot diameter and the beam intensity are both reduced. Then, the beam is
modulated by the polarizer-sample-analyzer system and the output light is converted into
a voltage signal by the photodetector.
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When a variable DC voltage is applied to the crystal, the output voltage signal from the
detector, as well as the voltage applied to the crystal, was recorded by the data acquisition
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multimeter (Keithley DAQ6510). A typical light transmittance curve is shown in Figure 5.
We can determine the voltage V0 applied on the crystal at the operating point M′0. We can
also determine the maximum voltage output v(p-p) from the detector, which is proportional
to the maximum output light intensity. When AC voltage with amplitude Um is applied at
the operating point M′0, the amplitude of the output voltage signal vout can be measured
by a lock-in amplifier (Stanford SR830), and what we need to pay attention to is that the
receiving frequency of the lock-in amplifier is 2ωm. Finally, we get the equation

∆I
I0/2

=
vout

v(p−p)/2
. (6)
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From Equations (6) and (7), the quadratic electro-optic coefficient can be calculated
using the following formula:

s11 − s12 =
λd2

π ln3
0

(
U2

m + 2V0Um

) vout

v(p−p)/2
. (7)

Figure 6 shows the quadratic electro-optic coefficients of points A, B, and C at different
temperatures. In the temperature range of 2–18 ◦C, the quadratic electro-optic coefficients
of the three points all show a similar trend, and the quadratic electro-optic coefficients all
increase rapidly as the temperature gets closer to the phase transition point. As mentioned
earlier, in the TB interval above the Curie temperature, there are polar nano-domains in the
crystal [11]. So, as the temperature decreases, the size of the polar nano-region becomes
larger and larger orderliness is also enhanced. Hence the electric susceptibility increases
and the electro-optic effect is correspondingly enhanced. When the crystal is above the
Curie temperature, its relative permittivity can be described by the Curie-Weiss law [14]:

1
εr
− 1
εm

=
(T− Tm)γ

C′ (8)

where εr is the relative permittivity, εm represents the maximum value of the relative
permittivity, Tm represents the maximum characteristic temperature corresponding to the
maximum value of the permittivity, which is approximately equal to the Curie temperature,
TC, C′ is the corrected Curie-Weiss constant, and γ is the relaxation factor that quantifies
the degree of dispersion of ferroelectric materials.
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The relationship between the relative permittivity ε and the effective quadratic electro-
optic coefficient is [15]

s11 − s12 = (g11 − g12)ε
2
0(εr − 1)2 ≈ (g11 − g12)ε

2
0ε

2
r (9)

where g11 and g12 are the quantifying nonlinearity of the medium, the change in the
refractive index with the optical intensity. According to reports, the coefficients of KTN are
g11 = 0.136 m4/C2 and g12 = −0.038 m4/C2 [16]. Therefore, we can know that the relative
permittivity εr of the crystal will continue to increase as the temperature decreases, and the
quadratic electro-optic coefficient will also increase.

In Figure 6, we also noticed that the quadratic electro-optic coefficients at different
positions of a certain crystal are significantly different. This is due to the fact that the
incongruent melting behavior of KTN crystal growth causes the growth-induced striation,
which makes the Curie temperature at these three points slightly different, so the electrical
susceptibility and dielectric constant of each point at the same temperature are different.
Being able to accurately measure the quadratic electro-optic coefficients at different points
is also one of the advantages of this system.

As mentioned earlier, the DC and AC superimposition method was used in the
experiment. DC is used to control the operating point to I0/2, and the amplitude of the
AC voltage is variable under the condition of meeting the small-angle approximation. As
shown in Figure 7, we record the quadratic electro-optic coefficients under different AC
voltages. We found that the quadratic electro-optic coefficient of the crystal will decrease
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rapidly and they tend to be stable with the increase of modulation voltage. The influence
of AC voltage on s11 − s12 is more significant when the temperature is close to the crystal
Phase transition point. We believe that the increased AC electric field suppresses the
reorientation of PNRs which contributes the electro-optic effect. With the increment of the
modulation voltage, the inhibition effect is saturated and the electro-optic effect tends to
be stable.
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We did not measure complete data in the range from 2 ◦C to 5 ◦C degrees Celsius,
since we found that there is a linear electro-optical effect in this range. For a relaxor KTN
crystal near the Curie temperature, the change of refractive index originates from intrinsic
contribution (polarizable lattice) and extrinsic contribution (reorientation and vibration of
PNRs). Therefore, the macroscopic polarization P is composed of pPNR contributed by PNR
and linear susceptibility χp due to the paraelectric host, which can be expressed as [17]

P = pPNR + pχp
= ρp0 tan h

[
p0|E|

kB(T− T0)

]
u + ε0χpE . (10)

Following the quadratic electro-optic effect, the resulting refractive change is

∆n = −
(

1
2

)
n3(g11 − g12)ε

2
0χ

2
pE2 − n3(g11 − g12)ρp0 tan h

[
p0|E|

kB(T−T0)

]
ε0χp|E|

−
(

1
2

)
n3(g11 − g12)ρ

2p2
0 tan h2

[
p0|E|

kB(T−T0)

] (11)

where T0 is the freezing temperature, u is the field unit vector, ρ is the density of clusters
with dipole moment p0, kB is the Boltzmann’s constant the first term indicates the quadratic
dependence on the electric field that can be neglected due to the small χp contributed by the
by paraelectric host, the second term of the above formula implies the linear relationship be-
tween the refractive index change and the electric field when tan h

[
p0|E|/kB(T− T0)

]
= 1,

and the third term suggests the quadratic dependence under the low electric field. There-
fore, the increased electric field can induce the linear electro-optic effect.

As we know, there is a double frequency relationship between the applied AC voltage
and the modulated light intensity when a quadratic electro-optic effect plays a role, so we
can judge whether it is a linear electro-optic effect or a quadratic electro-optic effect by
oscilloscope traces of the signal of modulation voltage and detector response. Under the
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low electric field, the optical signal indicates that the quadratic effect plays a leading role.
With the increment of the electric field, linear and quadratic effects coexist. The electric
field further increases, the linear effect is dominated.

The frequency of the AC voltage applied on the crystal chip is also a variable in the
measurement procedure. As shown in Figure 8, we have recorded the dependence of
quadratic electro-optic coefficient with modulation frequency in the temperature range of
2 ◦C < T − Tc < 18 ◦C with the increase of electric field frequency, the quadratic electro-
optic coefficient gradually decreases and finally tends to a stable value. This is due to the
inevitable composition inhomogeneity of the KTN crystals, which makes it impossible
for the size of the PNRs to be completely consistent. In an AC electric field, the dielectric
permittivity will increase, which is attributed to the PNRs’ reorientation activated [18]. The
quadratic electro-optic effect is stronger at a low frequency. However, with the increase
of the frequency of the electric field, the large-size PNRs can no longer be reoriented with
the electric field. Therefore, its contribution to the quadratic electro-optic effect remains
unchanged, resulting in the decrease of the quadratic electro-optic coefficient. This is more
pronounced near the Curie temperature. In addition, PNRs are polar at the nanoscale and
can behave as nanoresonators [19]. When the crystal is close to the Curie temperature, a
larger size PNR is often formed. The quadratic electro-optic effect is very strong, which is
due to the stronger resonance phenomenon at low frequencies. However, as the frequency
of the electric field increases, the resonance phenomenon weakens, and the quadratic
electro-optic coefficient attenuates. The PNRs become smaller in size when the KTN
crystals are far from the Curie temperature. Therefore, the resonance phenomenon is very
weak at each frequency, and the quadratic electro-optic coefficient no longer attenuates
even if the frequency increases.
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Through the previous experiments, it can be known that temperature, AC modulation
voltage, and frequency have a great influence on the quadratic electro-optic coefficient, and
it is more significant when it is close to the Curie temperature. In the previous experiment,
we did not know whether the position of the operating point has changed, so we decided
to test the stability of the operating point position. As shown in Figure 9, we recorded
multiple complete transmittance curve waveforms at T = 5 ◦C. We can see that the curves
basically coincide after two or three voltage cycles, which indicates that the PNRs in the
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crystal reached an equilibrium state. When the inside of the crystal is polarized, the PNR
also reaches an equilibrium state. The polarization characteristics in KTN crystals mainly
come from the displacement of niobium ions [20]. The microscopic local symmetry of KTN
crystals is broken when voltage is applied to the crystal, and then the dipoles on the lattice
scale appear. As the applied voltage increases, the random movement of polarization of
dipoles in the crystal decreases, and they may group to form larger-sized PNRs [20,21].
This causes the refractive index of different areas inside the crystal to become different [22].
Random scattering occurs when incident light enters, resulting in crystal depolarization
and attenuation of the modulation depth. This polarization gradually saturates as the
voltage continues to be applied. The modulation curve no longer changes, since the state
of PNRs becomes stable. This also shows that the position of the operating point has not
changed during the experiment.
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The above problems will be encountered in practical applications, and we also need
to notice them. The study of these influencing factors allows us to further understand the
change law of the quadratic electro-optic coefficient of KTN crystal, which helps us to grow
more homogeneity crystals and more accurately characterize the quadratic electro-optic
coefficient of KTN crystals.

4. Conclusions

In this study, a quadratic electro-optic coefficient measurement system was introduced,
and the effective quadratic electro-optic coefficient calculation formula is obtained through
theoretical derivation. This optic method can more accurately measure the quadratic electro-
optic coefficient of a certain position of the crystal. The effects of temperature, voltage, and
frequency on the quadratic electro-optic coefficient were analyzed, and the relaxation effect
of PNRS was discussed. The quadratic electro-optic coefficient increases significantly when
it is close to the Curie temperature, and this is attributed to the effect of temperature on polar
nano-regions. The incongruent melting behavior of KTN crystal growth causes growth-
induced striation, which makes the quadratic electro-optic coefficients of different positions
have obvious differences. When the temperature drops close to the phase transition
point, the high modulation voltage significantly attenuates the quadratic electro-optic
coefficient. Furthermore, the frequency response of PNRs of different sizes is different.
Generally, the quadratic electro-optic coefficient is higher at low frequencies than at high
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frequencies. PNRs under the action of an electric field have a response time, and the
position of the operating point will not change after reaching a stable state. A more
accurate characterization of the quadratic electro-optic coefficient of KTN crystal is helpful
to the practical application of KTN crystal devices. However, how to avoid these problems
encountered in stability requires further exploration.
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