Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Chen, L.; Gadinski, M.R.; Zhang, S.; Zhang, G.; Li, H.U.; Iagodkine, E.; Haque, A.; Chen, L.-Q.; Jackson, T.N.; et al. Flexible High-Temperature Dielectric Materials from Polymer Nanocomposites. Nature 2015, 523, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Ionin, A.; Ansell, T.; Kwon, S.; Hackenberger, W.; Cann, D. Multilayer Ceramic Capacitors Based on Relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3 for Temperature Stable and High Energy Density Capacitor Applications. Appl. Phys. Lett. 2015, 106, 252901. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Xu, Z.; Zhang, S. Multilayer Lead-Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency. Adv. Mater. 2018, 30, 1802155. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, X.; Zhao, Y.; Du, H.; Zhang, T.; Shi, J. Dielectric Stability and Energy-Storage Performance of BNT-Based Relaxor Ferroelectrics through Nb5+ and Its Excess Modification. ACS Appl. Electron. Mater. 2022, 4, 735–743. [Google Scholar] [CrossRef]
- Yang, Z.; Du, H.; Jin, L.; Poelman, D. High-Performance Lead-Free Bulk Ceramics for Electrical Energy Storage Applications: Design Strategies and Challenges. J. Mater. Chem. A Mater. 2021, 9, 18026–18085. [Google Scholar] [CrossRef]
- Wang, G.; Lu, Z.; Li, Y.; Li, L.; Ji, H.; Feteira, A.; Zhou, D.; Wang, D.; Zhang, S.; Reaney, I.M. Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives. Chem. Rev. 2021, 121, 6124–6172. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Zhang, S.; Zhang, Q.M. Polymer-Based Dielectrics with High Energy Storage Density. Annu. Rev. Mater. Res. 2015, 45, 433–458. [Google Scholar] [CrossRef]
- Xie, A.; Zuo, R.; Qiao, Z.; Fu, Z.; Hu, T.; Fei, L. NaNbO3-(Bi0.5Li0.5)TiO3 Lead-Free Relaxor Ferroelectric Capacitors with Superior Energy-Storage Performances via Multiple Synergistic Design. Adv. Energy Mater. 2021, 11, 2101378. [Google Scholar] [CrossRef]
- Li, T.; Jiang, X.; Li, J.; Xie, A.; Fu, J.; Zuo, R. Ultrahigh Energy-Storage Performances in Lead-Free Na0.5Bi0.5TiO3-Based Relaxor Antiferroelectric Ceramics through a Synergistic Design Strategy. ACS Appl. Mater. Interfaces 2022, 14, 22263–22269. [Google Scholar] [CrossRef]
- Li, B.; Yan, Z.; Zhou, X.; Qi, H.; Koval, V.; Luo, X.; Luo, H.; Yan, H.; Zhang, D. Achieving Ultrahigh Energy Storage Density of La and Ta Codoped AgNbO3 Ceramics by Optimizing the Field-Induced Phase Transitions. ACS Appl. Mater. Interfaces 2023, 15, 4246–4256. [Google Scholar] [CrossRef]
- Yang, L.; Kong, X.; Li, F.; Hao, H.; Cheng, Z.; Liu, H.; Li, J.-F.; Zhang, S. Perovskite Lead-Free Dielectrics for Energy Storage Applications. Prog. Mater. Sci. 2019, 102, 72–108. [Google Scholar] [CrossRef]
- Gui, D.-Y.; Ma, X.-Y.; Yuan, H.-D.; Wang, C.-H. Mn- and Yb-Doped BaTiO3-(Na0.5Bi0.5)TiO3 Ferroelectric Relaxor with Low Dielectric Loss. Materials 2023, 16, 2229. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Li, K.; Li, F.; Ma, J.; Tu, Y.; Long, M.; Lu, Y.; Gong, W.; Wang, C.; Shan, L. Enhanced Piezoelectricity and Thermal Stability of Electrostrain Performance in BiFeO3-Based Lead-Free Ceramics. Nanomaterials 2023, 13, 942. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Wang, D.; Bao, W.; Lu, Z.; Wang, G.; Yang, H.; Mostaed, A.; Li, L.; Feteira, A.; Sun, S.; et al. Ultrahigh Energy Density in Short-Range Tilted NBT-Based Lead-Free Multilayer Ceramic Capacitors by Nanodomain Percolation. Energy Storage Mater. 2021, 38, 113–120. [Google Scholar] [CrossRef]
- Zhang, G.; Zhu, D.; Zhang, X.; Zhang, L.; Yi, J.; Xie, B.; Zeng, Y.; Li, Q.; Wang, Q.; Jiang, S. High-Energy Storage Performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 Antiferroelectric Ceramics Fabricated by the Hot-Press Sintering Method. J. Am. Ceram. Soc. 2015, 98, 1175–1181. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Peng, W.; Xu, C.; Dong, X.; Cao, F.; Wang, G. Temperature-Dependent Stability of Energy Storage Properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 Antiferroelectric Ceramics for Pulse Power Capacitors. Appl. Phys. Lett. 2015, 106, 262901. [Google Scholar] [CrossRef]
- Yuan, Q.; Li, G.; Yao, F.-Z.; Cheng, S.-D.; Wang, Y.; Ma, R.; Mi, S.-B.; Gu, M.; Wang, K.; Li, J.-F.; et al. Simultaneously Achieved Temperature-Insensitive High Energy Density and Efficiency in Domain Engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 Lead-Free Relaxor Ferroelectrics. Nano Energy 2018, 52, 203–210. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, H.; Wu, L.; Chen, L.; Cai, Z.; Li, L.; Wang, X. High-Performance Relaxor Ferroelectric Materials for Energy Storage Applications. Adv. Energy Mater. 2019, 9, 1803048. [Google Scholar] [CrossRef]
- Asbani, B.; Gagou, Y.; Ben Moumen, S.; Dellis, J.-L.; Lahmar, A.; Amjoud, M.; Mezzane, D.; El Marssi, M.; Rozic, B.; Kutnjak, Z. Large Electrocaloric Responsivity and Energy Storage Response in the Lead-Free Ba(GexTi1−x)O3 Ceramics. Materials 2022, 15, 5227. [Google Scholar] [CrossRef]
- Yuan, Q.; Yao, F.; Wang, Y.; Ma, R.; Wang, H. Relaxor Ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3 Ceramic Capacitors with High Energy Density and Temperature Stable Energy Storage Properties. J. Mater. Chem. C Mater. 2017, 5, 9552–9558. [Google Scholar] [CrossRef]
- Suchanicz, J.; Sitko, D.; Stanuch, K.; Świerczek, K.; Jagło, G.; Kruk, A.; Kluczewska-Chmielarz, K.; Konieczny, K.; Czaja, P.; Aleksandrowicz, J.; et al. Temperature and E-Poling Evolution of Structural, Vibrational, Dielectric, and Ferroelectric Properties of Ba1−xSrxTiO3 Ceramics (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.45). Materials 2023, 16, 6316. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhang, Y.; Lv, X.; Wu, J. Ultrahigh Energy-Storage Potential under Low Electric Field in Bismuth Sodium Titanate-Based Perovskite Ferroelectrics. J. Mater. Chem. A Mater. 2018, 6, 9823–9832. [Google Scholar] [CrossRef]
- Qi, H.; Zuo, R. Linear-like Lead-Free Relaxor Antiferroelectric (Bi0.5Na0.5)TiO3–NaNbO3 with Giant Energy-Storage Density/Efficiency and Super Stability against Temperature and Frequency. J. Mater. Chem. A Mater. 2019, 7, 3971–3978. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, H.; Yang, H.; Fan, P.; Samart, C.; Takesue, N.; Tan, H. SPS-Prepared High-Entropy (Bi0.2Na0.2Sr0.2Ba0.2Ca0.2)TiO3 Lead-Free Relaxor-Ferroelectric Ceramics with High Energy Storage Density. Crystals 2023, 13, 445. [Google Scholar] [CrossRef]
- Jiang, Y.; Niu, X.; Liang, W.; Jian, X.; Shi, H.; Li, F.; Zhang, Y.; Wang, T.; Gong, W.; Zhao, X.; et al. Enhanced Energy Storage Performance in Na0.5Bi0.5TiO3-Based Relaxor Ferroelectric Ceramics via Compositional Tailoring. Materials 2022, 15, 5881. [Google Scholar] [CrossRef]
- Liu, X.; Shi, J.; Zhu, F.; Du, H.; Li, T.; Liu, X.; Lu, H. Ultrahigh Energy Density and Improved Discharged Efficiency in Bismuth Sodium Titanate Based Relaxor Ferroelectrics with A-Site Vacancy. J. Mater. 2018, 4, 202–207. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, Y.; Yang, J.; Feng, Z.; Sun, S.; Zhu, X.; Wang, H.; Yan, S.; Zheng, M. Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering. Materials 2024, 17, 4019. [Google Scholar] [CrossRef]
- Zhou, M.; Liang, R.; Zhou, Z.; Dong, X. Superior Energy Storage Properties and Excellent Stability of Novel NaNbO3-Based Lead-Free Ceramics with A-Site Vacancy Obtained via a Bi2O3 Substitution Strategy. J. Mater. Chem. A Mater. 2018, 6, 17896–17904. [Google Scholar] [CrossRef]
- Lubszczyk, M.; Brylewski, T.; Rutkowski, P.; Świerczek, K.; Kruk, A. Preparation and Physicochemical Properties of K0.5Na0.5NbO3 Ceramics Obtained Using a Modified Wet Chemistry Method. Mater. Sci. Eng. B 2023, 288, 116135. [Google Scholar] [CrossRef]
- Tian, Y.; Jin, L.; Zhang, H.; Xu, Z.; Wei, X.; Viola, G.; Abrahams, I.; Yan, H. Phase Transitions in Bismuth-Modified Silver Niobate Ceramics for High Power Energy Storage. J. Mater. Chem. A Mater. 2017, 5, 17525–17531. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, Y.; Liu, Q.; Bai, J.; Huang, J.; Lin, L.; Lu, S. Antiferroelectricity in New Silver Niobate Lead-Free Antiferroelectric Ceramics (1-x)AgNbO3-XCaZrO3 (x = 0.00–0.01). J. Alloys Compd. 2019, 782, 469–476. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, Y.; Shi, J.; Du, H.; Xu, X.; Lu, H.; Che, J.; Li, X. Improvement of Dielectric and Ferroelectric Properties in Bismuth Sodium Titanate Based Relaxors through Bi Non-Stoichiometry. J. Alloys Compd. 2019, 799, 231–238. [Google Scholar] [CrossRef]
- Shi, J.; Fan, H.; Liu, X.; Li, Q. Giant Strain Response and Structure Evolution in (Bi0.5Na0.5)0.945−x(Bi0.2Sr0.7□0.1)xBa0.055TiO3 Ceramics. J. Eur. Ceram. Soc. 2014, 34, 3675–3683. [Google Scholar] [CrossRef]
- Li, F.; Hou, X.; Wang, J.; Zeng, H.; Shen, B.; Zhai, J. Structure-Design Strategy of 0–3 Type (Bi0.32Sr0.42Na0.20)TiO3/MgO Composite to Boost Energy Storage Density, Efficiency and Charge-Discharge Performance. J. Eur. Ceram. Soc. 2019, 39, 2889–2898. [Google Scholar] [CrossRef]
- Liu, N.; Liang, R.; Zhou, Z.; Dong, X. Designing Lead-Free Bismuth Ferrite-Based Ceramics Learning from Relaxor Ferroelectric Behavior for Simultaneous High Energy Density and Efficiency under Low Electric Field. J. Mater. Chem. C Mater. 2018, 6, 10211–10217. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, Y.; Liu, N.; Peng, P.; Zhou, M.; Yan, S.; Cao, F.; Dong, X.; Wang, G. Enhanced Energy Storage Properties in Sodium Bismuth Titanate-Based Ceramics for Dielectric Capacitor Applications. J. Mater. Chem. C Mater. 2019, 7, 6222–6230. [Google Scholar] [CrossRef]
- Hu, Q.; Tian, Y.; Zhu, Q.; Bian, J.; Jin, L.; Du, H.; Alikin, D.O.; Shur, V.Y.; Feng, Y.; Xu, Z.; et al. Achieve Ultrahigh Energy Storage Performance in BaTiO3–Bi(Mg1/2Ti1/2)O3 Relaxor Ferroelectric Ceramics via Nano-Scale Polarization Mismatch and Reconstruction. Nano Energy 2020, 67, 104264. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, X.; Liu, X.; Yang, R.; Yang, Y.; Zheng, Q.; Kwok, K.W.; Lin, D. An Effective Approach to Achieve High Energy Storage Density and Efficiency in BNT-Based Ceramics by Doping AgNbO3. Dalton Trans. 2019, 48, 17864–17873. [Google Scholar] [CrossRef]
- Shi, P.; Zhu, L.; Gao, W.; Yu, Z.; Lou, X.; Wang, X.; Yang, Z.; Yang, S. Large Energy Storage Properties of Lead-Free (1-x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-XBiAlO3 Ceramics at Broad Temperature Range. J. Alloys Compd. 2019, 784, 788–793. [Google Scholar] [CrossRef]
- Pan, Z.; Hu, D.; Zhang, Y.; Liu, J.; Shen, B.; Zhai, J. Achieving High Discharge Energy Density and Efficiency with NBT-Based Ceramics for Application in Capacitors. J. Mater. Chem. C Mater. 2019, 7, 4072–4078. [Google Scholar] [CrossRef]
- Cross, L.E. Relaxor Ferroelectrics. Ferroelectrics 1987, 76, 241–267. [Google Scholar] [CrossRef]
- Cowley, R.A.; Gvasaliya, S.N.; Lushnikov, S.G.; Roessli, B.; Rotaru, G.M. Relaxing with Relaxors: A Review of Relaxor Ferroelectrics. Adv. Phys. 2011, 60, 229–327. [Google Scholar] [CrossRef]
- Kleemann, W. Relaxor Ferroelectrics: Cluster Glass Ground State via Random Fields and Random Bonds. Phys. Status Solidi 2014, 251, 1993–2002. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, R.; Wang, F.; Yan, K. Core–Shell Grain Structure and High Energy Storage Performance of BNT-Based Relaxor Ferroelectric Ceramics. Electron. Mater. Lett. 2023, 19, 161–171. [Google Scholar] [CrossRef]
- Glaum, J.; Heo, Y.; Acosta, M.; Sharma, P.; Seidel, J.; Hinterstein, M. Revealing the Role of Local Stress on the Depolarization of BNT-BT-Based Relaxors. Phys. Rev. Mater. 2019, 3, 054406. [Google Scholar] [CrossRef]
- Lv, J.; Li, Q.; Li, Y.; Tang, M.; Jin, D.; Yan, Y.; Fan, B.; Jin, L.; Liu, G. Significantly Improved Energy Storage Performance of NBT-BT Based Ceramics through Domain Control and Preparation Optimization. Chem. Eng. J. 2021, 420, 129900. [Google Scholar] [CrossRef]
- Xu, C.; Lin, D.; Kwok, K.W. Structure, Electrical Properties and Depolarization Temperature of (Bi0.5Na0.5)TiO3–BaTiO3 Lead-Free Piezoelectric Ceramics. Solid. State Sci. 2008, 10, 934–940. [Google Scholar] [CrossRef]
- Takenaka, T.; Kei-ichi Maruyama, K.M.; Koichiro Sakata, K.S. (Bi1/2Na1/2)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics. Jpn. J. Appl. Phys. 1991, 30, 2236. [Google Scholar] [CrossRef]
- Jones, G.O.; Thomas, P.A. Investigation of the Structure and Phase Transitions in the Novel A-Site Substituted Distorted Perovskite Compound Na0.5Bi0.5TiO3. Acta Crystallogr. B 2002, 58, 168–178. [Google Scholar] [CrossRef]
- Buttner, R.H.; Maslen, E.N. Structural Parameters and Electron Difference Density in BaTiO3. Acta Crystallogr. B 1992, 48, 764–769. [Google Scholar] [CrossRef]
- Al-Shakarchi, E.K.; Mahmood, N.B. Three Techniques Used to Produce BaTiO3 Fine Powder. J. Mod. Phys. 2011, 2, 1420–1428. [Google Scholar] [CrossRef]
- Mahmood, N.B.; Al-Shakarchi, E.K. Dielectric Properties of BNT-xBT Prepared by Hydrothermal Process. J. Adv. Dielectr. 2017, 07, 1750019. [Google Scholar] [CrossRef]
- Nesterović, A.; Vukmirović, J.; Stijepović, I.; Milanović, M.; Bajac, B.; Tóth, E.; Cvejić, Ž.; Srdić, V.V. Structure and Dielectric Properties of (1-x)Bi0.5Na0.5TiO3–xBaTiO3 Piezoceramics Prepared Using Hydrothermally Synthesized Powders. R. Soc. Open Sci. 2021, 8, 202365. [Google Scholar] [CrossRef]
- Craciun, F.; Galassi, C.; Birjega, R. Electric-Field-Induced and Spontaneous Relaxor-Ferroelectric Phase Transitions in (Na1/2Bi1/2)1 − xBaxTiO3. J. Appl. Phys. 2012, 112, 124106. [Google Scholar] [CrossRef]
- Jaita, P.; Manotham, S.; Rujijanagul, G. Influence of Al2O3 Nanoparticle Doping on Depolarization Temperature, and Electrical and Energy Harvesting Properties of Lead-Free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 Ceramics. RSC Adv. 2020, 10, 32078–32087. [Google Scholar] [CrossRef]
- Gupta, S.K.; McQuade, R.; Gibbons, B.; Mardilovich, P.; Cann, D.P. Electric Field-Induced Strain in Sr(Hf0.5Zr0.5)O3-Modified Bi0.5(Na0.8K0.2)0.5TiO3 Piezoelectric Ceramics. J. Appl. Phys. 2020, 127, 074104. [Google Scholar] [CrossRef]
- Pattipaka, S.; James, A.R.; Dobbidi, P. Enhanced Dielectric and Piezoelectric Properties of BNT-KNNG Piezoelectric Ceramics. J. Alloys Compd. 2018, 765, 1195–1208. [Google Scholar] [CrossRef]
- Tong, X.-Y.; Song, M.-W.; Zhou, J.-J.; Wang, K.; Guan, C.-L.; Liu, H.; Fang, J.-Z. Enhanced Energy Storage Properties in Nb-Modified Bi0.5Na0.5TiO3–SrTiO3 Lead-Free Electroceramics. J. Mater. Sci. Mater. Electron. 2019, 30, 5780–5790. [Google Scholar] [CrossRef]
- Jaita, P.; Saenkam, K.; Rujijanagul, G. Improvements in Piezoelectric and Energy Harvesting Properties with a Slight Change in Depolarization Temperature in Modified BNKT Ceramics by a Simple Technique. RSC Adv. 2023, 13, 3743–3758. [Google Scholar] [CrossRef]
- Fernandez-Benavides, D.; Gutierrez-Perez, A.; Benitez-Castro, A.; Ayala-Ayala, M.; Moreno-Murguia, B.; Muñoz-Saldaña, J. Comparative Study of Ferroelectric and Piezoelectric Properties of BNT-BKT-BT Ceramics near the Phase Transition Zone. Materials 2018, 11, 361. [Google Scholar] [CrossRef]
- Chu, B.; Hao, J.; Li, P.; Li, Y.; Li, W.; Zheng, L.; Zeng, H. High-Energy Storage Properties over a Broad Temperature Range in La-Modified BNT-Based Lead-Free Ceramics. ACS Appl. Mater. Interfaces 2022, 14, 19683–19696. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.N.; Wang, Y.G.; Ren, Z.H.; Jain, A.; Jiang, S.S.; Chen, F.G. Significant Improvement in Electrical Characteristics and Energy Storage Performance of NBT-Based Ceramics. Ceram. Int. 2022, 48, 26973–26983. [Google Scholar] [CrossRef]
- Jaita, P.; Watcharapasorn, A.; Cann, D.P.; Jiansirisomboon, S. Dielectric, Ferroelectric and Electric Field-Induced Strain Behavior of Ba(Ti0.90Sn0.10)O3-Modified Bi0.5(Na0.80K0.20)0.5TiO3 Lead-Free Piezoelectrics. J. Alloys Compd. 2014, 596, 98–106. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Boonlakhorn, J.; Thongbai, P.; Putasaeng, B.; Yamwong, T.; Maensiri, S. Very High-Performance Dielectric Properties of Ca1−3x/2YbxCu3Ti4O12 Ceramics. J. Alloys Compd. 2014, 612, 103–109. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Z.; Tian, Y.; Wang, G.; Wang, W.; Yang, M.; Wang, X.; Zhang, F.; Pu, Y. Progress, Outlook, and Challenges in Lead-Free Energy-Storage Ferroelectrics. Adv. Electron. Mater. 2020, 6, 1900698. [Google Scholar] [CrossRef]
- Choi, H.; Pattipaka, S.; Son, Y.H.; Bae, Y.M.; Park, J.H.; Jeong, C.K.; Lee, H.E.; Kim, S.-D.; Ryu, J.; Hwang, G.-T. Improved Energy Storage Density and Efficiency of Nd and Mn Co-Doped Ba0.7Sr0.3TiO3 Ceramic Capacitors Via Defect Dipole Engineering. Materials 2023, 16, 6753. [Google Scholar] [CrossRef]
- Maqbool, A.; Hussain, A.; Malik, R.A.; Rahman, J.U.; Zaman, A.; Song, T.K.; Kim, W.-J.; Kim, M.-H. Evolution of Phase Structure and Giant Strain at Low Driving Fields in Bi-Based Lead-Free Incipient Piezoelectrics. Mater. Sci. Eng. B 2015, 199, 105–112. [Google Scholar] [CrossRef]
- Hiruma, Y.; Nagata, H.; Takenaka, T. Phase Diagrams and Electrical Properties of (Bi1/2Na1/2)TiO3-Based Solid Solutions. J. Appl. Phys. 2008, 104, 124106. [Google Scholar] [CrossRef]
- Shvartsman, V.V.; Lupascu, D.C. Lead-Free Relaxor Ferroelectrics. J. Am. Ceram. Soc. 2012, 95, 1–26. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Y.; Han, G.; Gao, J.; Yu, L.; Tang, M.; Li, Y.; Hu, J.; Jin, L.; Yan, Y. Enhanced Electrical Properties and Energy Storage Performances of NBT-ST Pb-Free Ceramics through Glass Modification. J. Alloys Compd. 2020, 836, 154961. [Google Scholar] [CrossRef]
- Uchino, K.; Nomura, S.; Cross, L.E.; Jang, S.J.; Newnham, R.E. Electrostrictive Effect in Lead Magnesium Niobate Single Crystals. J. Appl. Phys. 1980, 51, 1142–1145. [Google Scholar] [CrossRef]
- Xu, B.; Paillard, C.; Dkhil, B.; Bellaiche, L. Pinched Hysteresis Loop in Defect-Free Ferroelectric Materials. Phys. Rev. B 2016, 94, 140101. [Google Scholar] [CrossRef]
- Fan, P.; Zhang, Y.; Xie, B.; Zhu, Y.; Ma, W.; Wang, C.; Yang, B.; Xu, J.; Xiao, J.; Zhang, H. Large Electric-Field-Induced Strain in B-Site Complex-Ion (Fe0.5Nb0.5)4+-Doped Bi1/2(Na0.82K0.12)1/2TiO3 Lead-Free Piezoceramics. Ceram. Int. 2018, 44, 3211–3217. [Google Scholar] [CrossRef]
- Wu, J.; Mahajan, A.; Riekehr, L.; Zhang, H.; Yang, B.; Meng, N.; Zhang, Z.; Yan, H. Perovskite Srx(Bi1−xNa0.97−xLi0.03)0.5TiO3 Ceramics with Polar Nano Regions for High Power Energy Storage. Nano Energy 2018, 50, 723–732. [Google Scholar] [CrossRef]
- Yan, Y.; Zeng, X.; Deng, T.; Chen, F.; Yang, L.; He, Z.; Jin, L.; Liu, G. Rheological, Mechanical, and Electrical Properties of Sr0.7Bi0.2TiO3 Modified BaTiO3 Ceramic and Its Composites. J. Am. Ceram. Soc. 2023, 106, 3052–3065. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Yadav, A.K.; Fan, H. Large Electrostrictive Effect and Energy Storage Density in MnCO3 Modified Na0.325Bi0.395Sr0.245□0.035TiO3 Lead-Free Ceramics. Ceram. Int. 2020, 46, 3374–3381. [Google Scholar] [CrossRef]
- Nayak, S.; Venkateshwarlu, S.; Budisuharto, A.S.; Jørgensen, M.R.V.; Borkiewicz, O.; Beyer, K.A.; Pramanick, A. Effect of A-site Substitutions on Energy Storage Properties of BaTiO3-BiScO3 Weakly Coupled Relaxor Ferroelectrics. J. Am. Ceram. Soc. 2019, 102, 5919–5933. [Google Scholar] [CrossRef]
- Cao, W.P.; Li, W.L.; Dai, X.F.; Zhang, T.D.; Sheng, J.; Hou, Y.F.; Fei, W.D. Large Electrocaloric Response and High Energy-Storage Properties over a Broad Temperature Range in Lead-Free NBT-ST Ceramics. J. Eur. Ceram. Soc. 2016, 36, 593–600. [Google Scholar] [CrossRef]
- Jabeen, N.; Hussain, A.; Qaiser, M.A.; Ali, J.; Rehman, A.; Sfina, N.; Ali, G.A.; Tirth, V. Enhanced Energy Storage Performance by Relaxor Highly Entropic (Ba0.2Na0.2K0.2La0.2Bi0.2)TiO3 and (Ba0.2Na0.2K0.2Mg0.2Bi0.2)TiO3 Ferroelectric Ceramics. Appl. Sci. 2022, 12, 12933. [Google Scholar] [CrossRef]
Samples | Composition | |
---|---|---|
Measured Atomic % | Theoretical Atomic % | |
X = 0 | O = 60.77, Na = 11.91, Bi = 6.43, Ba = 1.48 and Ti = 19.41 | A-site (Na = 9.4, Bi = 9.4 and Ba = 1.2), B-site (Ti = 20) and O = 60 |
X = 0.20 | O = 59.64, Na = 9.56, Sr = 2.46, Bi = 5.83, Ba = 1.39 and Ti = 21.13 | A-site (Na = 7.52, Bi =8.32, Ba = 0.96 and Sr = 2.24), B-site (Ti = 20) and O = 60 |
X = 0.225 | O = 60.29, Na = 9.14, Sr = 2.88, Bi = 5.69, Ba = 1.39 and Ti = 20.61 | A-site (Na = 7.285, Bi = 8.185, Ba = 0.93 and Sr = 2.52), B-site (Ti = 20) and O = 60 |
X = 0.25 | O = 60.58, Na = 8.21, Sr = 3.26, Bi = 5.64, Ba = 1.22 and Ti = 21.10 | A-site (Na = 7.05, Bi = 8.05, Ba = 0.9 and Sr = 2.8), B-site (Ti = 20) and O = 60 |
X = 0.275 | O = 60.87, Na = 7.93, Sr = 3.56, Bi = 5.62, Ba = 1.11 and Ti = 20.91 | A-site (Na = 6.815, Bi = 7.915, Ba = 0.87 and Sr = 3.08), B-site (Ti = 20) and O = 60 |
X = 0.30 | O = 62.69, Na = 6.88, Sr = 3.63, Bi = 4.76, Ba = 2.12 and Ti = 19.91 | A-site (Na = 6.58, Bi = 7.78, Ba = 0.84 and Sr = 3.36), B-site (Ti = 20) and O = 60 |
Composition | Pr (µC/cm2) | Pmax (µC/cm2) | Ec (kV/cm) | EBD (kV/cm) | Wrec (J/cm3) | Wrec (J/cm3) | η (%) |
---|---|---|---|---|---|---|---|
x = 0 | 17.06 | 29.29 | 13.03 | 43.99 | 0.16 | 0.80 | 17.45 |
x = 0.20 | 0.79 | 18.76 | 2.19 | 48.75 | 0.39 | 0.14 | 73.58 |
x = 0.225 | 2.09 | 28.38 | 4.77 | 68.99 | 0.68 | 0.37 | 64.76 |
x = 0.25 | 2.95 | 32.82 | 6.47 | 89.38 | 0.93 | 0.50 | 65.03 |
x = 0.275 | 1.39 | 31.39 | 2.97 | 89.73 | 1.02 | 0.32 | 75.83 |
x = 0.30 | 1.00 | 28.54 | 2.33 | 83.53 | 0.96 | 0.22 | 81.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pattipaka, S.; Lim, Y.; Jeong, Y.; Peddigari, M.; Min, Y.; Jeong, J.W.; Jang, J.; Kim, S.-D.; Hwang, G.-T. Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties. Materials 2024, 17, 5044. https://doi.org/10.3390/ma17205044
Pattipaka S, Lim Y, Jeong Y, Peddigari M, Min Y, Jeong JW, Jang J, Kim S-D, Hwang G-T. Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties. Materials. 2024; 17(20):5044. https://doi.org/10.3390/ma17205044
Chicago/Turabian StylePattipaka, Srinivas, Yeseul Lim, Yundong Jeong, Mahesh Peddigari, Yuho Min, Jae Won Jeong, Jongmoon Jang, Sung-Dae Kim, and Geon-Tae Hwang. 2024. "Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties" Materials 17, no. 20: 5044. https://doi.org/10.3390/ma17205044
APA StylePattipaka, S., Lim, Y., Jeong, Y., Peddigari, M., Min, Y., Jeong, J. W., Jang, J., Kim, S.-D., & Hwang, G.-T. (2024). Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties. Materials, 17(20), 5044. https://doi.org/10.3390/ma17205044