Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = platinum metal–metal bond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 14491 KiB  
Article
Catalytically Active Oxidized PtOx Species on SnO2 Supports Synthesized via Anion Exchange Reaction for 4-Nitrophenol Reduction
by Izabela Ðurasović, Robert Peter, Goran Dražić, Fabio Faraguna, Rafael Anelić, Marijan Marciuš, Tanja Jurkin, Vlasta Mohaček Grošev, Maria Gracheva, Zoltán Klencsár, Mile Ivanda, Goran Štefanić and Marijan Gotić
Nanomaterials 2025, 15(15), 1159; https://doi.org/10.3390/nano15151159 - 28 Jul 2025
Viewed by 323
Abstract
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room [...] Read more.
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room temperature), SnB (hydrothermally treated at 180 °C), and SnC (annealed at 600 °C), are systematically investigated, all loaded with 1 mol% Pt from H2PtCl6 under identical mild conditions. The chloride ions from the SnCl4 precursors were efficiently removed via a strong-base anion exchange reaction, resulting in highly dispersed, crystalline ~5 nm cassiterite SnO2 particles. All Pt/SnO2 composites displayed mesoporous structures with type IVa isotherms and H2-type hysteresis, with SP1a (Pt on SnA) exhibiting the largest surface area (122.6 m2/g) and the smallest pores (~3.5 nm). STEM-HAADF imaging revealed well-dispersed PtOx domains (~0.85 nm), while XPS confirmed the dominant Pt4+ and Pt2+ species, with ~25% Pt0 likely resulting from photoreduction and/or interactions with Sn–OH surface groups. Raman spectroscopy revealed three new bands (260–360 cm−1) that were clearly visible in the sample with 10 mol% Pt and were due to the vibrational modes of the PtOx species and Pt-Cl bonds introduced due the addition and hydrolysis of H2PtCl6 precursor. TGA/DSC analysis revealed the highest mass loss for SP1a (~7.3%), confirming the strong hydration of the PtOx domains. Despite the predominance of oxidized PtOx species, SP1a exhibited the highest catalytic activity (kapp = 1.27 × 10−2 s−1) and retained 84.5% activity for the reduction of 4-NP to 4-AP after 10 cycles. This chloride-free low-temperature synthesis route offers a promising and generalizable strategy for the preparation of noble metal-based nanocatalysts on oxide supports with high catalytic activity and reusability. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 344
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

14 pages, 4835 KiB  
Article
Development and Evaluation of Multi-Module Retinal Devices for Artificial Vision Applications
by Kuang-Chih Tso, Yoshinori Sunaga, Yuki Nakanishi, Yasuo Terasawa, Makito Haruta, Kiyotaka Sasagawa and Jun Ohta
Micromachines 2025, 16(5), 580; https://doi.org/10.3390/mi16050580 - 15 May 2025
Viewed by 557
Abstract
Artificial retinal devices require a high-density electrode array and mechanical flexibility to effectively stimulate retinal cells. However, designing such devices presents significant challenges, including the need to conform to the curvature of the eyeball and cover a large area using a single platform. [...] Read more.
Artificial retinal devices require a high-density electrode array and mechanical flexibility to effectively stimulate retinal cells. However, designing such devices presents significant challenges, including the need to conform to the curvature of the eyeball and cover a large area using a single platform. To address these issues, we developed a parylene-based multi-module retinal device (MMRD) integrating a complementary metal-oxide semiconductor (CMOS) system. The proposed device is designed for suprachoroidal transretinal stimulation, with each module comprising a parylene-C thin-film substrate, a CMOS chip, and a ceramic substrate housing seven platinum electrodes. The smart CMOS system significantly reduces wiring complexity, enhancing the device’s practicality. To improve fabrication reliability, we optimized the encapsulation process, introduced multiple silane coupling modifications, and utilized polyvinyl alcohol (PVA) for easier detachment in flip-chip bonding. This study demonstrates the fabrication and evaluation of the MMRD through in vitro and in vivo experiments. The device successfully generated the expected current stimulation waveforms in both settings, highlighting its potential as a promising candidate for future artificial vision applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

15 pages, 2825 KiB  
Article
Metal-Involving Bifurcated Halogen Bonding with Iodide and Platinum(II) Center
by Mariya A. Kryukova, Margarita B. Kostareva, Anna M. Cheranyova, Marina A. Khazanova, Anton V. Rozhkov and Daniil M. Ivanov
Int. J. Mol. Sci. 2025, 26(10), 4555; https://doi.org/10.3390/ijms26104555 - 9 May 2025
Viewed by 529
Abstract
The cocrystallization of trans-[PtI2(NCR)2] (R = NMe21, NEt22, Ph 3, o-ClC6H44) with iodine and iodoform gave the crystalline adducts 1∙4I2, 2∙2CHI3 [...] Read more.
The cocrystallization of trans-[PtI2(NCR)2] (R = NMe21, NEt22, Ph 3, o-ClC6H44) with iodine and iodoform gave the crystalline adducts 1∙4I2, 2∙2CHI3, 3∙2CHI3, and 4∙4I2, whose structures were studied by single-crystal X-ray diffractometry (XRD). In the structures, apart from the rather predictable C–H⋯I hydrogen bonds (HBs) and I–I⋯I or C–I⋯I halogen bonds (XBs) with the iodide ligands, we identified bifurcated I–I⋯(I–Pt) and C–I⋯(I–Pt) metal-involving XBs, where the platinum center and iodide ligands function as simultaneous XB acceptors toward σ-holes of I atoms in I2 or CHI3. Appropriate density functional theory (DFT) calculations (PBE-D3/jorge-DZP-DKH with plane waves in the GAPW method) performed with periodic boundary conditions confirmed the existence of the bifurcated metal-involving I–I⋯(I–Pt) and C–I⋯(I–Pt) interactions and their noncovalent nature. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

20 pages, 2160 KiB  
Article
Conformational Locking of the Geometry in Photoluminescent Cyclometalated N^C^N Ni(II) Complexes
by Maryam Niazi, Iván Maisuls, Lukas A. Mai, Sascha A. Schäfer, Alex Oster, Lukas Santiago Diaz, Dirk M. Guldi, Nikos L. Doltsinis, Cristian A. Strassert and Axel Klein
Molecules 2025, 30(9), 1901; https://doi.org/10.3390/molecules30091901 - 24 Apr 2025
Viewed by 616
Abstract
In our research aimed at replacing precious transition metals like platinum with abundant base metals such as nickel for efficient triplet emitters, we synthesized and studied Ni(II) complexes [Ni(LNHR)Cl]. These complexes containing the N^C^N cyclometalating dipyridyl-phenide ligand, equipped with pending H-bonding [...] Read more.
In our research aimed at replacing precious transition metals like platinum with abundant base metals such as nickel for efficient triplet emitters, we synthesized and studied Ni(II) complexes [Ni(LNHR)Cl]. These complexes containing the N^C^N cyclometalating dipyridyl-phenide ligand, equipped with pending H-bonding amine groups (NH(C₆H₅) (LNHPh) and NH(C₆H₅CH₂), ClLNHBn). Molecular structures determined from experimental X-ray diffractometry and density functional theory (DFT) calculations in the ground state showed marked deviation of the Cl coligand (ancillary ligand) from the ideal planar coordination, with τ4 values of 0.35 and 0.33, respectively, along with hydrogen bonding interactions of the ligand NH function with the Cl coligand. The complexes exhibit long-wavelength absorption bands at approximately 425 nm in solution, with the experimental spectra being accurately reproduced through time-dependent density functional theory (TD-DFT) calculations. Vibrationally structured emission profiles and steady-state photoluminescence quantum yields of 30% for [Ni(LNHPh)Cl] and 40% for [Ni(LNHBn)Cl] (along with dual excited state lifetimes in the ns and in the ms range) were found in frozen 2-methyl-tetrahydrofuran (2MeTHF) glassy matrices at 77 K. Furthermore, within a poly(methyl methacrylate) matrix, the complexes showed emission bands centered at around 550 nm within a temperature range from 6 K to 300 K with lifetimes similar to 77 K. Based on TD-DFT potential scans along the metal–ligand (Ni–N) coordinate, we found that in a rigid environment that restricts the geometry to the Franck-Condon region, either the triplet T5 or the singlet S4 state could contribute to the photoluminescence. Full article
Show Figures

Graphical abstract

16 pages, 2267 KiB  
Article
Surface Structure Effects on H and O Adsorption on Gold, Nickel and Platinum Nanoparticles
by Nadezhda V. Dokhlikova, Andrey K. Gatin, Sergey Y. Sarvadii, Dinara Tastaibek, Vladislav G. Slutskii and Maxim V. Grishin
Materials 2025, 18(3), 631; https://doi.org/10.3390/ma18030631 - 30 Jan 2025
Viewed by 804
Abstract
Using quantum chemical modelling, in this work, we considered the structure effects determining the adsorption of H and O atoms on (111), (100), (110) and (211) surfaces of gold, nickel and platinum nanoparticles. Surface deformation enhanced the adatom bonding to active sites with [...] Read more.
Using quantum chemical modelling, in this work, we considered the structure effects determining the adsorption of H and O atoms on (111), (100), (110) and (211) surfaces of gold, nickel and platinum nanoparticles. Surface deformation enhanced the adatom bonding to active sites with a large coordination number on flat (111) and (100) surfaces, while no distinct tendency was observed on kinked (110) and (211) surfaces. The effect of the neighboring atoms depends on the coupling matrix element Vad2. For metals with a considerable matrix element, the adsorption energy decreases with the rise in coordination number, and vice versa. Full article
Show Figures

Figure 1

13 pages, 979 KiB  
Article
DFT Approach for Predicting 13C NMR Shifts of Atoms Directly Coordinated to Pt: Scopes and Limitations
by Svetlana A. Kondrashova and Shamil K. Latypov
Molecules 2024, 29(24), 6052; https://doi.org/10.3390/molecules29246052 - 23 Dec 2024
Cited by 1 | Viewed by 1138
Abstract
In this study, comparative analysis of calculated and experimental 13C NMR shifts for a wide range of model platinum complexes showed that, on the whole, the theory reproduces the experimental data well. The chemical shifts of carbon atoms directly bonded to Pt [...] Read more.
In this study, comparative analysis of calculated and experimental 13C NMR shifts for a wide range of model platinum complexes showed that, on the whole, the theory reproduces the experimental data well. The chemical shifts of carbon atoms directly bonded to Pt can be calculated well only within the framework of the fully relativistic matrix Dirac−Kohn−Sham (mDKS) level (R2 = 0.9973, RMSE = 3.7 ppm); however, for carbon atoms not bonded to metal, a more simple, non-relativistic approach can be used. Effective locally dense basis set schemes were developed for practical applications. The efficiency of the protocol is demonstrated using the example of the isomeric structure determination in case of several possible coordination modes. Full article
(This article belongs to the Special Issue Exclusive Feature Papers on Molecular Structure)
Show Figures

Figure 1

25 pages, 10072 KiB  
Review
Organometallic Chemistry of Propargylallenes: Syntheses, Reactivity, Molecular Rearrangements and Future Prospects
by Michael J. McGlinchey
Molecules 2024, 29(23), 5670; https://doi.org/10.3390/molecules29235670 - 29 Nov 2024
Viewed by 1006
Abstract
Alkynylallenes offer the varied reactivity patterns of two different multiple bond linkages either separately or in concert. Initially, a short overview of their syntheses, structures, rearrangement mechanisms and synthetic utility, especially when treated with transition metal reagents such as gold(I), silver(I), platinum metals [...] Read more.
Alkynylallenes offer the varied reactivity patterns of two different multiple bond linkages either separately or in concert. Initially, a short overview of their syntheses, structures, rearrangement mechanisms and synthetic utility, especially when treated with transition metal reagents such as gold(I), silver(I), platinum metals or metal carbonyls, is presented. Subsequently, we focus on the particular case of 1,2-dien-5-ynes (propargylallenes), whereby the shortness of the single atom bridge, and the consequent proximity of the allenyl and alkynyl moieties, facilitates metal-mediated interactions between them. It is shown how these metals can coordinate to either the alkyne or the allene fragment, thus leading to different cyclisation or rearrangement products, dependent also on whether it is the proximal or the distal double bond of the allene that participates in the reaction. Dimerisation of bromo-substituted fluorenylideneallenes bearing silyl or ferrocenyl substituents can occur in either head-to-head or head-to-tail fashion, thereby yielding propargylallene derivatives that undergo unexpected and novel rearrangements, including the formation of molecules possessing unusually long carbon–carbon single bonds. Fluorenyl-bearing propargylallenes react with silver nitrate or iron carbonyl to form novel organic polycyclic systems. Finally, suggestions are offered for future advances in the area. Full article
Show Figures

Graphical abstract

19 pages, 9113 KiB  
Review
The Research Progress of Ruthenium-Based Catalysts for the Alkaline Hydrogen Evolution Reaction in Water Electrolysis
by Bi-Li Lin, Xing Chen, Bai-Tong Niu, Yuan-Ting Lin, Yan-Xin Chen and Xiu-Mei Lin
Catalysts 2024, 14(10), 671; https://doi.org/10.3390/catal14100671 - 28 Sep 2024
Cited by 2 | Viewed by 3003
Abstract
The performance of the cathodic hydrogen evolution reaction (HER) in alkaline water electrolysis, an attractive hydrogen production technology, is highly dependent on efficient catalysts. Ruthenium (Ru), which is more affordable than platinum (Pt) and has a metal–hydrogen bond strength comparable to that of [...] Read more.
The performance of the cathodic hydrogen evolution reaction (HER) in alkaline water electrolysis, an attractive hydrogen production technology, is highly dependent on efficient catalysts. Ruthenium (Ru), which is more affordable than platinum (Pt) and has a metal–hydrogen bond strength comparable to that of Pt, shows exceptional catalytic activity for the alkaline HER. Consequently, in recent years, research in the field of hydrogen production through alkaline water electrolysis has increasingly focused on Ru as a key element. This review first discusses the fundamentals of the alkaline HER, including principles, factors affecting its performance, and regulation strategies for its performance improvement. The research progress of ruthenium-based catalysts for the alkaline HER is then summarized with selected examples. The electronic structures of various ruthenium nanoparticles, ruthenium-M (M = noble metals and transition metals) heterogeneous catalysts, and ruthenium-based compounds are regulated by modulating the components and ligands of Ru atoms, aiming to achieve low water dissociation energies and optimal binding energies for hydrogen (H) and hydroxyl (−OH) groups, thereby enhancing the alkaline HER catalytic performance. Finally, the problems, challenges, and future development directions of the alkaline HER are proposed. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

22 pages, 6186 KiB  
Article
Synthesis of Some Eco-Friendly Materials for Gold Recovery
by Theodora Babău, Mihaela Ciopec, Narcis Duteanu, Adina Negrea, Petru Negrea, Nicoleta Sorina Nemeş, Bogdan Pascu, Maria Mihăilescu and Catalin Ianasi
Polymers 2024, 16(17), 2512; https://doi.org/10.3390/polym16172512 - 4 Sep 2024
Cited by 2 | Viewed by 1360
Abstract
The aim of this study was to develop new materials with adsorbent properties that can be used for the adsorption recovery of Au(III) from aqueous solutions. To achieve this result, it is necessary to obtain inexpensive adsorbent materials in a granular form. Concomitantly, [...] Read more.
The aim of this study was to develop new materials with adsorbent properties that can be used for the adsorption recovery of Au(III) from aqueous solutions. To achieve this result, it is necessary to obtain inexpensive adsorbent materials in a granular form. Concomitantly, these materials must have a high adsorption capacity and selectivity. Other desired properties of these materials include a higher physical resistance, insolubility in water, and materials that can be regenerated or reused. Among the methods applied for the separation, purification, and preconcentration of platinum-group metal ions, adsorption is recognised as one of the most promising methods because of its simplicity, high efficiency, and wide availability. The studies were carried out using three supports: cellulose (CE), chitosan (Chi), and diatomea earth (Diat). These supports were functionalised by impregnation with extractants, using the ultrasound method. The extractants are environmentally friendly and relatively cheap amino acids, which contain in their structure pendant groups with nitrogen and sulphur heteroatoms (aspartic acid—Asp, l-glutamic acid—Glu, valine—Val, DL-cysteine—Cys, or serine—Ser). After preliminary testing from 75 synthesised materials, CE-Cys was chosen for the further recovery of Au(III) ions from aqueous solutions. To highlight the morphology and the functionalisation of the material, we physicochemically characterised the obtained material. Therefore, the analysis of the specific surface and porosity showed that the CE-Cys material has a specific surface of 4.6 m2/g, with a porosity of about 3 nm. The FT-IR analysis showed the presence, at a wavelength of 3340 cm−1, of the specific NH bond vibration for cysteine. At the same time, pHpZc was determined to be 2.8. The kinetic, thermodynamic, and equilibrium studies showed that the pseudo-second-order kinetic model best describes the adsorption process of Au(III) ions on the CE-Cys material. A maximum adsorption capacity of 12.18 mg per gram of the adsorbent material was achieved. It was established that the CE-Cys material can be reused five times with a good recovery degree. Full article
Show Figures

Figure 1

6 pages, 1217 KiB  
Perspective
Plasma-Assisted One-Step Direct Methanol Conversion to Ethylene Glycol and Hydrogen: Process Intensification
by Olumide Bolarinwa Ayodele
Energies 2024, 17(13), 3216; https://doi.org/10.3390/en17133216 - 29 Jun 2024
Viewed by 1470
Abstract
This perspective reports a process intensification strategy that converts methanol into ethylene glycol (MeOH-2-EG) in a single step to circumvent multi-step naphtha cracking into ethylene followed by ethylene epoxidation to ethylene oxide (EO) and the subsequent hydrolysis of EO to ethylene glycol (EG). [...] Read more.
This perspective reports a process intensification strategy that converts methanol into ethylene glycol (MeOH-2-EG) in a single step to circumvent multi-step naphtha cracking into ethylene followed by ethylene epoxidation to ethylene oxide (EO) and the subsequent hydrolysis of EO to ethylene glycol (EG). Due to the thermodynamic restriction for the direct MeOH-2-EG, plasma-assisted catalysis was introduced, and platinum group metals were identified as prospective transition metal catalysts that can achieve the formation of strong metal hydride bonds and guarantee the controlled C–C coupling of two plasma-activated hydroxymethyl radicals (*CH2OH) from methanol, both of which are essential for the single-step MeOH-2-EG. Full article
(This article belongs to the Topic Clean and Low Carbon Energy, 2nd Edition)
Show Figures

Figure 1

10 pages, 2853 KiB  
Article
Metal–Support Interaction in Pt Nanodisk–Carbon Nitride Catalyst: Insight from Theory and Experiment
by Esmail Doustkhah, Ahmed Kotb, Timuçin Balkan and Mohammad Hussein Naseef Assadi
Nanomaterials 2024, 14(11), 921; https://doi.org/10.3390/nano14110921 - 24 May 2024
Viewed by 1238
Abstract
Metal–support interaction plays a critical role in determining the eventual catalytic activity of metals loaded on supporting substrates. This interaction can sometimes cause a significant drop in the metallic property of the loaded metal and, hence, a drop in catalytic activity in the [...] Read more.
Metal–support interaction plays a critical role in determining the eventual catalytic activity of metals loaded on supporting substrates. This interaction can sometimes cause a significant drop in the metallic property of the loaded metal and, hence, a drop in catalytic activity in the reactions, especially in those for which low charge carrier transfer resistance is a necessary parameter. Therefore, there should be a case-by-case experimental or theoretical (or both) in-depth investigation to understand the role of support on each metal. Here, onto a layered porous carbon nitride (g-CN), we grew single crystalline Pt nanodisks (Pt@g-CN) with a lateral average size of 21 nm, followed by various characterisations such as electron microscopy techniques, and the measurement of electrocatalytic activity in the O2 reduction reaction (ORR). We found that intercalating Pt nanodisks in the g-CN interlayers causes an increase in electrocatalytic activity. We investigated the bonding mechanism between carbon support and platinum using density functional theory and applied the d-band theory to understand the catalytic performance. Analysis of Pt’s density of states and electronic population across layers sheds light on the catalytic behaviour of Pt nanoparticles, particularly in relation to their thickness and proximity to the g-CN support interface. Our simulation reveals an optimum thickness of ~11 Å, under which the catalytic performance deteriorates. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Electrocatalytic Application)
Show Figures

Figure 1

18 pages, 8841 KiB  
Article
Conformation-Associated C···dz2-PtII Tetrel Bonding: The Case of Cyclometallated Platinum(II) Complex with 4-Cyanopyridyl Urea Ligand
by Sergey V. Baykov, Eugene A. Katlenok, Svetlana O. Baykova, Artem V. Semenov, Nadezhda A. Bokach and Vadim P. Boyarskiy
Int. J. Mol. Sci. 2024, 25(7), 4052; https://doi.org/10.3390/ijms25074052 - 5 Apr 2024
Cited by 2 | Viewed by 1500
Abstract
The nucleophilic addition of 3-(4-cyanopyridin-2-yl)-1,1-dimethylurea (1) to cis-[Pt(CNXyl)2Cl2] (2) gave a new cyclometallated compound 3. It was characterized by NMR spectroscopy (1H, 13C, 195Pt) and high-resolution mass spectrometry, as [...] Read more.
The nucleophilic addition of 3-(4-cyanopyridin-2-yl)-1,1-dimethylurea (1) to cis-[Pt(CNXyl)2Cl2] (2) gave a new cyclometallated compound 3. It was characterized by NMR spectroscopy (1H, 13C, 195Pt) and high-resolution mass spectrometry, as well as crystallized to obtain two crystalline forms (3 and 3·2MeCN), whose structures were determined by X-ray diffraction. In the crystalline structure of 3, two conformers (3A and 3B) were identified, while the structure 3·2MeCN had only one conformer 3A. The conformers differed by orientation of the N,N-dimethylcarbamoyl moiety relative to the metallacycle plane. In both crystals 3 and 3·2MeCN, the molecules of the Pt(II) complex are associated into supramolecular dimers, either {3A}2 or {3B}2, via stacking interactions between the planes of two metal centers, which are additionally supported by hydrogen bonding. The theoretical consideration, utilizing a number of computational approaches, demonstrates that the C···dz2(Pt) interaction makes a significant contribution in the total stacking forces in the geometrically optimized dimer [3A]2 and reveals the dz2(Pt)→π*(PyCN) charge transfer (CT). The presence of such CT process allowed for marking the C···Pt contact as a new example of a rare studied phenomenon, namely, tetrel bonding, in which the metal site acts as a Lewis base (an acceptor of noncovalent interaction). Full article
Show Figures

Figure 1

13 pages, 8611 KiB  
Article
Platinum on High-Entropy Aluminate Spinels as Thermally Stable CO Oxidation Catalysts
by Christopher Riley, Andrew De La Riva, Nichole Valdez, Ryan Alcala, Ping Lu, Richard Grant, Angelica Benavidez, Mark Rodriguez, Abhaya Datye and Stanley S. Chou
Catalysts 2024, 14(3), 211; https://doi.org/10.3390/catal14030211 - 21 Mar 2024
Cited by 2 | Viewed by 1996
Abstract
Thermal degradation is a leading cause of automotive catalyst deactivation. Because high-entropy oxides are uniquely stabilized at high temperatures via an increase in configurational entropy, these materials may offer new mechanisms for preventing the thermal deactivation of precious metal catalysts. In this work, [...] Read more.
Thermal degradation is a leading cause of automotive catalyst deactivation. Because high-entropy oxides are uniquely stabilized at high temperatures via an increase in configurational entropy, these materials may offer new mechanisms for preventing the thermal deactivation of precious metal catalysts. In this work, we evaluated platinum loaded on simple and high-entropy aluminate spinels (MAl2O4, where M = Co, Cu, Mg, Ni, or mixtures thereof) in carbon monoxide oxidation before and after aging at 800 °C. Pt supported on all simple spinels showed significant deactivation after thermal aging compared to the fresh samples, with T90 increasing by at least 60 °C. However, Pt on high-entropy spinels had nearly the same or better activity after aging, with T90 increasing by only 6 °C at most. During aging and reduction, copper exsolved from the spinel supports and alloyed with platinum. This interaction promoted low temperature oxidation activity, presumably through weakened CO binding, but did not prevent deactivation. On the other hand, Co, Mg, and Ni constituents promoted stronger CO bonding, as evidenced by apparent negative order kinetics and poor activity at low temperatures. High-entropy spinels, containing a variety of active metals, displayed synergetic reactant adsorption capacity and cooperative effects with supported platinum particles, which collectively prevented thermal deactivation. Full article
(This article belongs to the Special Issue Catalytic CO Oxidation and Preferential CO Oxidation (PROX) II)
Show Figures

Figure 1

14 pages, 2690 KiB  
Review
Recently Reported Biological Activities and Action Targets of Pt(II)- and Cu(II)-Based Complexes
by Cristhian Eduardo Maciel-Flores, Juan Antonio Lozano-Alvarez and Egla Yareth Bivián-Castro
Molecules 2024, 29(5), 1066; https://doi.org/10.3390/molecules29051066 - 29 Feb 2024
Cited by 9 | Viewed by 2211
Abstract
Most diseases that affect human beings across the world are now treated with drugs of organic origin. However, some of these are associated with side effects, toxicity, and resistance phenomena. For the treatment of many illnesses, the development of new molecules with pharmacological [...] Read more.
Most diseases that affect human beings across the world are now treated with drugs of organic origin. However, some of these are associated with side effects, toxicity, and resistance phenomena. For the treatment of many illnesses, the development of new molecules with pharmacological potential is now an urgent matter. The biological activities of metal complexes have been reported to have antitumor, antimicrobial, anti-inflammatory, anti-infective and antiparasitic effects, amongst others. Metal complexes are effective because they possess unique properties. For example, the complex entity possesses the effective biological activity, then the formation of coordination bonds between the metal ions and ligands is controlled, metal ions provide it with extraordinary mechanisms of action because of characteristics such as d-orbitals, oxidation states, and specific orientations; metal complexes also exhibit good stability and good physicochemical properties such as water solubility. Platinum is a transition metal widely used in the design of drugs with antineoplastic activities; however, platinum is associated with side effects which have made it necessary to search for, and design, novel complexes based on other metals. Copper is a biometal which is found in living systems; it is now used in the design of metal complexes with biological activities that have demonstrated antitumoral, antimicrobial and anti-inflammatory effects, amongst others. In this review, we consider the open horizons of Cu(II)- and Pt(II)-based complexes, new trends in their design, their synthesis, their biological activities and their targets of action. Full article
(This article belongs to the Special Issue New Trends in Developing Complexes as Biological Active Species II)
Show Figures

Graphical abstract

Back to TopTop