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Abstract: The nucleophilic addition of 3-(4-cyanopyridin-2-yl)-1,1-dimethylurea (1) to cis-[Pt(CNXyl)2Cl2]
(2) gave a new cyclometallated compound 3. It was characterized by NMR spectroscopy (1H, 13C, 195Pt)
and high-resolution mass spectrometry, as well as crystallized to obtain two crystalline forms (3 and
3·2MeCN), whose structures were determined by X-ray diffraction. In the crystalline structure of 3,
two conformers (3A and 3B) were identified, while the structure 3·2MeCN had only one conformer 3A.
The conformers differed by orientation of the N,N-dimethylcarbamoyl moiety relative to the metalla-
cycle plane. In both crystals 3 and 3·2MeCN, the molecules of the Pt(II) complex are associated into
supramolecular dimers, either {3A}2 or {3B}2, via stacking interactions between the planes of two metal
centers, which are additionally supported by hydrogen bonding. The theoretical consideration, utilizing
a number of computational approaches, demonstrates that the C···dz

2(Pt) interaction makes a significant
contribution in the total stacking forces in the geometrically optimized dimer [3A]2 and reveals the
dz

2(Pt)→π*(PyCN) charge transfer (CT). The presence of such CT process allowed for marking the C···Pt
contact as a new example of a rare studied phenomenon, namely, tetrel bonding, in which the metal site
acts as a Lewis base (an acceptor of noncovalent interaction).

Keywords: platinum metal complexes; tetrel bonding; stacking interactions; urea; pyridines; DFT

1. Introduction

Deprotonated diaminocarbene complexes of late transition metals have been actively
studied in the last decade [1–3]. From a practical point of view, these complexes have a lot
of advantages. They effectively catalyze the processes of C–C cross-coupling [4–8], hydrosi-
lylation [9–11], and C≡C triple-bond activation [12,13]. Moreover, several compounds are
recognized as promising antitumor agents [14,15], probes of mercury(II) ions in solutions [16],
and components of OLED devices [17].

Many studies demonstrate that a solid-state supramolecular structure plays a key role
in reactivity [18] and photophysics [2,19–21] of such compounds. Their supramolecular
organization is determined by combination of various noncovalent interaction: hydrogen
bonding (HB) [22], π···π stacking [23], metallophilic interactions [24], halogen bonding [25],
chalcogen bonding [26], pnictogen [27], and tetrel bonding (abbreviated as TtB) [28,29] etc.
In recent years, special attention has been paid to interactions in which the metal center acts
as a Lewis base (a nucleophile) due to a lone pair of electrons in the dz

2 orbital [30]. Particu-
larly, metal-involved halogen bonds [31–36], chalcogen bonds [37], spodium bonds [20],
pnictogen bonds [38], and πh/C···M interactions [39–43] have been recognized. To contrast,
in most examples of metal-involved TtB, a metal (commonly, tin or lead) is a σ- or π-hole
donor, i.e., electrophilic site [44–47]. These interactions are the focus of many studies [48,49]
due to importance of lead and tin coordination compounds for materials science [50–53].
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At the same time, the TtB, in which the metal site acts as a Lewis base was only recently de-
scribed. Particularly in our previous work, we experimentally and theoretically evidenced
that the C···dz

2(Pt) TtB can be a main component of metal-involving stacking interactions
between half-lantern PtII

2 complexes and electron-deficient arenes [54,55].
In this work, we report a new example of C···dz

2(Pt) TtB, which is responsible for
supramolecular dimerization of one of two possible conformers of a deprotonated di-
aminocarbene Pt(II) complex in a solid state. To describe this TtB, X-ray diffraction data
of the platinum complex and a combination of quantum chemical methods were used; all
these results are given in the sections below.

2. Results and Discussion
2.1. Synthesis and Characterization of 3

Target complex 3 (Scheme 1) was prepared according to the previously reported method-
ology [10,56]: the treatment of 3-(4-cyanopyridin-2-yl)-1,1-dimethylurea (1) with equivalent
amounts of cis-[Pt(CNXyl)2Cl2] and triethanolamine in chloroform at room temperature
(Scheme 1). The complex was studied using NMR (1H, 13C, 195Pt) spectroscopy and HR mass
spectrometry. All obtained data are in a full agreement with the supposed structure and
display common features of such compounds [15]. In particular, in the 1H and 13C NMR
spectra, splitting of the signals of the methyl groups in the carbamoyl and xylyl moieties was
observed, which indicates the double-bond character of the carbon–nitrogen bond. In the 1H
spectra of both compounds, the α-CH protons of the pyridine rings appear as broad doublets
(9.50 ppm), while in the starting urea 1 1H spectrum the corresponding proton resonates at
8.31 ppm. In addition, the chemical shift of 195Pt for 3 (−3801 ppm) is close to those for other
Pt(II) metallacycles with N-pyridylurea-based ligands (−3809–3802 ppm) [10,15].
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conformers of complex 3, namely, 3A (the carbamoyl moiety is turned by carbonyl group 
towards a viewer, Figure 1 Left) and 3B (the carbamoyl moiety is turned by methyl group 
towards a viewer, Figure 1 Right). Notably, among four previously published examples 
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Scheme 1. Synthesis of the cyclometallated complex 3 with 3-(4-cyanopyridin-2-yl)-1,1-dimethylurea
ligand.

2.2. Crystals and Their X-ray Structures

The complex was crystallized from 1,2-dichloroethane and MeCN to give two dif-
ferent crystalline forms: 3 and 3·2MeCN, the structures of which were determined by
X-ray diffraction. The crystal structure of 3 includes two crystallographically independent
molecules of the metal complex, differing in the orientation of the N,N-dimethylcarbamoyl
moiety (Figure 1). Thus, these two types of molecules can be considered as two possible
conformers of complex 3, namely, 3A (the carbamoyl moiety is turned by carbonyl group
towards a viewer, Figure 1 Left) and 3B (the carbamoyl moiety is turned by methyl group
towards a viewer, Figure 1 Right). Notably, among four previously published examples of
Pt(II) cyclometallated complexes with N-pyridylureas as a ligand [10,15], three structures
(CSD refcodes: CAMPOZ, CAMQUG, PESLEI) represent type A conformers and one struc-
ture (CSD refcode CAMPIT) contains a type B conformer. In the structure of 3·2MeCN,
only conformer 3A was revealed.
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Figure 1. Two conformers 3A (left) and 3B (right) of the complex 3, realized in its crystal structure. The
xylyl moieties are omitted for simplicity.

In both structures (3 and 3·2MeCN), the molecules of the metal complex are associated
into supramolecular dimers via stacking interactions between two metal square-planes
(each of which includes the 4-cyanopyridine moiety and the Pt(II)-based metallocycle,
Figures 2 and S1, Tables 1 and 2), with additional supporting by several hydrogen bonds.
In the structure of 3, conformers 3A and 3B form two types of dimers ({3A}2 (Figure 2a)
and {3B}2) (Figure 2b), in which the carbamoyl moieties are oriented relative to each other,
like “C=O to C=O” ({3A}2) and like “CH3 to CH3” ({3B}2). In dimer {3A}2, the molecules
of the metal complex are located much closer to each other in comparison with {3B}2.
Particularly in {3A}2, the shortest interplanar distance is the distance between two pyridine
rings (3.479(3) Å; the shortest C···C contact is 3.386(5) Å; Table 1) and it has an appropriate
value for typical π···π stacking (3.41–3.61 Å) [57,58]. In contrast, in {3B}2, the metal square-
planes are more parallel displaced in comparison with {3A}2, which is illustrated by the
“r” value (the distance between the centroid of one of the ring and the projection of the
centroid of a π···π stacked ring to the first plane, Table 1). They are 0.948(5) Å and 1.805(6) Å
for {3A}2 and {3B}2, respectively. The interplanar distance in {3B}2 is significantly larger
(3.987(3) Å) than in {3A}2. The shortest C···C contact in {3B}2 is 3.613(6) Å, which is at the
end of the range of typical π···π stacking interactions (3.41–3.61 Å) [57,58]. According to
our observation, this difference is caused by the steric repulsion of two methyl groups of
the carbomoyl moieties facing each other in the case of the dimer {3B}2.

Table 1. Geometrical parameters of the π···π stacking interactions in crystal structures of 3 and
3·2MeCN.
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Table 2. Geometrical parameters of the observed C···Pt contacts in supramolecular dimers {3A}2,
{3A’}2, {3B}2.

Dimer Contact d(C···Pt), Å
Nc a

Bondi Alvarez

{3A}2
C3···Pt1 3.527(3) 1.02 0.87

C27···Pt1 3.419(4) 0.99 0.84

{3B}2
C3A···Pt1A 3.677(4) 1.07 0.91
C27A···Pt1A 3.848(4) 1.12 0.95

{3A’}2
C3···Pt1 3.414(3) 0.99 0.84

C27···Pt1 3.633(3) 1.05 0.89

[3A]2
C3···Pt1 3.36 0.97 0.83

C27···Pt1 3.42 0.99 0.84

[3B]2
C3···Pt1 3.77 1.09 0.93

C27···Pt1 4.48 1.30 1.10
a Herein and below, the “normalized contact” (Nc) is the ratio between the observed C···Pt distances and the sum
of van der Waals radii of involved atoms, ΣBvdW (C + Pt) = 3.45 Å [59,60]; ΣAvdW (C + Pt) = 4.06 Å [61,62].

In the structure of 3·2MeCN, conformer 3A also provides the dimer with “C=O to
C=O” arrangement of the carbamoyl moieties; however, its geometry is slightly different
({3A’}2, Figure S1). In this case, the shortest interplanar distance is between the pyridine
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ring and the metallacycle (3.547(2) Å; the shortest C···C contact is 3.275(5) Å), which also
belongs to the range of typical π···π stacking interactions (3.41–3.61 Å) [57,58].

The metal centers in all dimers form contacts with the 4-cyanopyridine moieties
(PyCN), namely, the CCN–CPy bonds are located above the Pt atoms. The shortest PtII-
involved contacts are CCN···Pt (3.419(4) Å), CPy···Pt (3.414(3) Å), and CPy···Pt (3.677(4) Å)
for {3A}2, {3A’}2, and {3B}2, respectively (Figure 2 and S1, Table 2). In the case of {3A}2 and
{3A’}2, both C···Pt distances are less than the sum of the Bondi vdW radii
(ΣBvdW (C + Pt) = 3.45 Å) [59,60], and all three C···Pt distances for {3A}2, {3A’}2, and
{3B}2 are less than the sum of the Alvarez vdW radii (ΣAvdW (C + Pt) = 4.06 Å) [61,62].
It should be mentioned that in the previous work [55], describing Pt···C tetrel bond, the
C···Pt distances were larger that the corresponding ΣBvdW. Moreover, according to results
of the early performed CSD search [55], the C···Pt contacts in our structures belong to top
15% of the shortest known C···Pt contacts.

As it was mentioned above, the stacking interactions are additionally supported by
hydrogen bonds (H2C–H···N for all dimers and CPy–H···O for {3A}2 and {3A’}2) (Figure 2).
Geometrical parameters of these hydrogen bonds are collected in Table S3. Moreover, in the
dimer {3B}2, a CPy···Cl short contact was observed (3.579(4) Å vs. ΣBvdW [59] (C + Cl) = 3.45 Å
and Alvarez radii sum ΣAvdW (C + Cl) = 3.59 Å) [61,62].

2.3. Theoretical Considerations of the Dimers [3A]2 and [3B]2

Several forces, including C···Pt TtB, C···Cl TtB, and π···π interactions, as well as CPy–
H···O and H2C–H···N HBs, are responsible for the formation of supramolecular dimers
{3A}2 and {3B}2. The nature of these interactions was studied theoretically by the DFT
(PBE0-D3BJ) method. Since the crystal packing may significantly affect the intermolecular
interactions, we carried out the geometry optimization of three isolated bimolecular clusters
with starting geometries {3A}2 and {3A’}2 and {3B}2 and obtained two geometry optimized
dimes abbreviated as [3A]2 and [3B]2. It should be noted that the geometry of the optimized
dimer [3A]2 was the same regardless of the starting dimer ({3A}2 or {3A’}2) and only slightly
differed from the starting X-ray dimers. The geometry-optimized dimer [3B]2 demonstrated
changes that led to elongation of the C···Pt contact with simultaneous shortening of the
C···Cl contact as compared to the X-ray dimer {3B}2.

The nature of C···Pt and C···Cl contacts that occurred between molecules of 3 was
investigated by the wave analysis including the quantum theory of atoms in molecules
(QTAIM) [63,64], independent gradient model based on Hirshfeld partition (IGMH) [65],
electron localization function (ELF) [66], the charge displacement function (CDF) [67,68],
methods combined with the extended transition state natural orbital for chemical valence
theory (ETS–NOCV) [69], and natural bond orbital (NBO) [70] methods. Moreover, interaction
energies were estimated according to super-molecular (SM) approach and the generalized
Kohn–Sham energy decomposition analysis (GKS-EDA) [71].

2.3.1. Molecular Electrostatic Potential

As the first step of the theoretical study, the MEP of both conformers 3A and 3B was
computed at the DFT (PBE0-D3BJ/ZORA-def2-TZVP) level of theory (Figure 3). Platinum
atoms for both 3A and 3B are characterized by electronegative potential (Vs,min = (−6)–
(−2) kcal/mol (3A) and (−10)–(−5) kcal/mol (3B)). For both conformers, two positive
regions were revealed: first, on the center of the pyridine ring on both sides of the cycle
(Vs,max = 16–20 kcal/mol (3A) and 11–17 kcal/mol (3B)) and second, a belt between the C
and N atoms of the cyano group ring (Vs,max = 14 for 3A and 12 kcal/mol for 3B). Such
belt is typical for cyano groups [72].
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Figure 3. MEP distributions for the optimized structures of conformers 3A (a) and 3B (b); Vs,max
and Vs,min values in kcal/mol, electron density isosurfaces 0.001 a.u. The potential values are given
for the Pt, C, Cl atoms, as well as for the C of the pyridine ring.

For a more precise analysis of the presence of π-holes on carbon atoms, we constructed
the dependence of the MEP (0.001) value on the angle in the plane passing through the CN
group and the pyridine ring [73]. Examination of the plot (Figure 4) for 3A indeed confirms
the presence of maxima at angles of 108◦ and 150◦. The first maximum corresponds to
the π-hole on the carbon atom of the CN group, while the second maximum relates to the
π-hole on the carbon atom of the pyridine ring. It should be noted that the π-hole is shifted
towards the center of the ring, which is characteristic of aromatic rings [74].
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2.3.2. QTAIM and IGMH

Analysis of both optimized bimolecular clusters ([3A]2 and [3B]2) using the QTAIM
method allowed identification of bond critical points (BCPs, maxima of the density along
bond paths) and bond paths, indicating interatomic interactions C···Pt, C···Cl, C···C, and
HBs (Table 3 and Figure 5). Since the clusters are symmetrical, only unique contacts will
be discussed in the manuscript to avoid a repetition. The small electron density values
(ρb = 0.003–0.012 a.u.), positive Laplacian (∇2ρb = 0.012–0.042 a.u.), and positive total
energy densities (Hb = 0.001–0.002 a.u.) indicate all these contacts are weak closed-shell
noncovalent interactions. The electronic density at the BCPs for the C···Pt contact in [3A]2
is greater than in [3B]2, while the opposite trend is observed for the C···Cl contact. These
results indicate that the C···Pt interaction is stronger in [3A]2, whereas the C···Cl interaction
is stronger in [3B]2. The ELF value at the C···Pt and C···Cl bond critical points is 0.04,
indicating efficient bonding between Pt or Cl and the C centers.

Table 3. Electron density (ρb), its Laplacian (∇2ρb), potential and kinetic energy densities (Vb and
Gb), second eigenvalue of the Hessian matrix (λ2) (in a.u.), electron localization function at BCPs
calculated.

Cluster Contact ρb ∇2ρb Vb Gb Hb λ2 ELF Eint(HB)

[3A]2 C3···Pt1 0.0098 0.0283 −0.0051 0.0061 0.0010 −0.0026 0.0427 -
C1···C5 0.0062 0.0208 −0.0031 0.0042 0.0010 −0.0011 0.0203 -
H2···O1 0.0084 0.0340 −0.0050 0.0067 0.0018 −0.0049 0.0210 −1.6

H23···N6 0.0098 0.0345 −0.0053 0.0070 0.0017 −0.0091 0.0334 −1.7
C4···Cl1 0.0050 0.0166 −0.0023 0.0032 0.0009 −0.0008 0.0170 -

[3B]2 C33···Pt1A 0.0079 0.0204 −0.0037 0.0044 0.0007 −0.0020 0.0400 -
C4A···Cl1A 0.0091 0.0276 −0.0045 0.0057 0.0012 −0.0039 0.0384 -
H22F···Cl1A 0.0035 0.0102 −0.0015 0.0020 0.0005 −0.0018 0.0127 −0.5
H25E ···Cl1A 0.0059 0.0193 −0.0028 0.0038 0.0010 −0.0033 0.0199 −0.9
H25E···H1A 0.0063 0.0215 −0.0034 0.0044 0.0010 −0.0045 0.0190 −1.1
H23E···N6A 0.0121 0.0418 −0.0067 0.0086 0.0019 −0.0114 0.0437 −2.1
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Figure 5. Sign(λ2)ρ(r) function mapped on the δginter isosurface (δginter = 0.006 a.u. and blue–cyan–
green–yellow–red color scale −0.01 < sign(λ2)ρ(r) < 0.01; top) and the δGatom colored structure (BCPs
are shown as red dot, selected bond paths are shown as orange lines; bottom) for the structure of
[3A]2 (a) and [3B]2 (b).
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The QTAIM analysis also reveals the presence of various HBs that are involved in the
association of 3A and 3B molecules into corresponding dimers. To estimate HBs energy we
used the Espinosa–Molins–Lecomte formula [75] (Eint(HB) ≈ 0.5Vb). Values of HBs energy
were calculated, with energies ranging from −0.5 to −2.1 kcal/mol. The HB energy values
are given in the Table 3 for each dimer.

In addition, two BCPs and bond paths corresponding to C···C interactions, which
confirm π···π stacking between the arene rings, were found in the calculated structure [3A]2.
The ρb values indicate that these C···C interactions are weaker than the corresponding
C···Pt contacts and HBs.

The IGMH isosurface for [3A]2 shows large areas of attractive interactions between the
π-systems of two 3A molecules, corresponding to the C···Pt and C···C contacts (Figure 5b).
At the same time, for the C···Cl contact, the isosurface at values of δg(inter) = 0.006 is not
detected, indicating a negligible contribution of C···Cl to dimer bonding. The investigation
of the δGatoms distribution [76] (Figure 5a) shows that the Pt atom indeed makes the largest
contribution to the interactions between the π-systems, demonstrating the key role of the
metal in supramolecular dimerization of 3A. Negative sign(λ2)ρ(r) functions were also
found between N or O atoms and H atoms, indicating intermolecular HB N···H and O···H.

For the IGMH isosurface (Figure 5b) of the [3B]2 dimer, green disk-shaped surfaces
were found between the atoms (Pt or Cl) and C atom, confirming the presence of C···Cl
and C···Pt contacts. However, the Cl atom dominates in dimer bonding, as evidenced by
the δGatom contribution distribution scheme. The presence of HB in the dimer structure is
also confirmed by the IGMH method.

2.3.3. ETC-NOCV/CDF and NBO

The charge transfer (CT) effect is critical for categorizing a noncovalent interaction
into a specific type. As has previously been shown, CT significantly contributes to the
metal-involving TtB in cocrystals of [Pt(pbt)(µ-S∩N)]2 (S∩N = 2-thiopyridine, pbt = 2-
phenylbenzothiazole) with electron-deficient arenes [55]. We analyzed the CT in [3A]2 and
[3B]2 using the CDF and ETS-NOCV methods. ETS-NOCV enables estimation of individual
orbital contributions to the electron density difference between isolated molecules and their
resultant bimolecular cluster (Figure 6). Meanwhile, CDF visualizes and quantifies the CT
at the moment of bond formation.
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According to ETS-NOCV data of [3A]2 (Figure 6a), dz2(Pt)→π*(PyCN) (PyCN is 4-
cyanopyridine moiety) orbital interaction results in the electron density accumulation in
the intermolecular space between fragments. This interaction provides 60% of the total
energy of the orbital interaction (Eint

orb) between of two molecules of 3A in the bimolecular
cluster [3A]2. Analysis of the CDF curve for this pair of NOCV demonstrates the presence
of the CT, which is estimated at 10 millielectron (me) (Figure 7a). In other cases, orbital
interactions associate with HBs and intramolecular polarization in the absence of effective
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intermolecular CT. The involvement of charge transfer with platinum is also confirmed by
the increase in Hirshfeld charges charge on the Pt atom by 4 me.
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Second-order perturbation theory (E2), based on NBO analysis, also reveals the pres-
ence of dz

2(Pt)→π*(PyCN) CT. NBO analysis shows that the direct CT in the C···Pt con-
tact is associated with lone pair transitions from dz

2(Pt) to π*-orbital of PyCN moiety
with total second-order perturbation energies E(2) −0.76 kcal/mol (Figure 8). Thus, the
dz

2(Pt)→π*(PyCN) CT is an important component of the studied C···dz
2(Pt) interaction,

and, therefore, this noncovalent contact should be attributed to TtB.
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[3A]2; PyCN is a 4-cyanopyridine moiety.

NOCV results indicate significant orbital interactions (50% of the total Eint
orb) between

the Cl atom and π*(PyCN) for the dimer [3B]2. According to the CDF curve, the charge
transfer amounts to 28 me, considerably exceeding the analogous value for the [3A]2 dimer
(Figure 7b). This indicates pronounced CT from the chloride orbitals to the π*(PyCN)
orbital. The Hirshfeld charges on the chlorine atom decrease from −0.328e to −0.309e,
while the charges on the platinum atom remain practically unchanged. Due to the CT,
the C···Cl interaction in the [3B]2 dimer satisfies the criteria of a TtB. In contrast to the
dimer [3A]2, the dz

2(Pt)→π*(PyCN) orbital interaction is absent in the dimer [3B]2. The
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HB, orbital polarization, and intramolecular electron distribution are responsible for the
residual part of the total Eint

orb.
NBO analysis results also emphasize the definitive role of the chloride ligand in

enabling orbital interactions between complexes in the [3B]2 dimer. The total energy of
the lp(Cl)→π*(PyCN) donor–acceptor interaction is 2.1 kcal/mol, exceeding the analogous
value for dz

2(Pt)→π*(PyCN) in the dimer [3A]2 (Figure 9). Thus, in the dimer [3A]2, the
dz

2(Pt)→π*(PyCN) interaction mediated by charge transfer is dominant, while in the [3B]2
dimer, the lp(Cl) interaction with π*(PyCN) prevails over the analogous dz

2(Pt)→π*(PyCN)
interaction, serving as the primary center of orbital interactions. At the same time, the
C···dz

2(Pt) interaction in the [3B]2 cannot be classified as a tetrel bond due to the lack of
CT involving platinum. Based on the significant charge transfer, the dz

2(Pt)→π*(PyCN)
interaction in the dimer [3A]2 and the lp(Cl)→π*(PyCN) interaction in the dimer [3B]2 can
be attributed to tetrel bonds.
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2.3.4. Interaction Energies

The overall interaction and binding (ΣEint
SM and ΣEb

SM) energies for the formation of
bimolecular clusters [3A]2 and [3B]2 were calculated using the SM approach. The corrected
interaction energies for the BSSE error are given in the Table 4. These energies have values
of more than 20 kcal/mol, which correspond to strong noncovalent interaction. As indi-
cated in Section 2.3.2, two types of noncovalent force are responsible for the association of
3A into the bimolecular cluster [3A]2, i.e., the stacking interaction (with participation of
C···dz

2(Pt) TtB) between two planes, each of which consists of the 4-cyanopyridine moiety
and the Pt(II)-based metallocycle, and several HBs. In order to quantitatively estimate the
energy of the stacking interaction and C···dz

2(Pt) TtB in [3A]2, interaction energy calcula-
tions were performed on specifically constructed model systems (M[3A]2 and M1[3A]2;
(Figure 10a). To eliminate the influence of auxiliary HBs, in the first simplified model
of the M[3A]2 the dimethylcarbamoyl and xylyl moieties were replaced with hydrogen
atoms located at a distance of 1 Å. In the second model of the M1[3A]2, to eliminate the
coordination bond with the metal, the {PtClCNH} fragment was removed from the M[3A]2
structure (Figure 10b), which made it possible to calculate the energy of the pure π···π
interaction between the aromatic systems. Thus, by subtracting the interaction energy
of the second model from the first one, it is possible to estimate the contribution of the
tetrel bond C···dz

2(Pt) (according to the formula: Eint(C···dz
2(Pt))SM= (Eint (M [3A]2

SM) −
Eint(M1[3A]2)SM)). The obtained values of the energies of π···π stacking and C···dz

2[Pt]
were −12 kcal/mol and −5 kcal/mol, respectively. The remaining part of the energy
−9.2 kcal/mol is accounted for by intermolecular hydrogen bonds, which is consistent
with the results of estimating their energy by the QTAIM method (Section 2.3.2). Thus,
the contribution of the C···dz

2(Pt) TtB interaction accounts for 45% of the total interaction
energy for the dimer [3A]2, proving the important role of tetrel bonding interactions with
the metal in the association of the complex 3.



Int. J. Mol. Sci. 2024, 25, 4052 11 of 18

Table 4. Calculated interaction and binding energies (Eint and Eb, respectively).

[3A]2 [3B]2

Eint
SM −26.5 −25.0

Eint
SM(M) −17.0 −20.1

Eint
SM(M1) −5.3 −3.6

Eb
SM −21.3 −20.9

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 10. Model bimolecular clusters (a) M[3A]2 and (b) M1[3A]2. 

A similar calculation procedure was also conducted for the second dimer, except that 
the C···lp(Cl) interaction energies were calculated instead of C···Pt (according to the for-
mula: Eint(C··· lp(Cl))SM = (Eint(M [3B]2 M) − Eint(M1[3B]2)SM)). It can be concluded that the TtB 
C···lp(Cl) interaction in the second dimer is the dominant one and accounts for 66% of the 
total interaction energy between the molecules 3B in the dimer. In comparison, in the first 
dimer the contribution of the TtB C···Pt interaction was 45% of the total binding energy. 
Thus, the results of the model system energy calculations demonstrate the significance of 
both platinum and chlorine as nucleophilic centers providing intermolecular interaction 
through the formation of TtBs with the carbon of the pyridine ligand. Both kinds of inter-
actions play an important role and are a determining factor in the dimerization of the 
complexes in the considered dimer types. 

Finally, we applied the GKS-EDA method [71] to M[3A]2 and M[3B]2 in order to gain 
further insight into the nature of the studied interaction (Table 5). In both dimers, we ob-
serve a similar composition of energy components. The GKS-EDA results indicate the pre-
dominantly dispersive character of the attractive interactions, accounting for 54% and 51% 
of the total attractive energy in M[3A]2 and M[3B]2, respectively. The electrostatic compo-
nent makes the second largest contribution to the attractive energy, comprising 34% and 
38% of the total attractive interaction in M[3A]2 and M[3B]2, respectively. The polarization 
component, although relatively insignificant and amounting to only 12% and 11%, how-
ever, plays a stabilizing role in the attractive interaction in M[3A]2 and M[3B]2, respec-
tively. 

Table 5. Calculated energy interaction and Eint decomposition (all in kcal/mol). 

Clusters ΔEEle ΔEPaule ΔEPol ΔEDisp ΔEint 
M[3A]2 −17.0 31.7 −5.7 −26.7 −17.0 
M[3B]2 −17.3 25.1 −4.9 −23.1 −20.2 

The GKS-EDA results underscore dispersion as the predominant source of attractive 
interactions that stabilize the dimerization of the studied conformers of the complex 3. 
The comparable energetic decomposition for bimolecular model M[3A]2 and M[3B]2 fur-
ther evinces the analogous interaction mechanisms for dimers connected through 
C···dz2(Pt) and C···lp(Cl) TtBs. 

3. Conclusions 
We found the Pt(II) complex 3 bearing deprotonated 3-(4-cyanopyridin-2-yl)-1,1-di-

methylurea as a ligand was crystallized in form of two conformers 3A and 3B, owing to 
different orientation of the N,N-dimethylcarbamoyl moiety, in the structure of 3, and only 

Figure 10. Model bimolecular clusters (a) M[3A]2 and (b) M1[3A]2.

A similar calculation procedure was also conducted for the second dimer, except
that the C···lp(Cl) interaction energies were calculated instead of C···Pt (according to the
formula: Eint(C··· lp(Cl))SM = (Eint(M [3B]2

M) − Eint(M1[3B]2)SM)). It can be concluded that
the TtB C···lp(Cl) interaction in the second dimer is the dominant one and accounts for 66%
of the total interaction energy between the molecules 3B in the dimer. In comparison, in the
first dimer the contribution of the TtB C···Pt interaction was 45% of the total binding energy.
Thus, the results of the model system energy calculations demonstrate the significance of
both platinum and chlorine as nucleophilic centers providing intermolecular interaction
through the formation of TtBs with the carbon of the pyridine ligand. Both kinds of
interactions play an important role and are a determining factor in the dimerization of the
complexes in the considered dimer types.

Finally, we applied the GKS-EDA method [71] to M[3A]2 and M[3B]2 in order to gain
further insight into the nature of the studied interaction (Table 5). In both dimers, we
observe a similar composition of energy components. The GKS-EDA results indicate the
predominantly dispersive character of the attractive interactions, accounting for 54% and
51% of the total attractive energy in M[3A]2 and M[3B]2, respectively. The electrostatic
component makes the second largest contribution to the attractive energy, comprising
34% and 38% of the total attractive interaction in M[3A]2 and M[3B]2, respectively. The
polarization component, although relatively insignificant and amounting to only 12% and
11%, however, plays a stabilizing role in the attractive interaction in M[3A]2 and M[3B]2,
respectively.

Table 5. Calculated energy interaction and Eint decomposition (all in kcal/mol).

Clusters ∆EEle ∆EPaule ∆EPol ∆EDisp ∆Eint

M[3A]2 −17.0 31.7 −5.7 −26.7 −17.0
M[3B]2 −17.3 25.1 −4.9 −23.1 −20.2

The GKS-EDA results underscore dispersion as the predominant source of attractive
interactions that stabilize the dimerization of the studied conformers of the complex 3. The
comparable energetic decomposition for bimolecular model M[3A]2 and M[3B]2 further
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evinces the analogous interaction mechanisms for dimers connected through C···dz
2(Pt)

and C···lp(Cl) TtBs.

3. Conclusions

We found the Pt(II) complex 3 bearing deprotonated 3-(4-cyanopyridin-2-yl)-1,1-
dimethylurea as a ligand was crystallized in form of two conformers 3A and 3B, owing to
different orientation of the N,N-dimethylcarbamoyl moiety, in the structure of 3, and only
one conformer 3A in 3·2MeCN. Independently on the type of conformer, molecules of 3 are
associated into the “plane-to-plane” supramolecular dimers, {3A}2 or {3B}2, correspond-
ingly. The stacking interaction between two metal square-planes, each of which consists of
the 4-cyanopyridine moiety and the Pt(II)-based metallocycle, as well as hydrogen bonding,
are responsible for the formation of these dimers. In its turn, the stacking interaction
includes several components, namely, a π···π interaction between the heteroaromatic rings
and a C···dz

2(Pt) contact between the carbon atom of the substituted 4-cyanopyridyl moiety
and the metal center. The contact C···dz

2(Pt) in {3A}2 was attributed to metal-involving TtB,
in which the metal site acts as a Lewis base (an acceptor of noncovalent interaction). This
suggestion is based on structural parameters and quantum chemical calculation data for the
optimized dimer [3A]2. Particularly, there is (1) the presence of a C···Pt short interatomic
distance in the X-ray crystal structure; (2) the presence of a bond critical point and bond
path in the QTAIM analysis; (3) the presence of a π-hole on the nitrile carbon atom and pyri-
dine ring (as pronounced local maxima on the MEP surface); (4) the presence of significant
charge transfer (more than 5 me) from the nucleophile’s orbital to the vacant π-orbital in-
volving the π-hole of the electrophile (the carbon atom); (5) negative value of the interaction
energy. A similar example of metal-involving TtB was previously described for cocrystals
of a binuclear platinum(II) complex with perfluorinated aromatic compounds [55]. In both
these cases, the platinum(II) centers behave as TtB acceptors, which becomes possible due
to the enhanced nucleophilicity of this metal center. In contrast, the X-ray dimer {3B}2
has different geometry to the corresponding optimized dimer [3B]2: the C···Pt contact
is lengthened and weakened after optimization, and the optimized dimer [3B]2 exhibits
C···lp(Cl) TtB as one of the strongest noncovalent forces, which was confirmed theoretically.

The most significand finding of this work is the TtB C···dz
2(Pt) in {3A}2. We believe

that new example of a metal-involving TtB will significantly expand understanding the
phenomenon of noncovalent interactions involving a transition metal as a Lewis base.

4. Experimental Section
4.1. Materials and Instrumentation

3-(4-Cyanopyridin-2-yl)-1,1-dimethylurea (1) [77] and cis-[PtCl2(CNXyl)2] 2 [78] were
synthesized according to the literature protocols. All other reagents and solvents were purchased
and were used as received in BLDPharm (Shanghai, China), Macklin (Shanghai, China).

1H, 13C, and 195Pt NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer
operating at room temperature at 400, 101, and 86 MHz for 1H, 13C, and 195Pt NMR spectra,
respectively. All spectra were registered using CDCl3 as a solvent. The chemical shifts are
given in δ-values (ppm). Multiplicities are abbreviated as follows: s = singlet, d = doublet,
t = triplet, m = multiplet, br = broad; coupling constants, J, are reported in Hertz (Hz). High-
resolution mass spectra (HRMS) were measured on Bruker Maxis HR-MS-ESI-qTOF using
ESI. The most intense peak in the isotopic pattern is reported.

4.2. Synthesis of Complex 3

Triethanolamine (18 mg, 0.12 mmol) was added to a mixture of the urea 1 (19 mg,
0.10 mmol) and cis-[PtCl2(CNXyl)2] 2 (81 mg, 0.12 mmol) in CHCl3 (3 mL). The reaction
mixture was stirred at RT for 24 h. After that, the reaction mixture was filtered to remove a
small amount of undissolved material (triethanolamine hydrochloride) and evaporated to
dryness at 45 ◦C in vacuo. Complex 3 was purified by reprecipitation from dichloromethane.
It was dissolved in dichloromethane (0.3 mL) and diluted with MeOH (1.1 mL). The formed
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precipitate was collected by filtration, washed with hexane, and dried in vacuo at RT. Light
yellow powder; 44% yield (30 mg). 1H NMR (400 MHz, CDCl3): δ 9.50 (dd, J = 6.3, 0.8 Hz,
1H), 7.18–7.09 (m, 3H), 6.99 (d, J = 7.6 Hz, 2H), 6.78 (d, J = 7.5 Hz, 1H), 6.64 (d, J = 7.5 Hz,
1H), 6.17 (t, J = 7.5 Hz, 1H), 3.22 (s, 3H), 3.16 (s, 3H), 2.25 (s, 6H), 2.22 (s, 3H), 2.19 (s, 3H).
13C NMR (101 MHz, CDCl3): δ 157.1, 153.1, 150.4, 148.7, 147.7, 134.5, 129.2, 128.4, 128.0,
127.5, 127.4, 127.0, 124.9, 123.5, 115.9, 115.4, 111.5, 38.4, 36.7, 19.6, 19.3, 18.4. 195Pt NMR
(86 MHz, CDCl3): δ −3801. HRMS (ESI) m/z [M–Cl]+ calculated for [C27H27ClN6OPt–Cl]+

646.1889; found 646.1904.

4.3. Crystal Growth, Structure Solution and Refinement Details

Crystals 3 and 3·2MeCN were grown by slow evaporation of solutions of the corre-
sponding compound in 1,2-dichloroethane (3) or acetonitrile (3·2MeCN) in air at RT. X-ray
diffraction data were collected at a Rigaku XtaLAB Synergy–S diffractometers using Cu-Kα

(λ = 0.154184 nm) radiation. The structures have been solved with the ShelXT [79] structure
solution program using Intrinsic Phasing and refined with the ShelXL [80] refinement pack-
age incorporated in the OLEX2 program package [81] using Least Squares minimization.
Supplementary crystallographic data have been deposited at Cambridge Crystallographic
Data Centre: 2323847 (3) and 2323848 (3·2MeCN). They can be obtained free of charge via
www.ccdc.cam.ac.uk/data_request/cif (accessed on 14 February 2024).

4.4. Computational Details

Full geometry optimization of the model clusters has been carried out at the DFT level
of theory using the PBE0 [82,83] functional with the atom-pairwise dispersion correction
with the Becke–Johnson damping scheme (D3BJ) [84,85]. The ORCA package (version 5.0.3)
was used for the calculation [86,87]. Zero-order regular approximation (ZORA) [88] was
employed to account the relativistic effects. The X-ray structures (3 and 3·2MeCN) were
used as initial geometries for the optimization procedure. The ZORA-def2-TZVP(–f) basis
set was applied for the H, C, N, O, and Cl atoms, whereas the SARC-ZORA-TZVP basis
set was used for the Pt atom [89]. The Hessian matrix was calculated analytically for the
optimized structures to prove the location of correct minima (no imaginary frequencies).
Combination of the “resolution of identity” and the “chain of spheres exchange” algorithms
(RIJCOSX) [90] in conjunction with the auxiliary basis sets SARC/J were used [91]. Large
integration grid (DEFGRID3) was used throughout the calculations.

The single point calculations based on the equilibrium geometries were performed at
the PBE0-D3BJ level with the ZORA-def2-TZVP(–f) [88] (for H, C, N, O, and Cl) and the
SARC-ZORA-TZVP (for Pt) basis sets [89]. This level of theory was used for the estimates of
interaction energies at the super-molecular approach and for the QTAIM, ELF, IGMH, MEP,
NBO, CDF, and ETS-NOCV analyses. The natural bond orbital analysis was performed
using the NBO 7.0 program [70].

The QTAIM, ELF, IGMH, and MEP calculations were carried out using the Multiwfn
3.8 software [76,92,93] and results were visualized using the VMD program [94]. The
generalized Kohn–Sham energy decomposition analysis (GKS-EDA) [71,95] is conducted
at the PBE0-D3BJ/def2-TZVP level of theory by a local version of GAMESS-US (version
2021-R2 patch 1) [96,97]. The CDF and ETS-NOCV analyses were carried out according
to the methodology described in refs. [68,98,99] using the Multiwfn 3.8 software. Basis set
superposition error (BSSE) was estimated using the counterpoise method [100].

The interaction and binding energies between complex (Eint and Eb) were calculated
for bimolecular clusters as

Eint(3A···3A) = E([3A]2) − 2E{3A} + BSSE, (1)

Eb(3A···3A) = E([3A]2) − 2E(3A) + BSSE, (2)

where E([3A]2), and E(3A) are total energies of the optimized structures of [3A]2 and 3A,
while E{3A} are total energies of 3A in the optimized geometry of [3A]2.

www.ccdc.cam.ac.uk/data_request/cif
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms25074052/s1. X–ray diffraction data; Copies of NMR
and HRMS spectra of complex 3; Computational study; Cartesian coordinates for the studied
molecules.
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