Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = plant-based amendment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4190 KB  
Article
Effect of Two Calcium Levels and a Chicken Manure-Based Soil Amendment on Tomato Hybrid Performance
by Carlos David Carretillo Moctezuma, Abraham Francisco Aponte Herrera, José Terrones Salgado, Edgar Pérez Arriaga, Flaviano Godínez-Jaimes, María Guzmán Martínez, José Francisco Díaz-Nájera, Ramón Reyes Carreto, José C. García-Preciado and Juan Antonio Chamú-Baranda
Crops 2026, 6(1), 11; https://doi.org/10.3390/crops6010011 - 8 Jan 2026
Viewed by 141
Abstract
Calcium (Ca) is essential for tomato (Solanum lycopersicum L.) fruit quality and for preventing physiological disorders such as blossom-end rot. However, high total soil Ca does not necessarily translate into plant-available Ca due to factors such as soil pH and limited mobility. [...] Read more.
Calcium (Ca) is essential for tomato (Solanum lycopersicum L.) fruit quality and for preventing physiological disorders such as blossom-end rot. However, high total soil Ca does not necessarily translate into plant-available Ca due to factors such as soil pH and limited mobility. This study evaluated soil Ca availability and the effect of a chicken manure-based soil amendment on the growth and yield of four tomato genotypes (Pony Express F1, Palomo F1, Toro F1, and Perseo F1) grown on a loam–clay–sand soil containing 4886 ppm Ca. In the first cycle, conducted in a shade house, two Ca application levels (0% and 25% of the crop’s requirement) were tested. The 0% treatment outperformed the 25% treatment regarding yield-related traits, indicating that native soil Ca met crop demand; application of 25% Ca reduced total fruit weight and fruit number by 19.7% and 5.9%, respectively, while the 0% treatment produced 40.8% more first-quality fruits. Perseo F1 (Perseo) produced the highest yield of first-quality fruits (20.61 t ha−1), exceeding Pony Express F1 (Pony express), Palomo F1 (Palomo), and Toro F1 (Toro) by 10.8%, 6.6%, and 51.4%, respectively. In a second cycle under open-field conditions, incorporation of the chicken manure amendment significantly enhanced growth and yield: treated plants reached a 0.85 m height 58 days after transplanting, and overall yield increased to 70.08 t ha−1 compared with 50.30 t ha−1 in the control (21.9% increase). These results indicate that, while native soil Ca can satisfy crop requirements under the studied conditions, soil amendment under field conditions substantially improves plant performance and commercial yield potential. Full article
Show Figures

Figure 1

21 pages, 2068 KB  
Article
Impacts of Organic Soil Amendments of Diverse Origins on Soil Properties, Nutrient Status, and Physiological Responses of Young Chestnut (Castanea sativa Mill.) Trees
by Petros Anargyrou Roussos, Maria Ligka, Petros D. Katsenos, Maria Zoti and Dionisios Gasparatos
Agriculture 2026, 16(1), 128; https://doi.org/10.3390/agriculture16010128 - 4 Jan 2026
Viewed by 275
Abstract
Three organic soil amendments of different origins (chicken manure, fungal biomass obtained through biological fermentation, and a leonardite-based humic acid product) were applied to young chestnut trees, alongside mineral fertilizer, which when applied alone served as the control. During the second year, bud [...] Read more.
Three organic soil amendments of different origins (chicken manure, fungal biomass obtained through biological fermentation, and a leonardite-based humic acid product) were applied to young chestnut trees, alongside mineral fertilizer, which when applied alone served as the control. During the second year, bud break pattern, photosynthetic activity, leaf carbohydrate concentrations, soil properties, and leaf nutrient content were evaluated across multiple sampling events. Sampling time significantly influenced most measured parameters. The addition of organic amendments accelerated bud break, influenced plant nutrient uptake, and modified soil properties. Notably, soil organic matter increased following chicken manure and fungal biomass applications, available phosphorus decreased under fungal biomass and leonardite-based humic acids (to 14.5 and 12.4 ppm, respectively, compared to 17.5 ppm in the mineral fertilizer control), and soil iron concentrations tripled under leonardite-based humic acids relative to the control. However, no significant effects were observed on photosynthetic performance or leaf carbohydrate concentrations. Discriminant and hierarchical cluster analyses revealed clear differences among amendments, with the humic acid-based product exerting distinct effects. As there are not many data available in the literature on the efficacy of organic amendments in chestnut cultivation, the present results underscore the importance of the site-specific selection of organic amendments, tailored to soil characteristics (in the present trial, an acidic soil) and specific nutritional objectives to optimize tree physiological performance. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

21 pages, 1642 KB  
Article
Ecological Restoration of Limestone Tailings in Arid Regions: A Synergistic Substrate–Plant Approach
by Wei Hou, Dunzhu Pubu, Duoji Bianba, Zeng Dan, Zengtao Jin, Qunzong Gama, Jingjing Hu, Yang Li and Zhuxin Mao
Biology 2026, 15(1), 82; https://doi.org/10.3390/biology15010082 - 31 Dec 2025
Viewed by 196
Abstract
In arid regions, the ecological restoration of limestone tailings requires sustainable strategies, yet the synergistic effects of substrate optimization and native plant selection remain poorly understood. In this study, we systematically evaluated substrate amendments and native species for rehabilitating limestone tailings in Northern [...] Read more.
In arid regions, the ecological restoration of limestone tailings requires sustainable strategies, yet the synergistic effects of substrate optimization and native plant selection remain poorly understood. In this study, we systematically evaluated substrate amendments and native species for rehabilitating limestone tailings in Northern China’s arid zone using a controlled pot experiment. An orthogonal L9(34) experimental design was employed to test three factors: the soil-to-tailings ratio (1:2, 1:1, and 2:1), moisture level (30%, 45%, and 60% of field capacity), and nitrogen addition (0, 5, and 10 g N m−2). Five native grass species (Pennisetum centrasiaticum, Setaria viridis, Leymus chinensis, Achnatherum splendens, and Eleusine indica) were grown under these treatment conditions, and plant biomass and key soil nutrient variables were measured. Stepwise regression, structural equation modeling, and principal component analysis were applied to assess plant growth responses and soil nutrient dynamics. The results indicated that a 2:1 soil-to-tailings substrate maintained at 60% moisture content maximized biomass production across all species. Soil total potassium consistently correlated positively with biomass (Standardized β: 0.397–0.603), whereas available potassium showed a negative relationship (Standardized β: −0.825–−0.391). Nutrient dynamics ultimately governed biomass accumulation, accounting for 57.8–84.2% of the biomass variation. P. centrasiaticum ranked as the most effective species, followed by S. viridis, L. chinensis, A. splendens, and E. indica. We concluded that successful restoration under these experimental conditions hinged on key factors: using a 2:1 soil-to-tailings substrate, maintaining 60% soil moisture, and strategically combining deep-rooted P. centrasiaticum with shallow-rooted S. viridis to exploit complementary resource use. This work provides fundamental data and a conceptual framework for rehabilitating arid limestone tailings in similar ecological settings, based on controlled experimental evidence. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

29 pages, 738 KB  
Review
Occurrence and Management of Plant-Parasitic Nematodes in Mozambique: A Review
by Joaquim Cuvaca, Isabel Abrantes, Carla Maleita and Ivânia Esteves
Crops 2026, 6(1), 6; https://doi.org/10.3390/crops6010006 - 29 Dec 2025
Viewed by 392
Abstract
Plant-parasitic nematodes (PPNs) cause yield losses in various crops worldwide. Damage due to PPNs can be severe, causing billions of dollars of crop losses across the globe annually. Information about PPNs occurrence in Mozambique is limited. Based on the literature, twenty-five genera of [...] Read more.
Plant-parasitic nematodes (PPNs) cause yield losses in various crops worldwide. Damage due to PPNs can be severe, causing billions of dollars of crop losses across the globe annually. Information about PPNs occurrence in Mozambique is limited. Based on the literature, twenty-five genera of PPNs have been reported to affect several economically important crops, including root-knot nematodes (RKNs, Meloidogyne spp.), Scutellonema spp., root-lesion nematodes (RLNs, Pratylenchus spp.), spiral nematodes (Helicotylenchus spp.), and the dagger nematode (Xiphinema spp.), which are commonly associated with crops such as banana (Musa spp.), cassava (Manihot esculenta), cowpea (Vigna unguiculata), maize (Zea mays), sugarcane (Saccharum officinarum), and sunflower (Helianthus annuus). Dissemination of these nematodes is not yet fully understood, but the importation of plants, roots, rhizomes, and/or seeds likely contributes to the introduction and spread of PPNs. Although the implementation of PPN-mitigation strategies is crucial to crop production, their application is still limited in Mozambique, with quite a few reported uses of nematicides in the Manica and Maputo provinces. Therefore, adopting integrated management strategies that combine two or more practices, such as biological control, crop rotation, organic amendments, soil solarization, and, as a last resort, chemical nematicides, may be an option to effectively reduce the population of PPNs. This review gathers information on the occurrence and management of PPNs, as reported to date in Mozambique. Full article
Show Figures

Figure 1

19 pages, 1390 KB  
Article
Heterotrophic Soil Microbes at Work: Short-Term Responses to Differentiated Fertilization Inputs
by Florin Aonofriesei, Alina Giorgiana Brotea (Andriescu) and Enuță Simion
Biology 2026, 15(1), 41; https://doi.org/10.3390/biology15010041 - 26 Dec 2025
Viewed by 306
Abstract
The interaction between organic and inorganic nutrients, bacterial communities, and soil fertility has been well documented over time. Conventional agricultural systems heavily utilize both inorganic and organic fertilizers, each exerting distinct effects on soil microbial dynamics and plant growth. The objective of our [...] Read more.
The interaction between organic and inorganic nutrients, bacterial communities, and soil fertility has been well documented over time. Conventional agricultural systems heavily utilize both inorganic and organic fertilizers, each exerting distinct effects on soil microbial dynamics and plant growth. The objective of our experiments was to identify the most effective fertilization strategy for improving the biological quality of a microbiologically impoverished and low-productivity soil. To this end, four fertilization strategies were evaluated: (i) organic fertilizers characterized by a high content of organic carbon (Fertil 4-5-7—variant 1); (ii) organic fertilizers with 12% organic nitrogen from proteins (Bio Ostara N—variant 2) (iii) combined inorganic–organic fertilizers (P35 Bio—variant 3) and (iv) mineral (inorganic) fertilizers (BioAktiv—variant V4). This study aimed to assess the short-term effects of fertilizers with varying chemical compositions on the density of cultivable heterotrophic bacteria and their associated dehydrogenase (DH) activity in a petrocalcic chernozem soil containing pedogenic carbonates. Soil sampling was conducted according to a randomized block design, comprising four replicates per treatment (control plus four fertilizer types). The enumeration of cultivable bacteria was performed using Nutrient Agar and A2R Agar media, whereas dehydrogenase activity (DHA) was quantified based on the reduction of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) to 1,3,5-triphenyl-tetrazolium formazan (TPF) by bacterial dehydrogenase enzymes. Marked differences were observed in both parameters between the plots amended with inorganic fertilizers and those treated with organic fertilizers, as well as among the organic fertilizer treatments of varying composition. The most pronounced increases in both bacterial density and dehydrogenase activity (DHA) were recorded in the plots receiving the fertilizer with a high organic nitrogen content. In this treatment, the maximum bacterial population density reached 6.25 log10 CFU g−1 dry soil after approximately two months (May), followed by a significant decline starting in July. In contrast, DHA exhibited a more rapid response, reaching its peak in April (42.75 µg TPF g−1 soil), indicating an earlier DHA activation of microbial metabolism. This temporal lag between the two parameters suggests that enzymatic activity responded more swiftly to the nutrient inputs than did microbial biomass proliferation. For the other two organic fertilizer variants, bacterial population dynamics were broadly similar, with peak densities recorded in June, ranging from 5.98 log10 CFU g−1 soil (V3) to 6.03 log10 CFU g−1 soil (V1). A comparable trend was observed in DHA: in V3, maximum DHA was attained in June (30 µg TPF g−1 soil), after which it remained relatively stable, whereas in V1, it peaked in June (24.05 µg TPF g−1 soil) and subsequently declined slightly toward the end of the experimental period. Overall, the temporal dynamics of bacterial density and DHA demonstrated a strong dependence on the quality and biodegradability of the organic matter supplied by each fertilizer. Both parameters were consistently lower under inorganic fertilization compared with organic treatments, suggesting that the observed increases in microbial density and activity were primarily mediated by the enhanced availability of organic substrates. The relationship between the density of culturable heterotrophic bacteria and dehydrogenase (DH) activity was strongly positive (r = 0.79), indicating a close functional linkage between bacterial density and oxidative enzyme activity. This connection suggests that the culturable fraction of the heterotrophic microbial community plays a key role in the early stages of organic matter mineralization derived from the applied fertilizers, particularly in the decomposition of easily degradable substrates. Full article
(This article belongs to the Special Issue The Application of Microorganisms and Plants in Soil Improvement)
Show Figures

Figure 1

21 pages, 4009 KB  
Article
Evaluation of Soil Health of Panax notoginseng Forest Plantations Based on Minimum Data Set
by Wenqi Tang, Jianqiang Li, Huiying Yan, Lianling Cha, Yuan Yang and Linling Wang
Forests 2025, 16(12), 1869; https://doi.org/10.3390/f16121869 - 17 Dec 2025
Viewed by 284
Abstract
Healthy soil serves as the fundamental basis for sustainable Panax notoginseng (Burkill) F.H. Chen ex C.Y. Wu & K.M. Feng cultivation in understory systems. Current management practices have raised concerns about potential soil degradation and ecological imbalance. To comprehensively assess the soil health [...] Read more.
Healthy soil serves as the fundamental basis for sustainable Panax notoginseng (Burkill) F.H. Chen ex C.Y. Wu & K.M. Feng cultivation in understory systems. Current management practices have raised concerns about potential soil degradation and ecological imbalance. To comprehensively assess the soil health status, this study investigated typical understory P. notoginseng plantations in the subtropical mountain monsoon region of western Yunnan. By analyzing 29 soil physical, chemical, and biological indicators, we constructed a Minimum Data Set (MDS) using Principal Component Analysis to evaluate soil health and identify major constraints. The results showed that the MDS for soil health assessment consisted of 11 key indicators: acid phosphatase, fungal ACE index, organic matter, total nitrogen, sucrase, fungal Simpson index, fine sand, non-capillary porosity, silt content, bulk density, and microbial biomass nitrogen. Using both linear and non-linear scoring functions, the Soil Health Index (SHI) calculated based on the MDS showed a significant positive correlation with the SHI derived from the Total Data Set (TDS) (linear scoring: R2 = 0.43, p < 0.001; non-linear scoring: R2 = 0.305, p < 0.001). This indicates that the MDS captures a substantial and significant portion of the variation explained by the TDS and can serve as a practical and simplified alternative for soil health evaluation in this cultivation system. Based on the MDS, the SHI values obtained using linear and non-linear scoring functions ranged from 0.53 to 0.72 and 0.48–0.59, with mean values of 0.62 and 0.51, respectively, indicating moderate soil health status in the study area. Significant differences in SHI were observed across planting durations and seasons (p < 0.05), with two-year-old plantations showing notably better soil health indices than three-year-old plantations, particularly during the rainy season. The main constraints identified in understory P. notoginseng plantations included microbial community degradation, nutrient imbalance, and physical structural deterioration. Implementing scientific soil management strategies such as optimized rotation cycles, organic amendment applications, and microbial community regulation can effectively mitigate these soil constraints, enhance soil health, and promote the sustainable development of understory P. notoginseng cultivation. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

83 pages, 6034 KB  
Review
Assessing the Ecotoxicological Effects of Emerging Drug and Dye Pollutants on Plant–Soil Systems Pre- and Post-Photocatalytic Wastewater Treatment
by Maria Paiu, Lidia Favier and Maria Gavrilescu
Plants 2025, 14(24), 3835; https://doi.org/10.3390/plants14243835 - 16 Dec 2025
Viewed by 534
Abstract
Emerging pollutants such as pharmaceuticals and synthetic dyes increasingly enter agricultural soils through irrigation with treated or untreated wastewater and via biosolid amendments, raising concerns for plant health, soil functionality, and food chain safety. Their environmental behavior is governed by complex interactions between [...] Read more.
Emerging pollutants such as pharmaceuticals and synthetic dyes increasingly enter agricultural soils through irrigation with treated or untreated wastewater and via biosolid amendments, raising concerns for plant health, soil functionality, and food chain safety. Their environmental behavior is governed by complex interactions between compound physicochemistry, soil properties, and plant physiology, leading to variable persistence, mobility, and ecotoxicological outcomes. This review synthesizes current evidence on the fate, uptake, and phytotoxic effects of drug and dye contaminants in plant–soil systems, and provides a comparative assessment of ecological risks before and after photocatalytic wastewater treatment. The analysis integrates findings from soil- and hydroponic-based studies addressing pollutant sorption–desorption dynamics, leaching, microbial transformations, and plant responses ranging from germination impairment and biomass reduction to oxidative stress and genotoxicity. Special emphasis is given to the formation and behavior of transformation products generated during photocatalytic degradation, which may display altered mobility or toxicity relative to parent compounds. Comparative evaluation reveals that photocatalysis substantially reduces contaminant loads and toxicity in many cases, although incomplete mineralization or the formation of reactive intermediates can sustain or enhance adverse effects under certain conditions. By linking pollutant fate mechanisms with plant and soil responses, this review highlights both the potential and the limitations of photocatalysis as a sustainable strategy for safeguarding agroecosystems in the context of expanding wastewater reuse. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

18 pages, 2762 KB  
Article
The Mechanisms of Soil Conditioner and Switchgrass in Improving Saline–Alkali Soil: A Field Study in a Semi-Arid Area
by Yixuan Li, Qing Liu, Longfei Kang, Kaiyu Zhang, Qiang Li and Feng Ai
Biology 2025, 14(12), 1788; https://doi.org/10.3390/biology14121788 - 15 Dec 2025
Viewed by 416
Abstract
Chemical and plant-based strategies have become increasingly critical for the remediation of saline–alkali soils. However, the underlying mechanisms driving improvements in soil quality and ecological functionality remain insufficiently understood. In this study, we adopted a synergistic remediation approach that integrated multiple switchgrass ( [...] Read more.
Chemical and plant-based strategies have become increasingly critical for the remediation of saline–alkali soils. However, the underlying mechanisms driving improvements in soil quality and ecological functionality remain insufficiently understood. In this study, we adopted a synergistic remediation approach that integrated multiple switchgrass (Panicum virgatum L.) cultivars with a coal-based soil amendment to enhance saline–alkali land. A field experiment was conducted using five switchgrass varieties (YM-1, YM-2, YM-3, YM-4, and YM-5), each receiving a uniform application of the coal-based soil conditioner at 10 t ha−1. A traditional control group was not included in this study, as the experimental design focused on direct comparisons between varieties. Our results showed that soil ionic composition played a significant role in shaping microbial activity. Notably, we found that YM-5 treatment exhibited the highest relative soil microbial abundance (22.1%) under the condition of soil amendments. Furthermore, the YM-5 treatment significantly reduced soil Na+ content and exchangeable sodium percentage (ESP) (p < 0.05), outperforming other treatments. Compared to YM-2, the YM-5 treatment also resulted in substantial increases in soil organic carbon (SOC) and available potassium (AK), increases of 78.28% and 54.3%, respectively. In addition to enhancing physicochemical parameters, the integration of switchgrass and amendment promoted soil biological vitality. For example, the YM-2 treatment achieved a 7.4% increase in catalase (CAT) activity and a 6.3% reduction in soil pH compared to YM-3, indicating improved redox balance and acid–base regulation. Collectively, these findings provide direct empirical evidence supporting the effectiveness of switchgrass–amendment combinations in saline–alkali soil restoration. Among the tested cultivars, YM-5 demonstrated superior ecological performance and is recommended as the most suitable genotype for saline–alkali soil amelioration when used in conjunction with coal-based amendments. Full article
Show Figures

Figure 1

18 pages, 2799 KB  
Article
Synergistic Remediation of Coastal Wetlands: Identifying Optimal Substrate Amendment and Incorporation Ratio for Enhanced Kandelia obovata Growth and Nutrient Management
by Xian Pan, Jianhua Li, Zhiquan Wang, Shunfeng Jiang, Yawei Liu, Shengbing He, Keiichi Mochida, Min Zhao, Xiangyong Zheng and Huachang Jin
Sustainability 2025, 17(24), 11142; https://doi.org/10.3390/su172411142 - 12 Dec 2025
Viewed by 236
Abstract
Substrate amendment is a promising strategy to enhance phytoremediation in degraded coastal wetlands, yet the selection of optimal materials and their incorporation ratios remains challenging. This study systematically investigated the effects of five amendments, viz., manganese sand, maifan stone, bentonite, iron–carbon (Fe-C), and [...] Read more.
Substrate amendment is a promising strategy to enhance phytoremediation in degraded coastal wetlands, yet the selection of optimal materials and their incorporation ratios remains challenging. This study systematically investigated the effects of five amendments, viz., manganese sand, maifan stone, bentonite, iron–carbon (Fe-C), and vermiculite, across an incorporation ratio gradient (5–40%) on the growth of the mangrove, Kandelia obovata, and the physicochemical properties of coastal wetland substrate. Results demonstrated material-specific and dose-dependent responses. Four amendments (vermiculite, Fe-C, manganese sand, and maifan stone) promoted Kandelia obovata growth to varying degrees, while bentonite exhibited significant inhibition. All amendments ensured the physical stability of the substrate. Nutrient removal efficiency followed the order: Fe-C > vermiculite > maifan stone > manganese sand, with 10% Fe-C showing the highest comprehensive nutrient removal. Conversely, bentonite functioned as a nutrient enrichment agent. The amendments differentially influenced redox potential, CO2 emissions, and electrical conductivity, yet all maintained a stable substrate pH. A comprehensive evaluation considering plant growth, nutrient removal, and CO2 sequestration identified maifan stone as the optimal amendment, with the 40% incorporation ratio delivering the most favorable integrated performance. This study provides critical, ratio-specific guidance for selecting and applying substrate amendments in coastal wetland restoration. This study provides critical, ratio-specific guidance for selecting and applying environmentally sustainable amendments, supporting the development of nature-based solutions for long-term coastal wetland restoration. Full article
Show Figures

Figure 1

20 pages, 1666 KB  
Article
Analyses of Antioxidative Response in Tomato (Solanum lycopersicum L.) Grown with Biochar and PGPMs
by Silvia Carlo, Marta Trazza, Luca Pagano and Marta Marmiroli
Antioxidants 2025, 14(12), 1482; https://doi.org/10.3390/antiox14121482 - 10 Dec 2025
Viewed by 446
Abstract
Solanum lycopersicum plants were grown in pots amended with biochar and PGPMs (plant growth-promoting microorganisms: Pseudomonas fluorescens and Azotobacter chroococcum), applied singularly and in combination, for three months, after which plants and soils were collected, divided into treatment groups based on organs, [...] Read more.
Solanum lycopersicum plants were grown in pots amended with biochar and PGPMs (plant growth-promoting microorganisms: Pseudomonas fluorescens and Azotobacter chroococcum), applied singularly and in combination, for three months, after which plants and soils were collected, divided into treatment groups based on organs, and analyzed. The following biochemical markers were studied: cellular respiration, shoot fresh and dry weight, root fresh weight, photosynthetic pigments (chlorophyll a, chlorophyll b, and carotenoids), membrane lipid peroxidation, proline content, total antioxidant capacity (DPPH and ABTS assay), hydrogen peroxide, ascorbic acid, total phenolic content, enzymatic activity (SOD, POD, CAT, and APX), total soluble sugar content, and total protein content. Also, soil parameters, such as pH, EC, total enzymatic activity, active carbon, and respiration, were measured. While biochar alone induced root H2O2 accumulation, its co-application with PGPMs turned this signal into a systemic trigger for defense, enhancing the antioxidant capacity and the production of proline, phenolics, and ascorbic acid without causing oxidative damage. At the soil level, microorganisms counteracted biochar’s inhibitory effects on enzymatic activity and intensified labile carbon use, indicating a more dynamic rhizosphere. Multivariate analysis confirmed that the combined treatment remodulated the plant–soil system, converting a stress factor into a resilience enhancer. This synergy underscores the role of biochar as an effective microbial carrier and PGPM consortia as bioactivators, together providing a powerful tool to prime crops against climate stress while preserving soil health. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidant Defense in Crop Plants, 2nd Edition)
Show Figures

Figure 1

15 pages, 1758 KB  
Article
Effects of Soil Amendments, Rootstock–Scion Combinations and Zeolite on Cadmium Reduction in Cocoa
by Mikael Mikael, Andrew Ward, Jennifer E. Schmidt and Sat Darshan S. Khalsa
Agronomy 2025, 15(12), 2790; https://doi.org/10.3390/agronomy15122790 - 3 Dec 2025
Viewed by 567
Abstract
Cadmium (Cd) accumulation in cocoa poses a regulatory challenge for cacao producers in regions with naturally elevated soil Cd, such as Indonesia. This study evaluated the potential of soil-based and plant-based solutions to reduce Cd uptake in cacao. The efficacy of soil amendments [...] Read more.
Cadmium (Cd) accumulation in cocoa poses a regulatory challenge for cacao producers in regions with naturally elevated soil Cd, such as Indonesia. This study evaluated the potential of soil-based and plant-based solutions to reduce Cd uptake in cacao. The efficacy of soil amendments was tested with two experiments: (1) a 12-week soil incubation tested lime, biochar, and lime–biochar mixtures at five rates on sandy clay loam and (2) a field trial evaluating zeolite applied at three rates (300, 600, and 900 kg ha−1) with heat or alkali pretreatments. A third experiment evaluated the potential of four cacao genotypes and their rootstock–scion interactions to mitigate Cd uptake over the course of a 12-month nursery trial in Cd-augmented soil. In the incubation study, some lime and biochar treatments produced numerically lower soil Cd concentrations than the control (0.25 mg kg−1), with final means as low as 0.15 mg kg−1, but these differences were not statistically significant in this experiment. Application of zeolite in the field significantly reduced leaf and bean Cd levels (leaf: 0.35–0.50 mg kg−1; bean: 0.25–0.75 mg kg−1) compared to the control (p < 0.01). In the nursery experiment, average increases in leaf Cd concentrations from 6 to 12 months after spiking were lowest in rootstock MCC01 (1.46 mg kg−1; p < 0.001) compared to higher increases in MCC02 (4.16 mg kg−1) and Sulawesi 1 (3.53 mg kg−1), indicating reduced Cd uptake by MCC01 across scions, while scion and interaction effects were not significant. Targeted soil amendments and specific rootstock–scion combinations are promising strategies to reduce Cd concentrations in cacao systems. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

26 pages, 990 KB  
Review
Advances in the Application of Nanocomposite Hydrogels in Crops
by Diego Gael Hernández-Echave, Gonzalo Casillas-Moreno, Andrés Isaí Romo-Galindo, Tonantzin Anahí Gutiérrez-Gómez, Gilberto Velázquez-Juárez, Moyses Alejandro Rodríguez-Ortega, Rubén Octavio Muñoz-García and Diego Alberto Lomelí-Rosales
Gels 2025, 11(12), 957; https://doi.org/10.3390/gels11120957 - 28 Nov 2025
Viewed by 739
Abstract
Conventional agricultural practices, based on intensive irrigation and heavy fertilizer and pesticide inputs, are increasingly incompatible with climate change, soil degradation, and sustainability goals. Hydrogels have emerged as promising soil amendments to improve water and nutrient management, and fall broadly into two categories: [...] Read more.
Conventional agricultural practices, based on intensive irrigation and heavy fertilizer and pesticide inputs, are increasingly incompatible with climate change, soil degradation, and sustainability goals. Hydrogels have emerged as promising soil amendments to improve water and nutrient management, and fall broadly into two categories: synthetic polyacrylate/polyacrylamide-based systems and natural biobased hydrogels derived from polysaccharides such as alginate, cellulose, and chitosan. The latter, often obtained from agro-industrial residues, offer biodegradable and potentially lower-impact alternatives to persistent synthetic matrices. This review analyzes recent advances in the design and application of nanocomposite hydrogels in agricultural crops, with emphasis on high-value systems such as tomato, chili pepper and maize. Representative studies show that hydrogel–nanofertilizer formulations can increase soil water retention in tomato from ~55–56% to ~78–79%, nearly double swelling capacity in wheat, reduce irrigation requirements by around 15% in legumes, and improve plant biomass by ~30–40% under drought conditions. In parallel, nanocomposite hydrogels loaded with micronutrients, phytochemicals or biostimulants can enhance nutrient uptake, provide 36–80% protection against Fusarium wilt, and reduce postharvest pathogen growth by up to ~90%, while in some cases improving the nutraceutical quality of fruits. These outcomes illustrate a dual mechanism of action in which the hydrogel matrix acts as a micro-reservoir that buffers water and nutrients, whereas nano- and phytochemical components operate as physiological eustressors that modulate plant defense and metabolism. Finally, we discuss environmental and translational challenges, including hydrogel biodegradation pathways, the long-term fate and ecotoxicity of released nanoparticles, regulatory uncertainty, and market and field acceptance. Addressing these gaps through integrative agronomic, ecotoxicological, and regulatory studies is essential to ensure that nanocomposite hydrogels evolve into truly sustainable smart carriers for fertilizers, pesticides, and biostimulants in future cropping systems. Full article
(This article belongs to the Special Issue Polysaccharide Gels for Biomedical and Environmental Applications)
Show Figures

Graphical abstract

15 pages, 1458 KB  
Article
Comparative Evaluation of Organic and Synthetic Fertilizers on Lettuce Yield and Metabolomic Profiles
by Ana García-Rández, Luciano Orden, Silvia Sánchez-Méndez, Francisco Javier Andreu-Rodríguez, José Antonio Sáez-Tovar, Encarnación Martínez-Sabater, María de los Ángeles Bustamante, María Dolores Pérez-Murcia and Raúl Moral
Horticulturae 2025, 11(12), 1421; https://doi.org/10.3390/horticulturae11121421 - 24 Nov 2025
Viewed by 655
Abstract
The excessive use of synthetic fertilizers in agriculture has raised environmental concerns, prompting the search for sustainable alternatives, such as organic amendments. This study evaluated the agronomic performance, nutrient use efficiency and metabolomic profiles of lettuce (Lactuca sativa L. var. baby leaf) [...] Read more.
The excessive use of synthetic fertilizers in agriculture has raised environmental concerns, prompting the search for sustainable alternatives, such as organic amendments. This study evaluated the agronomic performance, nutrient use efficiency and metabolomic profiles of lettuce (Lactuca sativa L. var. baby leaf) cultivated using synthetic and organic (olive mill waste-based compost pellets and sewage sludge) in a controlled pot experiment. The treatments included three doses of inorganic fertilizer and two organic fertilizers applied at equivalent nitrogen (N) rates, alongside an unfertilized control. Soil physicochemical properties, plant biomass, nutrient uptake and metabolite profiles, including amino acids, sugars and organic acids, were analyzed. Inorganic fertilization rapidly increased soil mineral N and phosphorus (P), enhancing leaf chlorophyll, canopy development and fresh biomass, and promoting the accumulation of reducing sugars (p < 0.05). However, it reduced amino acid and phenolic levels, indicating a metabolic shift towards growth at the expense of stress and antioxidant compounds. Sewage sludge increased soil organic matter and amino acid and sucrose accumulation, but also induced stress-related metabolites. Pelletized compost maintained an intermediate level of nutrient availability, preserved phenolic compounds and improved phosphorus use efficiency. This surpassed the results achieved with sewage sludge in terms of dry matter yield, despite limited short-term growth stimulation. These findings highlight the potential of integrating moderate mineral fertilization with pelletized compost to balance immediate productivity, nutrient efficiency and long-term soil and metabolic quality in lettuce cultivation. Full article
Show Figures

Figure 1

22 pages, 1076 KB  
Article
Contaminants of Emerging Concern in Tomatoes Grown in Sludge-Amended Peat: Uptake, Translocation and Risk Assessment
by Eirini Andreasidou, Ana Kovačič, Lorena Manzano-Sánchez, David Heath, Marina Pintar, Nina Kacjan Maršič, Urška Blaznik, Amadeo Rodríguez Fernández-Alba, Maria Dolores Hernando and Ester Heath
Toxics 2025, 13(12), 1013; https://doi.org/10.3390/toxics13121013 - 22 Nov 2025
Viewed by 521
Abstract
Although sewage sludge in agriculture can promote circular economy goals, concerns remain about the transfer of contaminants of emerging concern (CECs) into crops and soils. This study evaluated the uptake and risk of 27 CECs in tomatoes cultivated in peat substrate amended with [...] Read more.
Although sewage sludge in agriculture can promote circular economy goals, concerns remain about the transfer of contaminants of emerging concern (CECs) into crops and soils. This study evaluated the uptake and risk of 27 CECs in tomatoes cultivated in peat substrate amended with stabilised anaerobically digested (dried) sludge from a local municipal wastewater treatment plant at two rates corresponding to nitrogen and nitrogen/potassium requirements. Peat substrate served as the control. Additional treatments included CEC-spiked media and peat amended with non-dried sludge. Analysis was performed with LC–MS/MS. In tomato fruits, ibuprofen (15.8 ng/g) and triclosan (17.9 ng/g) were quantified at the low amendment rate, while caffeine (381 ng/g), carbamazepine (18.1 ng/g), ciprofloxacin (306 ng/g) and ibuprofen (5.3 ng/g) were quantified at the high amendment rate. Dietary exposure estimates were below the health-based reference values for most compounds; however, a potential risk was identified for bisphenol S when non-dried anaerobically digested sludge was applied. Soil risk quotients (RQ > 1) for several CECs at the end of the experiment indicate possible ecological concern. These findings emphasise that monitoring CECs in sludge-amended soil remains essential to ensure the safety of sludge reuse in agriculture. Full article
(This article belongs to the Special Issue Bioremediation of Pollutants in Sewage Sludge)
Show Figures

Graphical abstract

15 pages, 414 KB  
Review
Biotic and Abiotic Factors on Rhizosphere Microorganisms in Grassland Ecosystems
by Bademu Qiqige, Yuzhen Liu, Yu Tian, Li Liu, Weiwei Guo, Ping Wang, Dayou Zhou, Hui Wen, Qiuying Zhi, Yuxuan Wu, Xiaosheng Hu, Ming Li and Junsheng Li
Microorganisms 2025, 13(12), 2645; https://doi.org/10.3390/microorganisms13122645 - 21 Nov 2025
Viewed by 914
Abstract
Rhizosphere microbiota, serving as pivotal drivers of multifunctionality in grassland ecosystems, are jointly shaped by the dual influences of biotic and abiotic factors. Among biotic components, plant functional types selectively modulate microbial communities through root exudate specificity, while soil fauna (e.g., nematodes and [...] Read more.
Rhizosphere microbiota, serving as pivotal drivers of multifunctionality in grassland ecosystems, are jointly shaped by the dual influences of biotic and abiotic factors. Among biotic components, plant functional types selectively modulate microbial communities through root exudate specificity, while soil fauna (e.g., nematodes and earthworms) drive microbial interaction networks via biophysical disturbances and trophic cascades. However, excessive nematode grazing suppresses the hyphal extension of arbuscular mycorrhizal fungi (AMF). Moderate grazing facilitates the proliferation of ammonia-oxidizing bacteria through fecal input, whereas intensive grazing induces topsoil compaction, leading to a dramatic 40–60% reduction in lipopolysaccharide content in Gram-negative bacteria. Long-term chemical fertilization significantly decreases the fungal-to-bacterial ratio, while organic amendments enhance microbial carbon use efficiency by activating extracellular enzymatic activities. Regarding abiotic factors, the stoichiometric characteristics of soil carbon, nitrogen, and phosphorus directly regulate microbial metabolic strategies. Hydrological dynamics influence microbial respiratory pathways through oxygen partial pressure shifts—drought stress inhibits mycelial network development. Future research should focus on predicting the emissions of gases such as N2O (ozone monomer) and optimizing nitrogen fertilizer management to significantly reduce greenhouse gas emissions at the source. The soil organic carbon storage in grassland ecosystems is extremely large. Effective prediction and management can make these soils become important carbon “sinks”, offsetting the carbon dioxide in the atmosphere. At the same time, transcriptomics and metabolic flux analysis should be combined with multi-omics technologies and in situ labeling methods to provide theoretical basis and technical support for developing mechanism-based and predictable grassland restoration and adaptive management strategies from both macroscopic and microscopic perspectives. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop