Impacts of Organic Soil Amendments of Diverse Origins on Soil Properties, Nutrient Status, and Physiological Responses of Young Chestnut (Castanea sativa Mill.) Trees
Abstract
1. Introduction
- the properties of an acidic soil;
- the plant nutrient status;
- bud burst;
- plant photosynthetic performance;
- leaf carbohydrate production.
2. Materials and Methods
2.1. Test Site Location—Plant Material—Treatments
- Agrobiosol 6-2-4 (AGR): an organic fertilizer distributed by Biogard Greece ΕΠΕ (Athens, Greece) (former Intrachem Hellas, Athens, Greece). It is produced from fungal biomass via biological fermentation, containing up to 88% organic matter with pH 3.6. It was applied once in early March together with the mineral fertilizer, at 1 kg per tree, surface-applied approximately 50 cm from the trunk and incorporated into the soil through irrigation. A total of 280 g N, 320 g P2O5, and 340 g K2O were applied per tree by the combination of the organic amendment and the mineral fertilizer.
- Activit 4-3-2 (ACT): an organic fertilizer distributed by Hellafarm SA (Athens, Greece), produced from chicken manure with 62% organic matter and pH 6.4. It was surface-applied once in early March with the mineral fertilizer, at 2 kg per tree, around the trunk at a 50 cm distance and incorporated by irrigation. A total of 300 g N, 360 g P2O5, and 340 g K2O were applied per tree by the combination of the organic amendment and the mineral fertilizer.
- BorreGRO® HA-1 0.8-0-17.6 (BR): a leonardite-based humic acid product (70% w/w) distributed by Hellafarm SA (Athens, Greece). It was applied three times (7 kg/ha, equivalent to 20 g per tree), beginning in early March with the mineral fertilizer and subsequently at 20-day intervals, as a soil drench. A total of 220.48 g N, 300 g P2O5, and 310.56 g K2O were applied per tree by the combination of the organic amendment and the mineral fertilizer.
2.2. Soil and Plant Tissue Analyses
2.3. Bud Burst—Photosynthetic Capacity—Specific Leaf Area
- 0 = no burst;
- 1 = <30% of total shoot length burst;
- 2 = 30–60% burst;
- 3 = >60% burst.
2.4. Carbohydrates Concentration
2.5. Statistical Analysis
3. Results
3.1. Effects of the Various Treatments on the Bud Burst
3.2. Effects of the Various Treatments on the Photosynthetic Performance and the Specific Leaf Area
3.3. Effects of the Various Treatments on Leaf Carbohydrate Concentration
3.4. Effects of the Various Treatments on Soil Properties and Nutrient Concentration
3.5. Effects of the Various Treatments on Leaf Nutrient Concentration
3.6. Results of the Hierarchical Cluster and Discriminant Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toprak, S.; Ateş, Ö.; Yalçin, G.; Taşpinar, K. How Does N:P:K Fertilizer Applications in Different Levels Affect The Nutrition of Anatolian Chestnut (Castanea sativa Mill.). Uluslararası Anadolu Ziraat Mühendisliği Bilim. Derg. 2021, 3, 1–9. [Google Scholar] [CrossRef]
- Zhang, C.; Moutinho-Pereira, J.M.; Correia, C.; Coutinho, J.; Gonçalves, A.; Guedes, A.; Gomes-Laranjo, J. Foliar application of Sili-K® increases chestnut (Castanea spp.) growth and photosynthesis, simultaneously increasing susceptibility to water deficit. Plant Soil 2013, 365, 211–225. [Google Scholar] [CrossRef]
- Papaioannou, E.; Gasparatos, D.; Stefanou, S.; Chatzistathis, T.; Karamanoli, K.; Matziris, E. Effect of Soil Mixtures Based on a Gneiss-Derived Soil and Two Forest Floor Types on Growth and Nutritional Status of Castanea sativa Mill. Seedlings. J. Soil Sci. Plant Nutr. 2023, 23, 1339–1350. [Google Scholar] [CrossRef]
- Fuertes-Mendizábal, T.; Huérfano, X.; Ortega, U.; González-Murua, C.; Estavillo, J.M.; Salcedo, I.; Duñabeitia, M.K. Compost and PGP-Based Biostimulant as Alternative to Peat and NPK Fertilization in Chestnut (Castanea sativa Mill.) Nursery Production. Forests 2021, 12, 850. [Google Scholar] [CrossRef]
- Arrobas, M.; Afonso, S.; Rodrigues, M.Â. Diagnosing the nutritional condition of chestnut groves by soil and leaf analyses. Sci. Hortic. 2018, 228, 113–121. [Google Scholar] [CrossRef]
- Papaioannou, E.; Kostopoulou, S.; Stefanou, S. The effect of the conversion of chestnut (Castanea sativa Mill.) forests to orchards on soil fertility and nutrient content in leaves. CATENA 2022, 211, 105948. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Papaioannou, E.; Giannakoula, A.; Papadakis, I.E. Zeolite and Vermiculite as Inorganic Soil Amendments Modify Shoot-Root Allocation, Mineral Nutrition, Photosystem II Activity and Gas Exchange Parameters of Chestnut (Castanea sativa Mill) Plants. Agronomy 2021, 11, 109. [Google Scholar] [CrossRef]
- Freitas, T.R.; Santos, J.A.; Silva, A.P.; Fraga, H. Influence of Climate Change on Chestnut Trees: A Review. Plants 2021, 10, 1463. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Grade, V.; Barroso, V.; Pereira, A.; Cassol, L.C.; Arrobas, M. Chestnut Response to Organo-mineral and Controlled-Release Fertilizers in Rainfed Growing Conditions. J. Soil Sci. Plant Nutr. 2020, 20, 380–391. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Raimundo, S.; Pereira, A.; Arrobas, M. Large Chestnut Trees (Castanea sativa) Respond Poorly to Liming and Fertilizer Application. J. Soil Sci. Plant Nutr. 2020, 20, 1261–1270. [Google Scholar] [CrossRef]
- Arrobas, M.; Afonso, S.; Ferreira, I.; Moutinho Pereira, J.; Correia, C.; Rodrigues, M. Liming and application of nitrogen, phosphorus, potassium, and boron on a young plantation of chestnut. Turk. J. Agric. For. 2017, 41, 441–451. [Google Scholar] [CrossRef]
- Garbowski, T.; Bar-Michalczyk, D.; Charazińska, S.; Grabowska-Polanowska, B.; Kowalczyk, A.; Lochyński, P. An overview of natural soil amendments in agriculture. Soil Tillage Res. 2023, 225, 105462. [Google Scholar] [CrossRef]
- Akimbekov, N.S.; Digel, I.; Tastambek, K.T.; Sherelkhan, D.K.; Jussupova, D.B.; Altynbay, N.P. Low-Rank Coal as a Source of Humic Substances for Soil Amendment and Fertility Management. Agriculture 2021, 11, 1261. [Google Scholar] [CrossRef]
- Kandra, B.; Tall, A.; Vitková, J.; Procházka, M.; Šurda, P. Effect of Humic Amendment on Selected Hydrophysical Properties of Sandy and Clayey Soils. Water 2024, 16, 1338. [Google Scholar] [CrossRef]
- Głąb, T.; Gondek, K.; Marcińska-Mazur, L.; Jarosz, R.; Mierzwa–Hersztek, M. Effect of organic/inorganic composites as soil amendments on the biomass productivity and root architecture of spring wheat and rapeseed. J. Environ. Manag. 2023, 344, 118628. [Google Scholar] [CrossRef]
- Cesarano, G.; De Filippis, F.; La Storia, A.; Scala, F.; Bonanomi, G. Organic amendment type and application frequency affect crop yields, soil fertility and microbiome composition. Appl. Soil Ecol. 2017, 120, 254–264. [Google Scholar] [CrossRef]
- McLean, E. Soil pH and lime requirement. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; Volume 9, pp. 199–224. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; Volume 9, pp. 539–579. [Google Scholar]
- Thomas, G.W. Exchangeable cations. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; Volume 9, pp. 159–165. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Lindsay, W.L.; Norvell, W. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Ntanos, E.; Kekelis, P.; Assimakopoulou, A.; Gasparatos, D.; Denaxa, N.-K.; Tsafouros, A.; Roussos, P.A. Amelioration Effects against Salinity Stress in Strawberry by Bentonite–Zeolite Mixture, Glycine Betaine, and Bacillus amyloliquefaciens in Terms of Plant Growth, Nutrient Content, Soil Properties, Yield, and Fruit Quality Characteristics. Appl. Sci. 2021, 11, 8796. [Google Scholar] [CrossRef]
- Tsafouros, A.; Frantzeskaki, A.; Assimakopoulou, A.; Roussos, P.A. Spatial and temporal changes of mineral nutrients and carbohydrates in cuttings of four stone fruit rootstocks and their contribution to rooting potential. Sci. Hortic. 2019, 253, 227–240. [Google Scholar] [CrossRef]
- Li, T.; Hao, X.; Kang, S. Spatial Variability of Grapevine Bud Burst Percentage and Its Association with Soil Properties at Field Scale. PLoS ONE 2016, 11, e0165738. [Google Scholar] [CrossRef]
- Signorelli, S.; Dewi, J.R.; Considine, M.J. Soil Water Content Directly Affects Bud Burst Rate in Single-Node Cuttings of Perennial Plants. Agronomy 2022, 12, 360. [Google Scholar] [CrossRef]
- Otero, V.; Barreal, M.E.; Martínez-Núñez, L.; Gallego, P.P. Nutritional status of kiwifruit in organic and conventional farming systems. Acta Hortic. 2008, 868, 155–160. [Google Scholar] [CrossRef]
- Zelleke, A.; Kliewer, W.M. Effect of root temperature, rootstock and fertilization on bud-break, shoot growth and composition of ‘Cabernet Sauvignon’grapevines. Sci. Hortic. 1980, 13, 339–347. [Google Scholar] [CrossRef]
- Ampong, K.; Thilakaranthna, M.S.; Gorim, L.Y. Understanding the Role of Humic Acids on Crop Performance and Soil Health. Front. Agron. 2022, 4, 848621. [Google Scholar] [CrossRef]
- Ding, Y.; Gao, X.; Shu, D.; Siddique, K.H.M.; Song, X.; Wu, P.; Li, C.; Zhao, X. Enhancing soil health and nutrient cycling through soil amendments: Improving the synergy of bacteria and fungi. Sci. Total Environ. 2024, 923, 171332. [Google Scholar] [CrossRef] [PubMed]
- McGeehan, S.L. Impact of Waste Materials and Organic Amendments on Soil Properties and Vegetative Performance. Appl. Environ. Soil Sci. 2012, 2012, 907831. [Google Scholar] [CrossRef]
- Miller, C.; Franklin, J.; Buckley, D. Effects of soil amendment treatments on American chestnut performance and physiology on an east Tennessee surface mine. In Proceedings of the 28th Annual Meeting of the American Society of Mining and Reclamation, Bismarck, ND, USA, 11–16 June 2011; pp. 419–437. [Google Scholar] [CrossRef]
- Farid, I.M.; A. El-Ghozoli, M.; H. H. Abbas, M.; S. El-Atrony, D.; Abbas, H.H.; Elsadek, M.; A. Saad, H.; El Nahhas, N.; Mohamed, I. Organic Materials and Their Chemically Extracted Humic and Fulvic Acids as Potential Soil Amendments for Faba Bean Cultivation in Soils with Varying CaCO3 Contents. Horticulturae 2021, 7, 205. [Google Scholar] [CrossRef]
- Ferreira, R.B.; Leonel, S.; Lima, G.P.P.; Leonel, M.; Minatel, I.O.; Souza, J.M.A.; Monteiro, G.C.; Silva, M.S. Contents of nitrogen compounds during bud break and peach tree performance in response to budburst-inducing products. Sci. Hortic. 2022, 305, 111388. [Google Scholar] [CrossRef]
- Seif El-Yazal, M.A.; Rady, M.M. Changes in nitrogen and polyamines during breaking bud dormancy in “Anna” apple trees with foliar application of some compounds. Sci. Hortic. 2012, 136, 75–80. [Google Scholar] [CrossRef]
- Fløistad, I.S.; Kohmann, K. Influence of nutrient supply on spring frost hardiness and time of bud break in Norway spruce (Picea abies (L.) Karst.) seedlings. New For. 2004, 27, 1–11. [Google Scholar] [CrossRef]
- Sabir, I.A.; Manzoor, M.A.; Shah, I.H.; Ahmad, Z.; Liu, X.; Alam, P.; Wang, Y.; Sun, W.; Wang, J.; Liu, R.; et al. Unveiling the effect of gibberellin-induced iron oxide nanoparticles on bud dormancy release in sweet cherry (Prunus avium L.). Plant Physiol. Biochem. 2024, 206, 108222. [Google Scholar] [CrossRef] [PubMed]
- Mousseau, M. Effects of elevated CO2 on growth, photosynthesis and respiration of sweet chestnut (Castanea sativa Mill.). Vegetatio 1993, 104, 413–419. [Google Scholar] [CrossRef]
- Gomes-Laranjo, J.; Coutinho, J.P.; Galhano, V.; Ferreira-Cardoso, J.V. Differences in photosynthetic apparatus of leaves from different sides of the chestnut canopy. Photosynthetica 2008, 46, 63–72. [Google Scholar] [CrossRef]
- Gomes-Laranjo, J.; Peixoto, F.; Wong Fong Sang, H.W.; Torres-Pereira, J. Study of the temperature effect in three chestnut (Castanea sativa Mill.) cultivars’ behaviour. J. Plant Physiol. 2006, 163, 945–955. [Google Scholar] [CrossRef]
- Gomes-Laranjo, J.; Dinis, L.-T.; Martins, L.; Portela, E.; Pinto, T.; Ara, M.C.; Feito, I.; Majada, J.; Peixoto, F.; Pereira, S.; et al. Characterization of Chestnut Behavior with Photosynthetic Traits. In Applied Photosynthesis; Najafpour, M.M., Ed.; IntechOpen: London, UK, 2012; pp. 47–80. [Google Scholar] [CrossRef]
- Both, H.; Brüggemann, W. Photosynthesis studies on European evergreen and deciduous oaks grown under Central European climate conditions. I: A case study of leaf development and seasonal variation of photosynthetic capacity in Quercus robur (L.), Q. ilex (L.) and their semideciduous hybrid, Q. × turneri (Willd.). Trees 2009, 23, 1081–1090. [Google Scholar] [CrossRef]
- Wojciechowska, N.; Marzec-Schmidt, K.; Kalemba, E.M.; Ludwików, A.; Bagniewska-Zadworna, A. Seasonal senescence of leaves and roots of Populus trichocarpa—Is the scenario the same or different? Tree Physiol. 2020, 40, 987–1000. [Google Scholar] [CrossRef]
- Wingler, A.; Purdy, S.; MacLean, J.A.; Pourtau, N. The role of sugars in integrating environmental signals during the regulation of leaf senescence. J. Exp. Bot. 2006, 57, 391–399. [Google Scholar] [CrossRef]
- Proietti, P.; Palliotti, A.; Famiani, F.; Antognozzi, E.; Ferranti, F.; Andreutti, R.; Frenguelli, G. Influence of leaf position, fruit and light availability on photosynthesis of two chestnut genotypes. Sci. Hortic. 2000, 85, 63–73. [Google Scholar] [CrossRef]
- El Kohen, A.; Mousseau, M. Interactive effects of elevated CO2 and mineral nutrition on growth and CO2 exchange of sweet chestnut seedlings (Castanea sativa). Tree Physiol 1994, 14, 679–690. [Google Scholar] [CrossRef]
- Lopes, J.I.; Gonçalves, A.; Brito, C.; Martins, S.; Pinto, L.; Moutinho-Pereira, J.; Raimundo, S.; Arrobas, M.; Rodrigues, M.Â.; Correia, C.M. Inorganic Fertilization at High N Rate Increased Olive Yield of a Rainfed Orchard but Reduced Soil Organic Matter in Comparison to Three Organic Amendments. Agronomy 2021, 11, 2172. [Google Scholar] [CrossRef]
- Hernandez, T.; Berlanga, J.G.; Tormos, I.; Garcia, C. Organic versus inorganic fertilizers: Response of soil properties and crop yield. AIMS Geosci. 2021, 7, 415–439. [Google Scholar] [CrossRef]
- Toprak, S.; Geçit, S.; Tarımsal, K.; Enstitüsü, A.; Bitki, T.; Bölümü, B.; Adnan, T.; Üniversitesi, M.; Fakültesi, Z. The Seasonal Changes of Nutritional Elements of Chestnut (Castanea sativa) Plant and Determination of Leaf Sampling Times. Am. J. Res. Commun. 2013, 1, 1–8. [Google Scholar]
- Rodriguez, I. Foliar nutrient dynamics and nutrient-use efficiency in Castanea sativa coppice stands of southern Europe. Forestry 2001, 74, 1–10. [Google Scholar] [CrossRef]
- Roussos, P.A.; Triantafillidis, A.; Kepolas, E.; Peppas, P.; Piou, A.; Zoti, M.; Gasparatos, D. Effects of Integrated and Organic Management on Strawberry (cv. Camarosa) Plant Growth, Nutrition, Fruit Yield, Quality, Nutraceutical Characteristics, and Soil Fertility Status. Horticulturae 2022, 8, 184. [Google Scholar] [CrossRef]
- Goyer, C.; Neupane, S.; Zebarth, B.J.; Burton, D.L.; Wilson, C.; Sennett, L. Diverse compost products influence soil bacterial and fungal community diversity in a potato crop production system. Appl. Soil Ecol. 2022, 169, 104247. [Google Scholar] [CrossRef]
- Lazcano, C.; Zhu-Barker, X.; Decock, C. Effects of Organic Fertilizers on the Soil Microorganisms Responsible for N2O Emissions: A Review. Microorganisms 2021, 9, 983. [Google Scholar] [CrossRef]
- Drossopoulos, B.; Kouchaji, G.G.; Bouranis, D.L. Seasonal dynamics of mineral nutrients and carbohydrates by walnut tree leaves. J. Plant Nutr. 1996, 19, 493–516. [Google Scholar] [CrossRef]






| A | gs | Ci | SLA | |
|---|---|---|---|---|
| Treatments | ||||
| FERT | 8.12 a | 0.096 a | 149.37 a | 104.97 a |
| ACT | 5.98 a | 0.078 a | 160.16 a | 102.80 a |
| AGR | 8.13 a | 0.093 a | 144.58 a | 103.53 a |
| BR | 6.08 a | 0.074 a | 146.17 a | 103.00 a |
| Time | ||||
| June (J) | 13.77 a | 0.144 a | 109.56 c | 105.42 a |
| August (A) | 3.19 b | 0.039 c | 149.80 b | 99.65 a |
| October (O) | 4.28 b | 0.075 b | 190.84 a | 105.64 a |
| Treatments x Time | ||||
| FERT x J | 16.91 a | 0.176 a | 107.40 a | 102.00 a |
| FERT x A | 2.62 d | 0.033 d | 157.82 a | 97.71 a |
| FERT x O | 4.84 cd | 0.080 cd | 182.90 a | 115.19 a |
| ACT x J | 12.21 ab | 0.14 ab | 118.87 a | 108.05 a |
| ACT x A | 2.75 d | 0.036 d | 156.37 a | 102.88 a |
| ACT x O | 2.99 d | 0.060 cd | 205.25 a | 97.46 a |
| AGR x J | 16.10 ab | 0.160 a | 95.68 a | 105.86 a |
| AGR x A | 3.64 cd | 0.043 cd | 151.38 a | 95.27 a |
| AGR x O | 4.65 cd | 0.076 cd | 186.61 a | 109.46 a |
| BR x J | 9.86 bc | 0.100 bc | 116.29 a | 105.78 a |
| BR x A | 3.77 bc | 0.043 cd | 133.64 a | 102.74 a |
| BR x O | 4.62 bc | 0.080 cd | 188.58 a | 100.49 a |
| Sucrose | Glucose | Fructose | Total Sugars | ||
|---|---|---|---|---|---|
| Treatments | |||||
| FERT | 15.55 a | 32.25 a | 41.00 a | 94.00 a | |
| ACT | 15.85 a | 32.87 a | 39.51 a | 93.52 a | |
| AGR | 16.81 a | 33.80 a | 41.05 a | 97.27 a | |
| BR | 15.49 a | 31.38 a | 40.24 a | 92.29 a | |
| Time | |||||
| June (J) | 14.74 b | 40.19 a | 42.61 a | 12.45 a | |
| August (A) | 6.84 c | 19.44 b | 36.89 b | 65.45 b | |
| October (O) | 26.20 a | 38.11 a | 41.85 ab | 114.90 a | |
| Treatments x Time | |||||
| FERT x J | 12.16 a | 41.81 a | 47.83 a | 105.87 a | |
| FERT x A | 7.97 a | 22.01 a | 36.28 a | 68.93 a | |
| FERT x O | 26.54 a | 32.93 a | 38.88 a | 107.20 a | |
| ACT x J | 14.73 a | 42.57 a | 38.97 a | 101.19 a | |
| ACT x A | 7.28 a | 17.77 a | 37.36 a | 64.85 a | |
| ACT x O | 25.53 a | 38.20 a | 42.19 a | 114.52 a | |
| AGR x J | 16.50 a | 41.41 a | 41.46 a | 104.86 a | |
| AGR x A | 5.03 a | 18.96 a | 38.24 a | 63.92 a | |
| AGR x O | 28.89 a | 41.03 a | 43.47 a | 123.04 a | |
| BR x J | 15.56 a | 34.96 a | 42.20 a | 97.91 a | |
| BR x A | 7.08 a | 19.01 a | 35.66 a | 64.13 a | |
| BR x O | 23.84 a | 40.19 a | 42.86 a | 114.85 a | |
| pH | EC (μmhos cm−1) | OM | CEC | N | P | K | Ca | Mg | Na | Fe | Zn | Cu | Mn | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (%) | (meq 100g−1) | (%) | (ppm) | (meq 100g−1) | ppm | |||||||||
| Treatments | ||||||||||||||
| FERT | 4.45 a | 1900.0 a | 3.04 ab | 22.47 a | 0.055 a | 17.5 a | 1.26 a | 1.10 a | 0.34 a | 0.13 a | 33.99 b | 0.81 a | 1.96 a | 18.24 a |
| ACT | 4.57 a | 1850.0 a | 3.56 a | 18.60 a | 0.057 a | 18.3 a | 1.34 ab | 1.05 a | 0.35 a | 0.15 a | 42.28 b | 0.98 a | 2.36 a | 21.86 a |
| AGR | 4.48 a | 1850.0 a | 3.71 a | 16.85 a | 0.040 a | 14.5 b | 0.96 b | 0.76 a | 0.24 a | 0.13 a | 41.05 b | 1.10 a | 2.21 a | 19.68 a |
| BR | 4.35 a | 1958.3 a | 2.69 b | 21.32 a | 0.050 a | 12.4 b | 1.22 ab | 1.11 a | 0.37 a | 0.13 a | 121.65 a | 0.82 a | 3.63 a | 17.31 a |
| Time | ||||||||||||||
| 1st sampling (1S) | 4.54 a | 1879.2 a | 3.46 a | 21.64 a | 0.068 a | 17.1 a | 1.69 a | 1.22 a | 0.35 a | 0.15 a | 67.20 a | 0.96 a | 2.37 a | 19.01 a |
| 2nd sampling (2S) | 4.38 a | 1900.0 a | 3.04 b | 17.98 a | 0.043 b | 14.3 b | 0.70 b | 0.79 b | 0.31 a | 0.12 b | 52.27 a | 0.90 a | 2.71 a | 19.53 a |
| Treatments x Time | ||||||||||||||
| FERT x 1S | 4.74 a | 1933.3 a | 3.37 a | 25.19 a | 0.069 a | 18.4 a | 1.94 a | 1.45 a | 0.44 a | 0.15 a | 30.50 a | 0.82 a | 2.29 a | 17.07 a |
| FERT x 2S | 4.16 a | 1866.7 a | 2.72 a | 19.76 a | 0.042 a | 16.6 ab | 0.59 c | 0.75 a | 0.25 a | 0.12 a | 37.43 a | 0.81 a | 1.62 a | 19.40 a |
| ACT x 1S | 4.69 a | 1800.0 a | 3.48 a | 18.37 a | 0.029 a | 17.7 a | 1.88 a | 1.27 a | 0.39 a | 0.15 a | 43.16 a | 1.05 a | 1.98 a | 25.40 a |
| ACT x 2S | 4.46 a | 1900.0 a | 3.64 a | 18.84 a | 0.045 a | 18.8 a | 0.81 bc | 0.84 a | 0.30 a | 0.14 a | 41.40 a | 0.91 a | 2.74 a | 18.32 a |
| AGR x 1S | 4.47 a | 1833.3 a | 4.02 a | 17.76 a | 0.029 a | 16.0 ab | 1.19 b | 0.84 a | 0.22 q | 0.15 a | 45.43 a | 1.02 a | 1.77 a | 18.91 a |
| AGR x 2S | 4.49 a | 1816.6 a | 3.39 a | 15.94 a | 0.052 a | 13.0 b | 0.73 bc | 0.68 a | 0.26 a | 0.11 a | 36.67 a | 1.1 a | 2.64 a | 20.46 a |
| BR x 1S | 4.28 a | 1900.0 a | 2.97 a | 25.24 a | 0.065 a | 16.2 ab | 1.78 a | 1.35 a | 0.33 a | 0.15 a | 149.70 a | 0.96 a | 3.44 a | 14.68 a |
| BR x 2S | 4.41 a | 2016.7 a | 2.72 a | 19.76 a | 0.034 a | 8.60 c | 0.65 c | 0.88 a | 0.42 a | 0.12 a | 93.60 a | 0.68 a | 3.81 a | 19.94 a |
| Minerals | Treatments | Time | Treatments x Time |
|---|---|---|---|
| N | ns | ns | ns |
| P | ns | *** | ns |
| K | *** | ns | ns |
| Ca | ns | ns | ns |
| Mg | ns | ns | ns |
| Fe | ns | ns | ns |
| Mn | ns | ** | ns |
| Cu | ns | ns | ns |
| Zn | * | ns | * |
| Na | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Roussos, P.A.; Ligka, M.; Katsenos, P.D.; Zoti, M.; Gasparatos, D. Impacts of Organic Soil Amendments of Diverse Origins on Soil Properties, Nutrient Status, and Physiological Responses of Young Chestnut (Castanea sativa Mill.) Trees. Agriculture 2026, 16, 128. https://doi.org/10.3390/agriculture16010128
Roussos PA, Ligka M, Katsenos PD, Zoti M, Gasparatos D. Impacts of Organic Soil Amendments of Diverse Origins on Soil Properties, Nutrient Status, and Physiological Responses of Young Chestnut (Castanea sativa Mill.) Trees. Agriculture. 2026; 16(1):128. https://doi.org/10.3390/agriculture16010128
Chicago/Turabian StyleRoussos, Petros Anargyrou, Maria Ligka, Petros D. Katsenos, Maria Zoti, and Dionisios Gasparatos. 2026. "Impacts of Organic Soil Amendments of Diverse Origins on Soil Properties, Nutrient Status, and Physiological Responses of Young Chestnut (Castanea sativa Mill.) Trees" Agriculture 16, no. 1: 128. https://doi.org/10.3390/agriculture16010128
APA StyleRoussos, P. A., Ligka, M., Katsenos, P. D., Zoti, M., & Gasparatos, D. (2026). Impacts of Organic Soil Amendments of Diverse Origins on Soil Properties, Nutrient Status, and Physiological Responses of Young Chestnut (Castanea sativa Mill.) Trees. Agriculture, 16(1), 128. https://doi.org/10.3390/agriculture16010128

