Oxidative Stress and Antioxidant Defense in Crop Plants, 2nd Edition

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "ROS, RNS and RSS".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 706

Special Issue Editors


E-Mail Website
Guest Editor
Collegium Medicum, Faculty of Biotechnology, University of Rzeszów, 8B Zelwerowicza Street, 35-601 Rzeszów, Poland
Interests: proteomics; phenolic compounds; essential oils; secondary metabolites biosynthesis; toxicology; oxidative stress; antioxidant activity; antimicrobial and anticancer activity

E-Mail
Guest Editor Assistant
Department of Crop Production, Institute of Agricultural Sciences, Environment Management and Protection, Faculty of Technology and Life Sciences, University of Rzeszów, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland
Interests: crop production; cereal grain quality; wheat; rye; trriticale; plant nutrition; oxidative stres; plant biochemistry; photosynthesis; biostimulants

Special Issue Information

Dear Colleagues,

The first edition of the Special Issue “Oxidative Stress and Antioxidant Defense in Crop Plants” has collected publications on the impact of environmental stresses on the condition of crop plants. Existing knowledge on the antioxidant response in counteracting these stresses was also furthered, which is important for ensuring plants' proper response and survival. Unfavorable environmental conditions are the main cause of the decline in crop yields. Plants, being organisms unable to move, are constantly exposed to environmental stresses, which include both biotic stresses (water shortage, extreme temperatures, soil salinity, heavy metals, nutrient deficiency) and abiotic stresses (agrophage attack). Complex adaptive mechanisms that plants have developed help them tolerate and adapt to unfavorable conditions. The antioxidant system, composed of enzymatic and non-enzymatic antioxidants, helps plants maintain redox balance, thus increasing their resistance to stress.

In the second edition of this Special Issue, we hope to expand the scope of defense mechanisms of crops exposed to environmental stresses to better understand how crops adapt to stress conditions. This new knowledge will help breeders to develop varieties with a greater tolerance to stress. In turn, this will increase food availability while reducing the cost of production.

Prof. Dr. Grzegorz Chrzanowski
Guest Editor

Dr. Marta Jańczak-Pieniążek
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biotic and abiotic stress
  • oxidative stress
  • ROS
  • plant biostimulants
  • crop plants
  • antioxidant mechanisms
  • oxidative stress
  • antioxidant response
  • antioxidant enzymes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 7200 KiB  
Article
Genome-Wide Identification of the Sulfate Transporter Gene Family Reveals That BolSULTR2;1 Regulates Plant Resistance to Alternaria brassicicola Through the Modulation of Glutathione Biosynthesis in Broccoli
by Guize Wu, Yunhua Ding, Ning Li, Hongji Zhang and Ning Liu
Antioxidants 2025, 14(4), 496; https://doi.org/10.3390/antiox14040496 - 20 Apr 2025
Viewed by 126
Abstract
Sulfate transporters (SULTRs) are key players that regulate sulfur acquisition and distribution within plants, thereby influencing cellular redox hemostasis under pathogen attacks, such as Alternaria brassicicola (Ab). In this study, a total of 23 BolSULTR (Brassica oleracea SULTR) genes were [...] Read more.
Sulfate transporters (SULTRs) are key players that regulate sulfur acquisition and distribution within plants, thereby influencing cellular redox hemostasis under pathogen attacks, such as Alternaria brassicicola (Ab). In this study, a total of 23 BolSULTR (Brassica oleracea SULTR) genes were identified from the Brassica genome. These BolSULTRs are distributed across nine chromosomes, with all collinear BolSULTR gene pairs undergoing purifying selections. Phylogenetic analysis reveals that the SULTR family is evolutionarily conserved among plant kingdoms. qRT-PCR analysis demonstrated that the expression of BolSULTRs varies across different plant organs and is modulated by hormonal signals. Furthermore, transcriptome analysis identified several BolSULTRs whose expression levels were depressed in Ab-challenged leaves in broccoli. Among them, the BolSULTR2;1 gene emerged as a key player in the plant’s response to Ab. Virus-induced gene silencing (VIGS) of BolSULTR2;1s resulted in elevated glutathione (GSH) levels and enhanced tolerance to Ab. Taken together, these findings underscore the role of BolSULTR2;1 in maintaining redox homeostasis and enhancing plant disease resistance, suggesting its potential as a target for genome editing to develop broccoli varieties with improved pathogen tolerance. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidant Defense in Crop Plants, 2nd Edition)
Show Figures

Figure 1

29 pages, 3307 KiB  
Article
Greater Biomass Production Under Elevated CO2 Is Attributed to Physiological Optimality, Trade-Offs in Nutrient Allocation, and Oxidative Defense in Drought-Stressed Mulberry
by Songmei Shi, Huakang Li, Xinju Wang, Ziran Wang, Junqiang Xu, Xinhua He and Zheng’an Yang
Antioxidants 2025, 14(4), 383; https://doi.org/10.3390/antiox14040383 - 25 Mar 2025
Viewed by 424
Abstract
Mulberry (Morus alba L.), a species of significant ecological and economic importance, is widely cultivated for sericulture, soil conservation, and environmental restoration. Despite its remarkable resilience to environmental stresses, the combined impact of elevated CO2 (eCO2) and drought stress [...] Read more.
Mulberry (Morus alba L.), a species of significant ecological and economic importance, is widely cultivated for sericulture, soil conservation, and environmental restoration. Despite its remarkable resilience to environmental stresses, the combined impact of elevated CO2 (eCO2) and drought stress on aboveground–root–soil interactions remains poorly understood, particularly in the context of global climate change. Here, we investigated the effects of eCO2 and drought on physiological leaf and root indicators, nutrient absorption and allocation, and soil properties in mulberry seedlings. Mulberry seedlings were grown in environmentally auto-controlled growth chambers under ambient CO2 (420/470 ppm, day/night) or eCO2 (710/760 ppm) and well-watered (75–85% soil relative water content, RWC), moderate-drought (55–65% RWC), or severe-drought (35–45% RWC) conditions. Results showed that both above- and below-ground plant biomass production were significantly promoted by eCO2, particularly by 36% and 15% under severe drought, respectively. This could be attributed to several factors. Firstly, eCO2 improved leaf photosynthesis by 25–37% and water use efficiency by 104–163% under drought stresses while reducing negative effects of drought on the effective quantum yield of PSII photochemistry and the photochemical quenching coefficient. Secondly, eCO2 significantly decreased proline accumulation while increasing soluble sugar contents, as well as peroxidase and superoxide dismutase activities, in both leaves and roots under drought stress. Lastly, eCO2 promoted soil sucrase, urease, and phosphatase activities, as well as plant nitrogen, phosphorus and potassium uptake while facilitating their allocation into roots under drought stress. These findings demonstrate that eCO2 enhanced the drought tolerance of mulberry plants through improvements in photosystem II efficiency, water use efficiency, antioxidative defense capacity, and nutrient uptake and allocation, providing critical insights for sustainable mulberry plantation management under future climate change scenarios. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidant Defense in Crop Plants, 2nd Edition)
Show Figures

Figure 1

Back to TopTop