Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,668)

Search Parameters:
Keywords = pharmacokinetic analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5371 KB  
Article
2-Arylbenzofurans as Selective Cholinesterase Inhibitors: Design, Synthesis, and Evaluation as Alzheimer’s Disease Agents
by Giovanna Lucia Delogu, Michela Begala, Manuel Novás, Maria João Matos, Franca Piras, Sonia Floris, Francesca Pintus, Michele Mancinelli, Benedetta Era and Antonella Fais
Biomolecules 2026, 16(1), 178; https://doi.org/10.3390/biom16010178 (registering DOI) - 22 Jan 2026
Abstract
New arylbenzofuran derivatives were designed, synthesized, and evaluated as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Five hybrid compounds (3135) feature a 2-phenylbenzofuran core linked via a heptyloxy spacer to an N-methylbenzylamine moiety, to enhance interactions within [...] Read more.
New arylbenzofuran derivatives were designed, synthesized, and evaluated as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Five hybrid compounds (3135) feature a 2-phenylbenzofuran core linked via a heptyloxy spacer to an N-methylbenzylamine moiety, to enhance interactions within the active site of BChE. Biological evaluation revealed that brominated derivatives 34 and 35 showed the highest cholinesterases (ChE) inhibition compared to their chlorinated analogs, with compound 34 showing the highest activity for both AChE (IC50 = 27.7 μM) and BChE (IC50 = 0.7 μM). These compounds proved to be non-cytotoxic and demonstrated significant antioxidant activity in SH-SY5Y cells exposed to hydrogen peroxide (H2O2), highlighting their potential to mitigate oxidative stress: a key pathological factor in Alzheimer’s disease. Structural activity analysis suggests that bromine substitution at position 7 and the presence of a seven-carbon linker are critical for dual ChE inhibition and selectivity towards BChE. ADMET prediction indicates favorable pharmacokinetic properties, including drug-likeness and oral bioavailability. Overall, these findings highlight the potential of the 2-arylbenzofuran as a promising scaffold for multitarget-directed ligands in Alzheimer’s disease therapy. Full article
(This article belongs to the Special Issue New Discoveries in the Field of Neuropharmacology)
Show Figures

Figure 1

34 pages, 1967 KB  
Review
The Indole Scaffold in Biochemistry and Therapeutics: A Privileged Structure with Diverse Chemical, Biological, and Clinical Significance
by Cristina Manuela Drăgoi, Alina-Crenguţa Nicolae and Ion-Bogdan Dumitrescu
Targets 2026, 4(1), 4; https://doi.org/10.3390/targets4010004 - 21 Jan 2026
Abstract
The indole scaffold represents a privileged structural motif in medicinal chemistry, celebrated for its remarkable chemical versatility, biological ubiquity, and clinical relevance. This review provides a comprehensive analysis of the recent research on the indole nucleus, emphasizing its physicochemical properties, reactivity patterns, and [...] Read more.
The indole scaffold represents a privileged structural motif in medicinal chemistry, celebrated for its remarkable chemical versatility, biological ubiquity, and clinical relevance. This review provides a comprehensive analysis of the recent research on the indole nucleus, emphasizing its physicochemical properties, reactivity patterns, and capacity to interact with a wide array of biological targets. Found in key endogenous compounds such as serotonin and melatonin, indole serves as a cornerstone in neurochemical signaling, circadian regulation, and chrono-metabolic homeostasis. Beyond its physiological roles, synthetic indole derivatives have shown extensive therapeutic potential across diverse domains, including oncology, infectious diseases, neurodegenerative disorders, immunomodulation, and metabolic syndromes. The review explores structure–activity relationships (SAR), pharmacokinetics, and the molecular mechanisms by which indole-based compounds exert their tremendous effects, that are ranging from enzyme inhibition to receptor modulation. Special focus is given to current clinical applications and emerging strategies for enhancing drug specificity, bioavailability, and safety through indolic frameworks. Additionally, we highlight the translational potential of indole-containing molecules in personalized medicine, underscoring opportunities for future drug discovery. By integrating insights from medicinal chemistry, biochemistry, pharmacology, and clinical science, this review affirms the indole ring’s enduring value as a central scaffold in therapeutic innovation. Full article
Show Figures

Figure 1

15 pages, 1778 KB  
Article
Clinical Characteristics, Long-Term Pharmacokinetics, and Outcomes in Kidney Transplant Recipients from an African Tertiary Centre: A 10-Year Single-Centre Retrospective Review
by Sadiq Aliyu Hussaini, Caroline Dickens, Confidence Makgoro, Therese Dix-Peek, Badar Munir, Jeevan Perumala, Simran Patel, Qaiser Goolam, Graham Paget, Bala Waziri and Raquel Duarte
Pharmaceutics 2026, 18(1), 132; https://doi.org/10.3390/pharmaceutics18010132 - 21 Jan 2026
Abstract
Background: Kidney transplantation outcomes in resource-limited settings remain underreported. This 10-year retrospective review examined the clinical characteristics, long-term pharmacokinetics, and outcomes of kidney transplant recipients at a South African public hospital. Methods: Data from kidney transplant recipients between January 2012 and December 2022 [...] Read more.
Background: Kidney transplantation outcomes in resource-limited settings remain underreported. This 10-year retrospective review examined the clinical characteristics, long-term pharmacokinetics, and outcomes of kidney transplant recipients at a South African public hospital. Methods: Data from kidney transplant recipients between January 2012 and December 2022 were analysed. Graft and patient survival were assessed using Kaplan–Meier analysis. Cox proportional hazards models were used to evaluate the associations between clinical and pharmacokinetic variables and outcomes. Results: The one- and five-year graft survival rates were 87.9% and 65.6%, respectively. Acute rejection, as confirmed by biopsy, was associated with graft failure (HR, 2.46; p = 0.010). Increasing recipient age at transplantation increased the graft failure risk by about 5.0% per year (HR: 1.05, p = 0.006). Tacrolimus trough and normalised trough levels were lower in the graft loss group 73% and 93% of the time, respectively, despite similar tacrolimus doses. Whereas achieving optimal tacrolimus concentration did not significantly affect graft survival, maintaining a haemoglobin level >10 g/dL improved the chances of 3-, 4-, and 5-year graft survival (p-value, 0.001, 0.001, and <0.001, respectively). Patient survival rates were more favourable than graft survival rates. The 1-year and 5-year patient survival rates were 90.0% and 77.4%, respectively. Conclusions: This study offers insights into transplant outcomes in low-resource public health settings. The findings emphasise the impact of rejection and age on the risk of graft failure and the significance of maintaining adequate haemoglobin levels after transplantation. The results also indicate the need for more nuanced and personalised approaches to tacrolimus monitoring in the long-term following transplantation. Full article
(This article belongs to the Special Issue Optimizing Drug Therapy in Kidney Diseases: Effectiveness and Safety)
Show Figures

Figure 1

16 pages, 3466 KB  
Article
Differential Diagnosis of Oral Salivary Gland Carcinoma and Squamous Cell Carcinoma Using Quantitative Dynamic Contrast-Enhanced MRI
by Kunjie Zeng, Yanqin Zeng, Xinyin Chen, Siya Shi, Guoxiong Lu, Yusong Jiang, Xing Wu, Lingjie Yang, Zhaoqi Lai, Jiale Zeng and Yun Su
J. Clin. Med. 2026, 15(2), 822; https://doi.org/10.3390/jcm15020822 - 20 Jan 2026
Abstract
Background/Objectives: Preoperative differentiation between oral squamous cell carcinoma (SCC) and minor salivary gland carcinoma (SGC) remains clinically challenging due to overlapping imaging characteristics. This study aimed to develop a diagnostic model based on quantitative dynamic contrast-enhanced MRI (qDCE-MRI) parameters to distinguish SCC from [...] Read more.
Background/Objectives: Preoperative differentiation between oral squamous cell carcinoma (SCC) and minor salivary gland carcinoma (SGC) remains clinically challenging due to overlapping imaging characteristics. This study aimed to develop a diagnostic model based on quantitative dynamic contrast-enhanced MRI (qDCE-MRI) parameters to distinguish SCC from SGC prior to surgery. Methods: Patients with histopathologic confirmed SCC or minor SGC who underwent preoperative 3.0T qDCE-MRI were recruited. Clinical characteristics and pharmacokinetic parameters, including volume transfer constant (Ktrans), reverse reflux rate constant (Kep), volume fraction of extravascular extracellular space (Ve), plasma volume fraction (Vp), time to peak (TTP), maximum concentration (MAXConc), maximal slope (MAXSlope), and area under the concentration-time curve (AUCt), along with the apparent diffusion coefficient (ADC), were extracted. Univariate and multivariable logistic regression analyses were performed to identify independent discriminators. Diagnostic performance was assessed using receiver operating characteristic analysis, and model comparisons were conducted with the DeLong test. Interobserver agreement was evaluated using intraclass correlation coefficients (ICC). Results: All qDCE-MRI parameters demonstrated excellent interobserver agreement (ICC range, 0.82–0.94). Multivariable analysis identified Kep (OR = 2620.172, p = 0.001), maximal slope (OR = 1.715, p = 0.024), and tumor location (OR = 5.561, p = 0.027) as independent predictors. The qDCE-MRI model achieved superior diagnostic performance compared with the clinical model (AUC: 0.945 vs. 0.747; p = 0.012). Conclusions: A qDCE-MRI–based model incorporating Kep and MAXSlope was shown to provide excellent accuracy for preoperative differentiation between oral SCC and minor SGC. Full article
Show Figures

Figure 1

18 pages, 4352 KB  
Article
Robustness Evaluation of a Legacy N-Glycan Profiling Method for a Therapeutic Antibody Under ICH Q14 Lifecycle Principles
by Ming-Ching Hsieh, Chao Richard Li, Margaret A. Velardo, Jingming Zhang and Babita S. Parekh
Antibodies 2026, 15(1), 9; https://doi.org/10.3390/antib15010009 - 15 Jan 2026
Viewed by 142
Abstract
Background: This study assesses the robustness of a legacy N-glycan profiling method for the therapeutic antibody MAB1 with different Peptide-N-glycosidase F (PNGase F) enzyme sources, solid phase extraction (SPE) cartridges, and reagent stability, aligning with ICH Q14 lifecycle management principles. Glycosylation profiling is [...] Read more.
Background: This study assesses the robustness of a legacy N-glycan profiling method for the therapeutic antibody MAB1 with different Peptide-N-glycosidase F (PNGase F) enzyme sources, solid phase extraction (SPE) cartridges, and reagent stability, aligning with ICH Q14 lifecycle management principles. Glycosylation profiling is critical for therapeutic antibodies as it influences both function and pharmacokinetics. Method: The legacy N-glycan profiling method, 2-aminobenzoic acid (2-AA) labeling combined with normal-phase HPLC, was re-evaluated to confirm consistent analytical performance in the context of evolving regulatory expectations. The evaluation focused on three key factors: PNGase F enzyme sources, solid-phase extraction (SPE) cartridges, and reagent stability. Results: Commercial PNGase F enzymes showed various performances, with some sources yielding significant differences. Several SPE cartridges were also tested, with certain formats displaying poor recovery and high variability, particularly for sialylated glycans. In addition, reagent stability studies revealed rapid degradation of the labeling reagent within a few days. Conclusions: These results underscore the importance of risk control, continual improvement, and lifecycle management to ensure reliable glycosylation analysis and the sustained robustness of legacy methods. Full article
Show Figures

Graphical abstract

33 pages, 4734 KB  
Review
Targeting Bacterial Cell Wall Synthesis: Structural Insights and Emerging Therapeutic Strategies
by Bharat Kumar Reddy Sanapalli, Christopher R. Jones and Vidyasrilekha Sanapalli
Pharmaceutics 2026, 18(1), 106; https://doi.org/10.3390/pharmaceutics18010106 - 13 Jan 2026
Viewed by 257
Abstract
The emergence of multidrug-resistant (MDR) bacterial pathogens has heightened the urgency for novel antibacterial agents. The bacterial cell wall usually comprises peptidoglycan, which presents a prime target for antibacterial drug development due to its indispensable role in maintaining cellular integrity. Conventional antibiotics such [...] Read more.
The emergence of multidrug-resistant (MDR) bacterial pathogens has heightened the urgency for novel antibacterial agents. The bacterial cell wall usually comprises peptidoglycan, which presents a prime target for antibacterial drug development due to its indispensable role in maintaining cellular integrity. Conventional antibiotics such as β-lactams and glycopeptides hinder peptidoglycan synthesis through competitive binding of penicillin-binding proteins (PBPs) and sequestration of lipid-linked precursor molecules. Nevertheless, prevalent resistance mechanisms including target modification, β-lactamase hydrolysis, and multi-drug efflux pumps have limited their clinical utility. This comprehensive analysis explicates the molecular machinery underlying bacterial cell wall assembly, evaluates both explored and unexplored enzymatic nodes within this pathway, and highlights the transformative impact of high-resolution structural elucidation in accelerating structure-guided drug discovery. Novel targets such as GlmS, GlmM, GlmU, Mur ligases, D,L-transpeptidases are assessed for their inclusiveness for the discovery of next-generation antibiotics. Additionally, cell wall inhibitors are also examined for their mechanisms of action and evolutionary constraints on MDR development. High-resolution crystallographic data provide valuable insights into molecular blueprints for structure-guided optimization of pharmacophores, enhancing binding affinity and circumventing resistance determinants. This review proposes a roadmap for future innovation, advocating for the convergence of computational biology platforms, machine learning-driven compound screening, and nanoscale delivery systems to improve therapeutic efficacy and pharmacokinetics. The synergy of structural insights and cutting-edge technologies offers a multidisciplinary framework for revitalizing the antibacterial arsenal and combating MDR infections efficiently. Full article
(This article belongs to the Special Issue New Era in Antimicrobial Strategies)
Show Figures

Figure 1

18 pages, 1758 KB  
Review
Computational Workflow for Chemical Compound Analysis: From Structure Generation to Molecular Docking
by Jesus Magdiel García-Díaz, Asbiel Felipe Garibaldi-Ríos, Martha Patricia Gallegos-Arreola, Filiberto Gutiérrez-Gutiérrez, Jorge Iván Delgado-Saucedo, Moisés Martínez-Velázquez and Ana María Puebla-Pérez
Sci. Pharm. 2026, 94(1), 9; https://doi.org/10.3390/scipharm94010009 - 13 Jan 2026
Viewed by 496
Abstract
Drug discovery is a complex and expensive process in which only a small proportion of candidate molecules reach clinical approval. Computational methods, particularly computer-aided drug design (CADD), have become fundamental to accelerate and optimize early stages of discovery by integrating chemical, biological, and [...] Read more.
Drug discovery is a complex and expensive process in which only a small proportion of candidate molecules reach clinical approval. Computational methods, particularly computer-aided drug design (CADD), have become fundamental to accelerate and optimize early stages of discovery by integrating chemical, biological, and pharmacokinetic information into predictive models. This review outlines a complete computational workflow for chemical compound analysis, covering molecular structure generation, database selection, evaluation of absorption, distribution, metabolism, excretion and toxicity (ADMET), target prediction, and molecular docking. It focuses on freely accessible and web-based tools that enable reproducible, cost-effective, and scalable in silico studies. Key platforms such as PubChem, ChEMBL, RDKit, SwissADME, TargetNet, and SwissDock are highlighted as examples of how different resources can be integrated to support rational compound design and prioritization. The article also discusses essential methodological principles, data curation strategies, and common limitations in virtual screening and docking analyses. Finally, it explores future directions in computational drug discovery, including the incorporation of artificial intelligence, multi-omics integration, and quantum simulations, to enhance predictive accuracy and translational relevance. Full article
(This article belongs to the Topic Bioinformatics in Drug Design and Discovery—2nd Edition)
Show Figures

Figure 1

26 pages, 2231 KB  
Review
Microneedle Technologies for Drug Delivery: Innovations, Applications, and Commercial Challenges
by Kranthi Gattu, Deepika Godugu, Harsha Jain, Krishna Jadhav, Hyunah Cho and Satish Rojekar
Micromachines 2026, 17(1), 102; https://doi.org/10.3390/mi17010102 - 13 Jan 2026
Viewed by 358
Abstract
Microneedle (MN) technologies have emerged as a groundbreaking platform for transdermal and intradermal drug delivery, offering a minimally invasive alternative to oral and parenteral routes. Unlike passive transdermal systems, MNs allow the permeation of hydrophilic macromolecules, such as peptides, proteins, and vaccines, by [...] Read more.
Microneedle (MN) technologies have emerged as a groundbreaking platform for transdermal and intradermal drug delivery, offering a minimally invasive alternative to oral and parenteral routes. Unlike passive transdermal systems, MNs allow the permeation of hydrophilic macromolecules, such as peptides, proteins, and vaccines, by penetrating the stratum corneum barrier without causing pain or tissue damage, unlike hypodermic needles. Recent advances in materials science, microfabrication, and biomedical engineering have enabled the development of various MN types, including solid, coated, dissolving, hollow, hydrogel-forming, and hybrid designs. Each type has unique mechanisms, fabrication techniques, and pharmacokinetic profiles, providing customized solutions for a range of therapeutic applications. The integration of 3D printing technologies and stimulus-responsive polymers into MN systems has enabled patches that combine drug delivery with real-time physiological sensing. Over the years, MN applications have grown beyond vaccines to include the delivery of insulin, anticancer agents, contraceptives, and various cosmeceutical ingredients, highlighting the versatility of this platform. Despite this progress, broader clinical and commercial adoption is still limited by issues such as scalable and reliable manufacturing, patient acceptance, and meeting regulatory expectations. Overcoming these barriers will require coordinated efforts across engineering, clinical research, and regulatory science. This review thoroughly summarizes MN technologies, beginning with their classification and drug-delivery mechanisms, and then explores innovations, therapeutic uses, and translational challenges. It concludes with a critical analysis of clinical case studies and a future outlook for global healthcare. By comparing technological progress with regulatory and commercial hurdles, this article highlights the opportunities and limitations of MN systems as a next-generation drug-delivery platform. Full article
(This article belongs to the Special Issue Breaking Barriers: Microneedles in Therapeutics and Diagnostics)
Show Figures

Figure 1

20 pages, 5022 KB  
Review
Phosphatidylinositol-3-Kinase (PI3K) and Histone Deacetylase (HDAC) Multitarget Inhibitors: An Update on Clinical and Preclinical Candidates
by Alef D. S. Lima and Lídia M. Lima
Pharmaceuticals 2026, 19(1), 130; https://doi.org/10.3390/ph19010130 - 12 Jan 2026
Viewed by 172
Abstract
Phosphatidylinositol-3-kinases (PI3Ks) constitute an important validated therapeutic class involved in crucial cellular processes, and their dysregulation is associated with cancer initiation and progression. Nonetheless, intrinsic and acquired resistance mechanisms associated with PI3K pathway modulation have underscored the need for alternative therapeutic strategies. In [...] Read more.
Phosphatidylinositol-3-kinases (PI3Ks) constitute an important validated therapeutic class involved in crucial cellular processes, and their dysregulation is associated with cancer initiation and progression. Nonetheless, intrinsic and acquired resistance mechanisms associated with PI3K pathway modulation have underscored the need for alternative therapeutic strategies. In this context, recent studies have shown that simultaneous inhibition of PI3K and histone deacetylases (HDAC) promotes synergistic antitumor effects in different cancer cell lines. HDACs are validated epigenetic targets that are extensively explored in clinical practice and have a pharmacophore with versatility for structural modifications, which facilitates the design of multitarget inhibitors. This review examines the rational design and synthetic evolution of dual PI3K/HDAC inhibitors, an area catalyzed by the development of fimepinostat, the first clinically evaluated agent exhibiting potent and balanced inhibition of both targets. We provide a critical overview of PI3K/HDAC multitarget inhibitors reported in recent years that have progressed to preclinical or clinical investigation, discussing the structural frameworks employed, medicinal chemistry strategies adopted, and structure–activity relationships established. Particular attention is given to advantageous molecular features as well as challenges related to toxicity, pharmacokinetic behavior, and pharmacodynamic modulation. From this comprehensive analysis, we outline key considerations and emerging design principles that may inform the next generation of PI3K/HDAC multitarget drug candidates. Insights derived from the diversity of chemical scaffolds, activity profiles, and selectivity patterns described herein may support the development of innovative therapeutic agents capable of overcoming current limitations in anticancer treatment. Full article
Show Figures

Graphical abstract

13 pages, 1048 KB  
Article
Population Pharmacokinetics Model of Cyclosporin A in Children and Young Adult Renal Transplant Patients: Focus on Haemoglobin Contribution to Exposure Variability
by Maša Roganović, Mirjana Cvetković, Ivana Gojković, Brankica Spasojević, Marija Jovanović, Branislava Miljković and Katarina Vučićević
Pharmaceutics 2026, 18(1), 99; https://doi.org/10.3390/pharmaceutics18010099 - 12 Jan 2026
Viewed by 232
Abstract
Background/Objectives: Cyclosporine A (CsA) is a key immunosuppressant in post-transplantation therapy protocol characterized by large interindividual and intraindividual pharmacokinetic (PK) variability and a narrow therapeutic range necessitating therapeutic drug monitoring (TDM) to prevent graft rejection and minimize side effects. TDM data can [...] Read more.
Background/Objectives: Cyclosporine A (CsA) is a key immunosuppressant in post-transplantation therapy protocol characterized by large interindividual and intraindividual pharmacokinetic (PK) variability and a narrow therapeutic range necessitating therapeutic drug monitoring (TDM) to prevent graft rejection and minimize side effects. TDM data can be used for developing PK models with the objective of identification and quantification of variability factors that contribute to the differences in CsA concentrations. Methods: Retrospectively collected data from medical records of 58 patients (children and young adults) regarding CsA blood concentrations, concomitant medications, and laboratory findings of significance were used for the population PK model development in NONMEM® (version 7.5) with first-order conditional estimation method with interaction (FOCE-I). Simulation of the concentrations and area under the curve (AUC) was performed in the web application e-campsis®. RStudio (version 4.5.0) was used for the purpose of descriptive statistics analysis and graphs plotting. Results: A one-compartment model with first-order absorption and elimination best described the data. Value of clearance (CL/F) was estimated to be 15 L/h, and volume of distribution (V/F) was 71.1 L for a typical patient weighing 40 kg. Interindividual variability (IIV) on CL/F and V/F was 34.91% and 43.05%, respectively. Interoccasional variability (IOV) was 12.25%. Body weight (WT) was introduced allometrically on CL/F and V/F, with the estimated exponent of 0.89 for CL/F and 1 (fixed) for V/F. According to the final model, CL/F decreases with increasing haemoglobin (HGB) value. A difference of almost 22.5% in CL/F was observed among patients’ HGB values reported in the study. Conclusions: Our findings indicate that HGB levels significantly influence CsA PK, particularly minimum concentration (Cmin), highlighting the importance of regular HGB levels monitoring together with CsA levels. Full article
(This article belongs to the Special Issue Population Pharmacokinetics and Its Clinical Applications)
Show Figures

Graphical abstract

13 pages, 767 KB  
Article
Do Cenobamate Pharmacokinetics Change with Co-Administered Antiseizure Medications? An Exploratory Analysis of Responder Patients with Focal Drug-Resistant Epilepsy
by Bruno Charlier, Viviana Izzo, Giovanni Assenza, Anna Chiara Balsamo, Flavia Cirillo, Albino Coglianese, Carlo Di Bonaventura, Mariana Fernandes, Antonio Gambardella, Emanuele Cerulli Irelli, Claudio Liguori, Sandra Rufolo, Ilaria Sammarra, Amelia Filippelli and Francesca Felicia Operto
Pharmaceutics 2026, 18(1), 92; https://doi.org/10.3390/pharmaceutics18010092 - 10 Jan 2026
Viewed by 352
Abstract
Background: Cenobamate (CNB) is an anti-seizure medication (ASM) approved for the treatment of drug-resistant focal epilepsy in adults. Notwithstanding significant proof of efficacy, real-world pharmacokinetics (PK) data are lacking, particularly regarding sex-based variations and the effect of concomitant ASMs. This exploratory study aimed [...] Read more.
Background: Cenobamate (CNB) is an anti-seizure medication (ASM) approved for the treatment of drug-resistant focal epilepsy in adults. Notwithstanding significant proof of efficacy, real-world pharmacokinetics (PK) data are lacking, particularly regarding sex-based variations and the effect of concomitant ASMs. This exploratory study aimed to investigate the PK profile of CNB in responder adults with drug-resistant focal epilepsy and assess potential relationship with concomitant ASMs and clinical variables. Methods: We enrolled 17 patients receiving add-on CNB. The concentration-to-dose ratio (C/D), incremental slope (ΔC/ΔD), and dose-to-concentration AUC were calculated. Enrolled individuals were stratified into three exposure clusters (low, medium, and high). Univariate ANOVA was used to explore associations between PK parameters, clinical variables and concomitant ASMs. Results: Sex appeared to be associated with AUC cluster classification (p = 0.026), showing females predominating in the high-exposure group. A nonlinear dose-concentration relationship emerged from the ΔC/ΔD analysis, showing steeper slopes at low doses (12.5–50 mg), great variability at higher doses (100–200 mg), and a negative slope in some individuals. Higher CNB concentrations were observed in patients co-treated with lacosamide, while concomitant topiramate was associated with lower exposure. Carbamazepine and valproate showed non-significant trends consistent with their known enzyme-inducing and inhibiting properties. Conclusions: PK of CNB appears highly variable and seems to be influenced by sex and concomitant ASMs. These findings highlight the importance of therapeutic drug monitoring and individualized titration strategies to optimize efficacy and safety in clinical practice. These results should be regarded as exploratory and hypothesis-generating due to the small and monocentric sample size and need to be confirmed in larger, multicenter cohorts. Full article
Show Figures

Figure 1

20 pages, 1019 KB  
Article
A Novel ALDH2 Inhibitor for the Treatment of Alcohol Use Disorder: Preclinical Findings
by Randall D. Marshall, Andrew Fowlie and Adam Sabouni
Cells 2026, 15(2), 123; https://doi.org/10.3390/cells15020123 - 9 Jan 2026
Viewed by 247
Abstract
Background: Alcohol use disorder is a common condition with high morbidity and mortality and no highly effective treatments. Achieving and maintaining abstinence is necessary or desired for many persons with AUD, but is difficult due to the nature of the condition. Pharmacologic inhibition [...] Read more.
Background: Alcohol use disorder is a common condition with high morbidity and mortality and no highly effective treatments. Achieving and maintaining abstinence is necessary or desired for many persons with AUD, but is difficult due to the nature of the condition. Pharmacologic inhibition of the enzyme ALDH2, which increases levels of the substrate acetaldehyde when alcohol is imbibed, can serve as a powerful enforcer of efforts to remain abstinent. Disulfiram is an approved ALDH2 inhibitor via its active metabolite DETC-MeSO, but has many limitations, including numerous adverse effects, hepatotoxicity, oral administration, and unpredictable mechanistic activity. Methods: SOPH-110S, an analog of DETC-MeSO, was evaluated in a series of experiments to assess mechanism, pharmacokinetics in male beagle dogs, cardiovascular safety in telemeterized male beagle dogs, selectivity, off-target activity, CYP inhibition, and proof of mechanism in a rat model that included dosing and alcohol challenge followed by analysis of liver ALDH2 inhibition. Results: SOPH-110S showed high potency with a comparable IC50 vs. positive controls and no physiologically relevant off-target binding in an 84-target panel. It did not inhibit or induce any major CYP enzymes or meaningfully inhibit the hERG channel. After 10 days’ dosing in rats, followed by administration of alcohol, SOPH-110S was a highly potent, dose-dependent inhibitor of ALDH2, comparable to DETC-MeSO. No cardiovascular safety concerns were found at multiples above expected clinical doses. Conclusions: The preclinical data support further clinical study of SOPH-110S as a potential ALDH2 inhibitor treatment for AUD. The FDA approved the IND to conduct a first-in-man phase 1 study in September 2025. Full article
(This article belongs to the Special Issue Biological Mechanisms in the Treatment of Neuropsychiatric Diseases)
Show Figures

Figure 1

18 pages, 1585 KB  
Article
Affinity- and Format-Dependent Pharmacokinetics of 89Zr-Labeled Albumin-Binding VHH Constructs
by Simon Leekens, Peter Casteels, Tom Van Bogaert, Pieter Deschaght, Veronique De Brabandere, Christopher Cawthorne, Guy Bormans and Frederik Cleeren
Pharmaceuticals 2026, 19(1), 120; https://doi.org/10.3390/ph19010120 - 9 Jan 2026
Viewed by 237
Abstract
Background/Objectives: NANOBODY® molecules (VHHs) are attractive vectors for radiopharmaceuticals due to their small size and high target affinity, but rapid clearance and pronounced kidney retention limit their therapeutic applicability. Binding to serum albumin is a widely used strategy to prolong circulation, yet [...] Read more.
Background/Objectives: NANOBODY® molecules (VHHs) are attractive vectors for radiopharmaceuticals due to their small size and high target affinity, but rapid clearance and pronounced kidney retention limit their therapeutic applicability. Binding to serum albumin is a widely used strategy to prolong circulation, yet the respective contributions of albumin-binding affinity and molecular format remain insufficiently defined. This study aimed to systematically evaluate how affinity and valency modulate VHH pharmacokinetics. Methods: Four monovalent albumin-binding VHHs spanning nanomolar to micromolar affinities and two bivalent constructs were engineered, generated by fusing an albumin-binding VHH to an irrelevant non-binding VHH. All constructs incorporated a site-specific cysteine for DFO* conjugation, enabling uniform zirconium-89 labeling with high radiochemical purity. Pharmacokinetics were assessed in healthy mice using serial blood sampling and positron emission tomography. Blood and kidney exposure were quantified by non-compartmental analysis. Results: All albumin-binding constructs showed increased systemic exposure and reduced kidney uptake relative to a non-binding control. Nanomolar-affinity binders reached maximal exposure, and further affinity increases (KD < ~100 nM) did not improve pharmacokinetics, suggesting a threshold. The micromolar binder showed intermediate exposure but still reduced renal retention compared with control. Valency effects were affinity-dependent. They were negligible at high affinity but pronounced at low affinity, where bivalency reduced systemic exposure and increased kidney uptake toward control levels. Conclusions: Albumin binding enables tuning of VHH pharmacokinetics in an affinity-dependent manner. Above an apparent affinity threshold, pharmacokinetics become format independent, whereas below this threshold, molecular format substantially influences systemic and renal disposition. Full article
(This article belongs to the Special Issue Advances in Theranostic Radiopharmaceuticals)
Show Figures

Graphical abstract

37 pages, 1355 KB  
Review
Risk Assessment of Chemical Mixtures in Foods: A Comprehensive Methodological and Regulatory Review
by Rosana González Combarros, Mariano González-García, Gerardo David Blanco-Díaz, Kharla Segovia Bravo, José Luis Reino Moya and José Ignacio López-Sánchez
Foods 2026, 15(2), 244; https://doi.org/10.3390/foods15020244 - 9 Jan 2026
Viewed by 196
Abstract
Over the last 15 years, mixture risk assessment for food xenobiotics has evolved from conceptual discussions and simple screening tools, such as the Hazard Index (HI), towards operational, component-based and probabilistic frameworks embedded in major food-safety institutions. This review synthesizes methodological and regulatory [...] Read more.
Over the last 15 years, mixture risk assessment for food xenobiotics has evolved from conceptual discussions and simple screening tools, such as the Hazard Index (HI), towards operational, component-based and probabilistic frameworks embedded in major food-safety institutions. This review synthesizes methodological and regulatory advances in cumulative risk assessment for dietary “cocktails” of pesticides, contaminants and other xenobiotics, with a specific focus on food-relevant exposure scenarios. At the toxicological level, the field is now anchored in concentration/dose addition as the default model for similarly acting chemicals, supported by extensive experimental evidence that most environmental mixtures behave approximately dose-additively at low effect levels. Building on this paradigm, a portfolio of quantitative metrics has been developed to operationalize component-based mixture assessment: HI as a conservative screening anchor; Relative Potency Factors (RPF) and Toxic Equivalents (TEQ) to express doses within cumulative assessment groups; the Maximum Cumulative Ratio (MCR) to diagnose whether risk is dominated by one or several components; and the combined Margin of Exposure (MOET) as a point-of-departure-based integrator that avoids compounding uncertainty factors. Regulatory frameworks developed by EFSA, the U.S. EPA and FAO/WHO converge on tiered assessment schemes, biologically informed grouping of chemicals and dose addition as the default model for similarly acting substances, while differing in scope, data infrastructure and legal embedding. Implementation in food safety critically depends on robust exposure data streams. Total Diet Studies provide population-level, “as eaten” exposure estimates through harmonized food-list construction, home-style preparation and composite sampling, and are increasingly combined with conventional monitoring. In parallel, human biomonitoring quantifies internal exposure to diet-related xenobiotics such as PFAS, phthalates, bisphenols and mycotoxins, embedding mixture assessment within a dietary-exposome perspective. Across these developments, structured uncertainty analysis and decision-oriented communication have become indispensable. By integrating advances in toxicology, exposure science and regulatory practice, this review outlines a coherent, tiered and uncertainty-aware framework for assessing real-world dietary mixtures of xenobiotics, and identifies priorities for future work, including mechanistically and data-driven grouping strategies, expanded use of physiologically based pharmacokinetic modelling and refined mixture-sensitive indicators to support public-health decision-making. Full article
(This article belongs to the Special Issue Research on Food Chemical Safety)
Show Figures

Figure 1

16 pages, 3513 KB  
Communication
Cnidium monnieri Polysaccharides Exhibit Inhibitory Effect on Airborne Transmission of Influenza A Virus
by Heng Wang, Yifei Jin, Yanrui Li, Yan Wang, Yixin Zhao, Shuang Cheng, Zhenyue Li, Mengxi Yan, Zitong Yang, Xiaolong Chen, Yan Zhang, Zhixin Yang, Zhongyi Wang, Kun Liu and Ligong Chen
Viruses 2026, 18(1), 86; https://doi.org/10.3390/v18010086 - 8 Jan 2026
Viewed by 379
Abstract
Influenza A virus (IAV) continues to present a threat to public health, highlighting the need for safe and multi-target antivirals. In this study, anti-influenza activity, airborne transmission blocking capacity, and immunomodulatory effects of Cnidium monnieri polysaccharides (CMP) were evaluated. Cytotoxicity in A549 cells [...] Read more.
Influenza A virus (IAV) continues to present a threat to public health, highlighting the need for safe and multi-target antivirals. In this study, anti-influenza activity, airborne transmission blocking capacity, and immunomodulatory effects of Cnidium monnieri polysaccharides (CMP) were evaluated. Cytotoxicity in A549 cells was assessed by CCK-8 (CC50 = 8.49 mg/mL), antiviral efficacy against A/California/04/2009 (CA04) by dose–response (EC50 = 1.63 mg/mL), and the stage of action by time-of-addition assays (pre-, co-, post-treatment). A guinea pig model infected with CA04 was used for testing the effect of pre-exposure CMP on transmission, with readouts including nasal-wash titers, seroconversion, lung index, and tissue titers (EID50). RT-qPCR was employed to quantify the mRNA expression levels of proinflammatory cytokines, including TNF-α, IL-1β, and IL-6, in lung tissue, while Western blot analysis was performed to assess the expression and phosphorylation status of key proteins involved in the NF-κB signaling pathway. CMP suppressed viral replication in vitro within non-cytotoxic ranges, and pre-treatment—rather than co- or post-treatment—significantly reduced titers and cytopathic effect, consistent with effects at pre-entry steps and/or host priming. In vivo, pre-exposure CMP lowered nasal shedding, reduced aerosol transmission (3/6 seroconverted vs. 6/6 controls), decreased lung indices, and diminished tissue viral loads; IAV was undetectable in trachea at 7 days post-infection in pre-exposed animals, and nasal-turbinate titers declined relative to infection controls. Moreover, during in vivo treatment in mice, CMP significantly suppressed the levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) in lung tissue. This effect was mechanistically associated with CMP-mediated regulation of the NF-κB signaling pathway, leading to attenuation of inflammatory responses. These data indicate that CMP combines a favorable in vitro safety and efficacy profile with inhibition of airborne spread in vivo, supporting further mechanistic, pharmacokinetic, and fractionation studies toward translational development. Full article
Show Figures

Figure 1

Back to TopTop