Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (558)

Search Parameters:
Keywords = petroleum extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5409 KiB  
Article
Sustainable Rubber Solutions: A Study on Bio-Based Oil and Resin Blends
by Frances van Elburg, Fabian Grunert, Claudia Aurisicchio, Micol di Consiglio, Auke Talma, Pilar Bernal-Ortega and Anke Blume
Polymers 2025, 17(15), 2111; https://doi.org/10.3390/polym17152111 - 31 Jul 2025
Viewed by 29
Abstract
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic [...] Read more.
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic Extract (TDAE), are frequently used in rubber compounds, and a promising strategy to enhance sustainability is to use bio-based plasticizer alternatives. However, research has shown that the replacement of TDAE oil with bio-based oils or resins can significantly alter the glass transition temperature (Tg) of the final compound, influencing the tire properties. In this study, the theory was proposed that using a plasticizer blend, comprising oil and resin, in a rubber compound would result in similar Tg values as the reference compound containing TDAE. To test this, the cycloaliphatic di-ester oil Hexamoll DINCH, which can be made out of bio-based feedstock by the BioMass Balance approach, was selected and blended with the cycloaliphatic hydrocarbon resin Escorez 5300. Various oil-to-resin ratios were investigated, and a linear increase in the Tg of the vulcanizate was obtained when increasing the resin content and decreasing the oil content. Additionally, a 50/50 blend, consisting of 18.75 phr Hexamoll DINCH and 18.75 phr Escorez 5300, resulted in the same Tg of −19 °C as a compound containing 37.5 phr TDAE. Furthermore, this blend resulted in similar curing characteristics and cured Payne effect as the reference with TDAE. Moreover, a similar rolling resistance indicator (tan δ at 60 °C = 0.115), a slight deterioration in wear resistance (ARI = 83%), but an improvement in the stress–strain behavior (M300 = 9.18 ± 0.20 MPa and Ts = 16.3 ± 0.6 MPa) and wet grip indicator (tan δ at 0 °C = 0.427) were observed. The results in this work show the potential of finding a balance between optimal performance and sustainability by using plasticizer blends. Full article
(This article belongs to the Special Issue Exploration and Innovation in Sustainable Rubber Performance)
Show Figures

Figure 1

22 pages, 1556 KiB  
Article
Long-Term Performance of Passive Volatile Organic Compounds (VOCs) Samplers for Indoor Air
by John H. Zimmerman, Brian Schumacher, Christopher C. Lutes, Brian Cosky and Heidi Hayes
Environments 2025, 12(8), 267; https://doi.org/10.3390/environments12080267 (registering DOI) - 31 Jul 2025
Viewed by 30
Abstract
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive [...] Read more.
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive samplers (e.g., Radiello® 130 passive samplers with white diffusive bodies) over exposure periods ranging from 1 week to 1 year in a test house with known vapor intrusion (VI). Chloroform %Bias values exceeded the ±30% acceptance criterion after 4 weeks exposure. Benzene, hexane, and trichloroethylene (TCE) concentrations were within the acceptance criterion for up to three months. Toluene and tetrachloroethylene (PCE), the two least volatile compounds, demonstrated uniform uptake rates over one year. In the second phase of this study, testing of the longer exposure times of 6 months and 1 year were evaluated with three additional passive samplers: Waterloo Membrane SamplerTM (WMSTM), SKC 575 with secondary diffusive cover, and Radiello® 130 passive samplers with yellow diffusive bodies. The SKC 575 and Radiello® 130 passive samplers produced acceptable results (%Bias ≤ 30%) over the 6-month exposure period, while the WMSTM sampler results favored petroleum hydrocarbon more than chlorinated solvent uptake. After the 1-year exposure period, the passive sampler performances were acceptable under specific conditions of this study. The results suggest that all three samplers can produce acceptable results over exposure time periods beyond 30 days and up to a year for some compounds. Full article
Show Figures

Figure 1

24 pages, 8636 KiB  
Article
Oil Film Segmentation Method Using Marine Radar Based on Feature Fusion and Artificial Bee Colony Algorithm
by Jin Xu, Bo Xu, Xiaoguang Mou, Boxi Yao, Zekun Guo, Xiang Wang, Yuanyuan Huang, Sihan Qian, Min Cheng, Peng Liu and Jianning Wu
J. Mar. Sci. Eng. 2025, 13(8), 1453; https://doi.org/10.3390/jmse13081453 - 29 Jul 2025
Viewed by 121
Abstract
In the wake of the continuous development of the international strategic petroleum reserve system, the tonnage and quantity of oil tankers have been increasing. This trend has driven the expansion of offshore oil exploration and transportation, resulting in frequent incidents of ship oil [...] Read more.
In the wake of the continuous development of the international strategic petroleum reserve system, the tonnage and quantity of oil tankers have been increasing. This trend has driven the expansion of offshore oil exploration and transportation, resulting in frequent incidents of ship oil spills. Catastrophic impacts have been exerted on the marine environment by these accidents, posing a serious threat to economic development and ecological security. Therefore, there is an urgent need for efficient and reliable methods to detect oil spills in a timely manner and minimize potential losses as much as possible. In response to this challenge, a marine radar oil film segmentation method based on feature fusion and the artificial bee colony (ABC) algorithm is proposed in this study. Initially, the raw experimental data are preprocessed to obtain denoised radar images. Subsequently, grayscale adjustment and local contrast enhancement operations are carried out on the denoised images. Next, the gray level co-occurrence matrix (GLCM) features and Tamura features are extracted from the locally contrast-enhanced images. Then, the generalized least squares (GLS) method is employed to fuse the extracted texture features, yielding a new feature fusion map. Afterwards, the optimal processing threshold is determined to obtain effective wave regions by using the bimodal graph direct method. Finally, the ABC algorithm is utilized to segment the oil films. This method can provide data support for oil spill detection in marine radar images. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 2080 KiB  
Review
Isatis tinctoria L.—From Botanical Description to Seed-Extracted Compounds and Their Applications: An Overview
by Justine Dupré, Nicolas Joly, Romain Vauquelin, Vincent Lequart, Élodie Choque, Nathalie Jullian and Patrick Martin
Plants 2025, 14(15), 2304; https://doi.org/10.3390/plants14152304 - 25 Jul 2025
Viewed by 401
Abstract
Isatis tinctoria L. (Brassicaceae), also known as woad or dyer’s woad, is an ancient plant with a rosy future ahead. Most of the knowledge about woad is related to indigo dye production and its medicinal applications, especially its leaves. The general interest in [...] Read more.
Isatis tinctoria L. (Brassicaceae), also known as woad or dyer’s woad, is an ancient plant with a rosy future ahead. Most of the knowledge about woad is related to indigo dye production and its medicinal applications, especially its leaves. The general interest in woad has decreased with the rise of petroleum-based products. However, nowadays this plant is attracting interest again with industries reintroducing natural dyes. To meet the market demand in a sustainable manner, recent studies have focused specifically on woad seeds, leading to a valorization of the whole woad plant. This review provides an overview of the botanical, phytochemical composition, and properties of woad seeds, primarily supporting their cosmetic and pharmaceutical potential. From a chemical point of view, woad seeds mainly contain fatty acids, amino acids, phytosterols and glucosinolates. These compounds have been investigated through their extraction and analytical methods, as well as their properties and industrial applications. Full article
(This article belongs to the Collection Bioactive Compounds in Plants)
Show Figures

Figure 1

19 pages, 3119 KiB  
Article
Aquathermolytic Upgrading of Zarafshanian Extra Heavy Oil Using Ammonium Alum
by Amirjon Ali Akhunov, Firdavs Aliev, Nurali Mukhamadiev, Oscar Facknwie Kahwir, Alexey Dengaev, Mohammed Yasin Majeed, Mustafa Esmaeel, Abdulvahhab Al-Qaz, Oybek Mirzaev and Alexey Vakhin
Molecules 2025, 30(14), 3013; https://doi.org/10.3390/molecules30143013 - 18 Jul 2025
Viewed by 314
Abstract
The growing global demand for energy necessitates the efficient utilization of unconventional petroleum resources, particularly heavy oil reserves. However, extracting, transporting, and processing these resources remain challenging due to their low mobility, low API gravity, and significant concentrations of resins, asphaltenes, heteroatoms, and [...] Read more.
The growing global demand for energy necessitates the efficient utilization of unconventional petroleum resources, particularly heavy oil reserves. However, extracting, transporting, and processing these resources remain challenging due to their low mobility, low API gravity, and significant concentrations of resins, asphaltenes, heteroatoms, and metals. In recent years, various in situ upgrading techniques have been explored to enhance heavy oil quality, with catalytic aquathermolysis emerging as a promising approach. The effectiveness of this process largely depends on the development of cost-effective, environmentally friendly catalysts. This study investigates the upgrading performance of water-soluble ammonium alum, (NH4)Al(SO4)2·12H2O, for an extra-heavy oil sample from the Zarafshan Depression, located along the Tajikistan–Uzbekistan border. Comprehensive analyses demonstrate that the catalyst facilitates the breakdown of heavy oil components, particularly resins and asphaltenes, into lighter fractions. As a result, oil viscosity was significantly reduced by 94%, while sulfur content decreased from 896 ppm to 312 ppm. Furthermore, thermogravimetric (TG-DTG) analysis, coupled with Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD), revealed that the thermal decomposition of ammonium alum produces catalytically active Al2O3 nanoparticles. These findings suggest that ammonium alum is a highly effective water-soluble pre-catalyst for hydrothermal upgrading, offering a viable and sustainable solution for the development of extra-heavy oil fields. Full article
Show Figures

Figure 1

17 pages, 900 KiB  
Review
Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications
by Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe and Thandi Patricia Gumede
Polymers 2025, 17(14), 1947; https://doi.org/10.3390/polym17141947 - 16 Jul 2025
Viewed by 346
Abstract
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with [...] Read more.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation. Full article
Show Figures

Figure 1

14 pages, 2239 KiB  
Article
Automatic Delineation of Resistivity Contrasts in Magnetotelluric Models Using Machine Learning
by Ever Herrera Ríos, Mateo Marulanda, Hernán Arboleda, Greg Soule, Erika Lucuara, David Jaramillo, Agustín Cardona, Esteban A. Taborda, Farid B. Cortés and Camilo A. Franco
Processes 2025, 13(7), 2263; https://doi.org/10.3390/pr13072263 - 16 Jul 2025
Viewed by 300
Abstract
The precise identification of hydrocarbon-rich zones is crucial for optimizing exploration and production processes in the oil industry. Magnetotelluric (MT) surveys play a fundamental role in mapping subsurface geological structures. This study presents a novel methodology for automatically delineating resistivity contrasts in MT [...] Read more.
The precise identification of hydrocarbon-rich zones is crucial for optimizing exploration and production processes in the oil industry. Magnetotelluric (MT) surveys play a fundamental role in mapping subsurface geological structures. This study presents a novel methodology for automatically delineating resistivity contrasts in MT models by employing advanced machine learning and computer vision techniques. This approach commences with data augmentation to enhance the diversity and volume of resistivity data. Subsequently, a bilateral filter was applied to reduce noise while preserving edge details within the resistivity images. To further improve image contrast and highlight significant resistivity variations, contrast-limited adaptive histogram equalization (CLAHE) was employed. Finally, k-means clustering was utilized to segment the resistivity data into distinct groups based on resistivity values, enabling the identification of color features in different centroids. This facilitated the detection of regions with significant resistivity contrasts in the reservoir. From the clustered images, color masks were generated to visually differentiate the groups and calculate the area and proportion of each group within the pictures. Key features extracted from resistivity profiles were used to train unsupervised learning models capable of generalizing across different geological settings. The proposed methodology improves the accuracy of detecting zones with oil potential and offers scalable applicability to different datasets with minimal retraining, applicable to different subsurface environments. Ultimately, this study seeks to improve the efficiency of petroleum exploration by providing a high-precision automated framework with segmentation and contrast delineation for resistivity analysis, integrating advanced image processing and machine learning techniques. During initial analyses using only k-means, the resulting optimal value of the silhouette coefficient K was 2. After using bilateral filtering together with contrast-limited adaptive histogram equalization (CLAHE) and validation by an expert, the results were more representative, and six clusters were identified. Ultimately, this study seeks to improve the efficiency of petroleum exploration by providing a high-precision automated framework with segmentation and contrast delineation for resistivity analysis, integrating advanced image processing and machine learning techniques. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 3853 KiB  
Article
Methyltrimethyltridecylchromans (MTTCs) in Mature Crude Oils: Implications for Oil Family Classification and Palaeoenvironmental Diagnosis
by Youjun Tang, Mengyue Han, Xiaoyong Yang, Ke Liu, Lian Chen, Yahao Mei, Yulu Han, Tianwu Xu and Chengfu Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1343; https://doi.org/10.3390/jmse13071343 - 14 Jul 2025
Viewed by 207
Abstract
Methyltrimethyltridecylchromans (MTTCs), a class of oxygen-containing aromatic derivatives, have been used as indicators of paleosalinity in source rocks and crude oils. However, the reliability of these compounds as indicators in mature organic matter remains unclear, hindering a definitive assessment of their significance for [...] Read more.
Methyltrimethyltridecylchromans (MTTCs), a class of oxygen-containing aromatic derivatives, have been used as indicators of paleosalinity in source rocks and crude oils. However, the reliability of these compounds as indicators in mature organic matter remains unclear, hindering a definitive assessment of their significance for oil–oil or oil–source rock correlation. In this study, a suite of mature oils and associated source rocks from the Paleogene Shahejie (E2s) Formation in the Machang area, Dongpu Depression, Bohai Bay Basin, were analyzed. The distribution of bulk compositions and biomarkers in the oils and source rock extracts suggests a genetic relationship, indicating that the oils were derived from similar organic matter (predominantly algae and aquatic macrophytes) and depositional environments (low salinity), with comparable maturity levels (within the middle oil window). The β/γ-MTTC ratio, a proposed maturity indicator, appears unreliable in mature organic matter, as evidenced by its poor correlation with established maturity proxies (e.g., C29 24-ethylcholestanes αββ/(ααα + αββ)) in the studied samples. In contrast, MTTC-based salinity paraments (α/δ, α/γ, MTTCI, and the cross-plot of MTTCI versus Pr/Ph) consistently reflect a low-salinity depositional environment for these crude oils and source rocks, except in the ternary diagram of relative alkylation abundances. These findings suggest that MTTC-derived paleosalinity indicators may serve as effective tools for oil–oil or oil–source rock correlation within the middle oil window. This study provides evidence supporting the broader applicability of MTTC-based proxies for paleosalinity reconstruction and correlation studies, particularly in mature organic matter under geological conditions. The results also offer insights for regional petroleum exploration in saline lacustrine basins. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

31 pages, 1834 KiB  
Review
A Review of Polylactic Acid (PLA) and Poly(3-hydroxybutyrate) (PHB) as Bio-Sourced Polymers for Membrane Production Applications
by Lacrimioara Senila, Eniko Kovacs and Marin Senila
Membranes 2025, 15(7), 210; https://doi.org/10.3390/membranes15070210 - 14 Jul 2025
Viewed by 771
Abstract
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane [...] Read more.
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane composition. Among these materials, polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB) are two bio-sourced and biodegradable polymers that can be derived from lignocellulosic waste. These polymers also possess suitable characteristics, such as thermal resistance and mechanical strength, which make them potential candidates for replacing conventional plastics. This study provides an overview of recent advances in the production of PLA and PHB, with a focus on their extraction from lignocellulosic biomass, as well as the recent applications of these two biodegradable polymers as sustainable materials in membrane manufacturing. The advantages and limitations of membranes produced from these materials are also summarized. Lastly, an analysis of future trends is provided concerning new sources, production possibilities, and potential applications in water treatment (mainly for metal ions separation), gas separation, oil–water separation, medical applications, drug release control, and food packaging. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

14 pages, 4370 KiB  
Article
Fabrication of Zwitterionized Nanocellulose/Polyvinyl Alcohol Composite Hydrogels Derived from Camellia Oleifera Shells for High-Performance Flexible Sensing
by Jingnan Li, Weikang Peng, Zhendong Lei, Jialin Jian, Jie Cong, Chenyang Zhao, Yuming Wu, Jiaqi Su and Shuaiyuan Han
Polymers 2025, 17(14), 1901; https://doi.org/10.3390/polym17141901 - 9 Jul 2025
Viewed by 394
Abstract
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia [...] Read more.
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia oleifera shells and modified with 2-chloropropyl chloride to obtain a nanocellulose-based initiator (Init-NC) for atomic transfer radical polymerization (ATRP). Subsequently, sulfonyl betaine methacrylate (SBMA) was polymerized by Init-NC initiating to yield zwitterion-functionalized nanocellulose (NC-PSBMA). Finally, the NC-PSBMA/PVA hydrogel was fabricated by blending NC-PSBMA with PVA. A Fourier transform infrared spectrometer (FT-IR), proton nuclear magnetic resonance spectrometer (1H-NMR), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), universal mechanical testing machine, and digital source-meter were used to characterize the chemical structure, surface microstructure, and sensing performance. The results indicated that: (1) FT-IR and 1H NMR confirmed the successful synthesis of NC-PSBMA; (2) SEM, TEM, and alternating current (AC) impedance spectroscopy verified that the NC-PSBMA/PVA hydrogel exhibits a uniform porous structure (pore diameter was 1.1737 μm), resulting in significantly better porosity (15.75%) and ionic conductivity (2.652 S·m−1) compared to the pure PVA hydrogel; and (3) mechanical testing combined with source meter testing showed that the tensile strength of the composite hydrogel increased by 6.4 times compared to the pure PVA hydrogel; meanwhile, it showed a high sensitivity (GF = 1.40, strain range 0–5%; GF = 1.67, strain range 5–20%) and rapid response time (<0.05 s). This study presents a novel approach to developing bio-based, flexible sensing materials. Full article
(This article belongs to the Special Issue Polysaccharide-Based Materials: Developments and Properties)
Show Figures

Graphical abstract

16 pages, 1292 KiB  
Article
Compartmentalization of Free Fatty Acids in Blood-Feeding Tabanus bovinus Females
by Mikołaj Drozdowski and Mieczysława Irena Boguś
Insects 2025, 16(7), 696; https://doi.org/10.3390/insects16070696 - 6 Jul 2025
Viewed by 443
Abstract
Lipids play vital roles in insect physiology, functioning as energy reserves, membrane constituents, and cuticular protectants. However, few studies have examined the anatomical distribution of lipids in blood-feeding Diptera and compared the compositions of the cuticular and internal compartments. This study analyzes the [...] Read more.
Lipids play vital roles in insect physiology, functioning as energy reserves, membrane constituents, and cuticular protectants. However, few studies have examined the anatomical distribution of lipids in blood-feeding Diptera and compared the compositions of the cuticular and internal compartments. This study analyzes the qualitative and quantitative profiles of free fatty acids (FFAs) in the female Tabanus bovinus, a hematophagous horsefly species, across different anatomical regions, including the head, wings, legs, thorax, and abdomen. The surface and internal lipid fractions were isolated using petroleum ether/dichloromethane extraction followed by sonication. GC-MS revealed the presence of 21 FFAs, including 16 saturated (C7:0, C8:0, C9:0, C10:0, C11:0, C12:0, C13:0, C14:0, C15:0, C16:0, C17:0, C18:0, C19:0, C20:0, C22:0, C24:0) and five unsaturated (C16:1, C18:2, C18:1, C20:5, C20:4). The head and wings showed the highest concentrations of cuticular FFAs. At the same time, internal lipid stores were most prominent in the thorax and abdomen (but four times lower than in the head cuticle), reflecting their role in energy storage and reproduction. All cuticular and internal extracts were dominated by C16:0, C18:0, and C18:1. Notably, several FFAs were undetected in specific compartments: C10:0 from inside the head, C11:0 and C13:0 from inside all examined body parts, C19:0 was absent from inside the head, wings and legs, while C20:5 and C20:4 were absent from both the cuticular and internal lipid pools of the wings. Interestingly, our analysis of the cuticle on the thorax and abdomen together revealed that both C13:0 and C19:0 were present only on the dorsal side, i.e., absent from the ventral side. These absences suggest a selective lipid metabolism tailored to the functional and ecological demands of T. bovinus females. Our findings suggest that the absence of specific compounds from individual body parts may serve as an indicator of physiological specialization. This work provides new insights into lipid compartmentalization in Tabanidae and offers a framework for future comparative and ecological lipidomics studies in insects. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

19 pages, 2149 KiB  
Article
Feather Waste Biodegradation and Biostimulant Potential of Gordonia alkanivorans S7: A Novel Keratinolytic Actinobacterium for Sustainable Waste Valorization
by Katarzyna Struszczyk-Świta, Piotr Drożdżyński, Paweł Marcinkowski, Aleksandra Nadziejko, Magdalena Rodziewicz, Bartłomiej Januszewicz, Magdalena Gierszewska and Olga Marchut-Mikołajczyk
Int. J. Mol. Sci. 2025, 26(13), 6494; https://doi.org/10.3390/ijms26136494 - 5 Jul 2025
Viewed by 383
Abstract
The poultry industry produces significant quantities of keratin-rich waste, primarily feathers, whose traditional disposal methods—incineration or chemical treatment—result in environmental damage and resource depletion. This research introduces a sustainable biotechnological method for the valorization of feather waste utilizing Gordonia alkanivorans S7, an actinomycete [...] Read more.
The poultry industry produces significant quantities of keratin-rich waste, primarily feathers, whose traditional disposal methods—incineration or chemical treatment—result in environmental damage and resource depletion. This research introduces a sustainable biotechnological method for the valorization of feather waste utilizing Gordonia alkanivorans S7, an actinomycete strain extracted from petroleum plant sludge. This is the inaugural publication illustrating keratinolytic activity in the Gordonia genus. The optimization of the degradation process via the Taguchi approach led to the effective biodegradation of untreated home chicken feathers, achieving dry mass loss of up to 99% after 168 h in a mineral medium. The agricultural potential of the obtained keratin hydrolysate, which was high in organic components (C 31.2%, N 8.9%, H 5.1%, and S 1.7%), was assessed. Phytotoxicity tests demonstrated that the feather hydrolysate led to better growth of the indicator plants—Sorghum saccharatum and Lepidium sativum. The highest values of root growth stimulation were 26% for S. saccharatum and 31% for L. sativum, at a dose of 0.01%. Shoot growth stimulation was noted only for L. sativum, reaching 38% (0.01%), 53% (0.05%), and 37% (0.1%), as compared to the control sample. These results demonstrate the process’s combined economic and environmental benefits, providing a fresh approach to the production of bio-based plant biostimulants and sustainable keratin waste management. Full article
(This article belongs to the Special Issue Microbial Enzymes for Biotechnological Applications: 2nd Edition)
Show Figures

Figure 1

21 pages, 1815 KiB  
Article
Enhanced Natural Attenuation of Gasoline Contaminants in Groundwater: Applications and Challenges of Nitrate-Stimulating Substances
by Zhuo Ning, Jiaqing Liang, Jinjin Ti, Min Zhang and Chao Cai
Microorganisms 2025, 13(7), 1575; https://doi.org/10.3390/microorganisms13071575 - 4 Jul 2025
Viewed by 347
Abstract
Nitrate is a promising enhanced natural attenuation (ENA) material that enhances the microbial degradation of petroleum hydrocarbons by acting as an electron acceptor and nitrogen source. This study evaluated nitrate-containing materials (yeast extract, compound nitrogen fertilizer, and nitrate solutions) in microcosm experiments using [...] Read more.
Nitrate is a promising enhanced natural attenuation (ENA) material that enhances the microbial degradation of petroleum hydrocarbons by acting as an electron acceptor and nitrogen source. This study evaluated nitrate-containing materials (yeast extract, compound nitrogen fertilizer, and nitrate solutions) in microcosm experiments using gasoline-contaminated aquifer soils. Chemical analysis revealed that yeast extract achieved the highest degradation rate (34.33 mg/(kg·d)), reducing 600 mg/kg of petroleum hydrocarbons to undetectable levels within 18 days. Nitrate materials significantly increased nitrate-reducing activity and upregulated both aerobic/anaerobic hydrocarbon degradation genes, expanding microbial degradation potential. Metagenomic analysis identified Pseudomonas and Achromobacter as dominant genera across treatments, suggesting their critical roles in biodegradation. These findings demonstrate that nitrate-enhanced strategies effectively accelerate hydrocarbon attenuation under facultative anaerobic conditions, offering practical ENA solutions for petroleum-polluted sites. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 17089 KiB  
Article
Sedimentary Characteristics and Genetic Mechanisms of Non-Evaporitic Gypsum in a Half-Graben Basin: A Case Study from the Zhanhua Sag, Bohai Bay Basin, China
by Muxin Cai, Jianguo Zhang, Zaixing Jiang, Junliang Li, Tao Meng, Peng Liu and Chao Jiang
J. Mar. Sci. Eng. 2025, 13(7), 1300; https://doi.org/10.3390/jmse13071300 - 2 Jul 2025
Viewed by 349
Abstract
Gypsum and salt rocks have been proven to act as seals for abundant oil and gas reserves on a global scale, with significant potential for hydrocarbon preservation and evolution. Notably, the sedimentary dynamics of non-evaporitic gypsum in terrestrial half-graben basins remain underexplored, particularly [...] Read more.
Gypsum and salt rocks have been proven to act as seals for abundant oil and gas reserves on a global scale, with significant potential for hydrocarbon preservation and evolution. Notably, the sedimentary dynamics of non-evaporitic gypsum in terrestrial half-graben basins remain underexplored, particularly regarding its genetic link to hydrocarbon accumulation in interbedded mudstones. This study is based on the Zhanhua Sag, in which thick-layered gypsum rocks with dark mudstone are deposited. The gypsum crystals show the intermittent deposition characteristics. The cumulative thickness of the gypsum-containing section reaches a maximum of over 110 m. The spatial distribution of gypsum thickness correlates strongly with the location of deep-seated faults. The strontium and sulfur isotopes of gypsum indicate deep hydrothermal fluids as mineral sources, and negative oxygen isotope excursions also suggest that gypsum layers precipitated in situ from hot brine. Total organic carbon and Rock-Eval data indicate that the deep-lake gypsum rock system has excellent hydrocarbon potential, especially in the mudstone interlayers. This study developed a depositional model of deep-lake gypsum rocks with thermal brine genesis in half-graben basins. The gypsum-bearing system is rich in mudstone interlayers. These gypsum–mudstone interbeds represent promising targets for shale oil exploration after the initial breakthrough during the extraction process. These insights provide a theoretical framework for understanding gypsum-related petroleum systems in half-graben basins across the globe, offering guidance for hydrocarbon exploration in analogous sedimentary environments. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

17 pages, 5655 KiB  
Article
Trans-p-Coumaryl Alcohol as a Bioactive Compound and Anti-Inflammatory Agent in Wannachawee Recipe for Psoriasis
by Supreeya Tantipat, Kongkiat Trisuwan, Phraepakaporn Kunnaja, Seewaboon Sireeratawong, Surapol Natakankitkul, Surasak Imiam and Sunee Chansakaow
Pharmaceutics 2025, 17(7), 864; https://doi.org/10.3390/pharmaceutics17070864 - 30 Jun 2025
Viewed by 346
Abstract
Background/Objectives: Wannachawee recipe (WCR) has been listed in the Hospital Traditional Medicine Formulary and has been used as a Thai medicine to treat psoriasis in the Thai Traditional Medicine Clinic of Prapokklao Hospital since 2006. Previous reports have found that WCR demonstrates [...] Read more.
Background/Objectives: Wannachawee recipe (WCR) has been listed in the Hospital Traditional Medicine Formulary and has been used as a Thai medicine to treat psoriasis in the Thai Traditional Medicine Clinic of Prapokklao Hospital since 2006. Previous reports have found that WCR demonstrates good results for the treatment of patients with psoriasis. Among 136 Thai psoriasis patients who received WCR, 92.80% responded well. Although WCR is effective, there is still a lack of scientific data, especially relating to the bioactive compound in WCR. Therefore, this study aims to evaluate the phytochemicals in WCR via bioassay-guided isolation. Methods: In this study, the WCR was extracted via decoction with water, in a process based on traditional Thai medicine. The water extract was concentrated and dried using a spray dryer. The crude water extract was isolated using the partition technique with organic solvents, namely petroleum ether and ethyl acetate. These fractions were then separated and tested for anti-inflammatory activity using the bioassay-guided fractionation method. Results: Two particular types of pro-inflammatory cytokines are involved in inflammation and are among the factors that cause psoriasis—TNF-α and IL-6. Thus, we evaluated the isolated samples in terms of anti-inflammatory activity. The isolation resulted in two pure compounds—p-coumaryl aldehyde and trans-p-coumaryl alcohol. In the efficacy test of the isolated compounds, compared to the standard indomethacin at the same concentration of 12.5 ug/mL, trans-p-coumaryl alcohol was found to have the best efficacy, inhibiting TNF-α by 29.28% and IL-6 by 36.75%, with the standard compound showing inhibitions rates of 15.80% for TNF-α and 27.44% for IL-6. Conclusions: This study is the first report to identify the bioactive compound of WCR as trans-p-coumaryl alcohol or 4-hydroxycinnamyl alcohol. Full article
(This article belongs to the Special Issue Natural Pharmaceuticals Focused on Anti-inflammatory Activities)
Show Figures

Figure 1

Back to TopTop