Methyltrimethyltridecylchromans (MTTCs) in Mature Crude Oils: Implications for Oil Family Classification and Palaeoenvironmental Diagnosis
Abstract
1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Samples
3.2. Methods
4. Results
4.1. Composition and Occurrence of MTTCs
4.2. Saturated Hydrocarbon Molecular Markers
4.3. Aromatic Hydrocarbon Molecular Markers
5. Discussion
5.1. Origin of Crude Oils and Source Rocks
5.1.1. Sources of Organic Matter
5.1.2. Depositional Environments
5.1.3. Maturity Levels
5.2. Availability of MTTC-Associated Parameters
5.3. Application in Oil–Oil and Oil–Source Rock Correlation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sinninghe Damsté, J.S.; Kock-Van Dalen, A.C.; De Leeuw, J.W.; Schenck, P.A.; Guoying, S.; Brassell, S.C. The identification of mono-, di- and trimethyl 2-methyl-2-(4,8,12-trimethyltridecyl)chromans and their occurrence in the geosphere. Geochim. Cosmochim. Acta 1987, 51, 2393–2400. [Google Scholar] [CrossRef]
- Li, M.W.; Larter, S.R.; Taylor, P.; Jones, D.M.; Bowler, B.; Bjorøy, M. Biomarkers or not biomarkers? A new hypothesis for the origin of pristane involving derivation from methyltrimethyltridecylchromans (MTTCs) formed during diagenesis from chlorophyll and alkylphenols. Org. Geochem. 1995, 23, 159–167. [Google Scholar] [CrossRef]
- Wang, L.; Song, Z.G.; Yin, Q.; George, S.C. Paleosalinity significance of occurrence and distribution of methyltrimethyltridecyl chromans in the Upper Cretaceous Nenjiang Formation, Songliao Basin, China. Org. Geochem. 2011, 42, 1411–1419. [Google Scholar] [CrossRef]
- Luo, G.M.; Yang, H.; Algeo, T.J.; Hallmann, C.; Xie, S.C. Lipid biomarkers for the reconstruction of deep-time environmental conditions. Earth Sci. Rev. 2019, 189, 99–124. [Google Scholar] [CrossRef]
- Yang, X.Y.; Tang, Y.J.; Yang, Y.; Yang, H.F.; Wang, F.L.; Lü, X.X. Impact of biodegradation on methyltrimethyltridecylchromans (MTTCs) in crude oils from the Bohai Bay Basin, China. Org. Geochem. 2023, 184, 140669. [Google Scholar] [CrossRef]
- Jiang, K.X.; Lin, C.M.; Cai, C.F.; Zhang, X.; Huang, S.Y.; Fan, Z.C. Current Status and Challenges of Methyltrimethyltridecylchromans Research in Source Rocks and Crude Oils. ACS Omega 2019, 4, 9835–9842. [Google Scholar] [CrossRef]
- Dutta, S.; Bhattacharya, S.; Raju, S.V. Biomarker signatures from Neoproterozoic–Early Cambrian oil, western India. Org. Geochem. 2013, 56, 68–80. [Google Scholar] [CrossRef]
- Tulipani, S.; Grice, K.; Greenwood, P.; Schwark, L. A pyrolysis and stable isotopic approach to investigate the origin of methyltrimethyltridecylchromans (MTTCs). Org. Geochem. 2013, 61, 1–5. [Google Scholar] [CrossRef]
- Tulipani, S.; Grice, K.; Greenwood, P.F.; Haines, P.W.; Sauer, P.E.; Schimmelmann, A.; Summons, R.E.; Foster, C.B.; Böttcher, M.E.; Playton, T.; et al. Changes of palaeoenvironmental conditions recorded in Late Devonian reef systems from the Canning Basin, Western Australia: A biomarker and stable isotope approach. Gondwana Res. 2015, 28, 1500–1515. [Google Scholar] [CrossRef]
- Tulipani, S.; Grice, K.; Greenwood, P.F.; Schwark, L.; Böttcher, M.E.; Summons, R.E.; Foster, C.B. Molecular proxies as indicators of freshwater incursion-driven salinity stratification. Chem. Geol. 2015, 409, 61–68. [Google Scholar] [CrossRef]
- Sheng, G.Y.; Fu, J.M.; Jiang, J.G.; Liang, D.G.; Brassell, S.C.; Eglinton, G. The discovery and significance of MTTCs in crude oil and source rocks. Sci. China 1987, 4, 423–428. [Google Scholar]
- Connock, G.T.; Liu, X.-L. Tocopherols and associated derivatives track the phytoplanktonic response to evolving pelagic redox conditions spanning Oceanic Anoxic Event 2. Geobiology 2023, 21, 743–757. [Google Scholar] [CrossRef]
- Lu, H.; Hou, L.H.; Chen, T.S.; Peng, P.A.; Sheng, G.Y. Stable Carbon Isotopic Compositions of Methylated-MTTC in Crude Oils from Saline Lacustrine Depositional Environment: Source Implications. Acta Geol. Sin. Engl. 2007, 6, 1041–1048. [Google Scholar]
- Barakat, A.O.; Rullkötter, J. A Comparative Study of Molecular Paleosalinity Indicators: Chromans, Tocopherols and C20 Isoprenoid Thiophenes in Miocene Lake Sediments (Nördlinger Ries, Southern Germany). Aquat. Geochem. 1997, 3, 169–190. [Google Scholar] [CrossRef]
- Sinninghe Damsté, J.S.; Rijpstra, W.I.C.; De Leeuw, J.W.; Schenck, P.A. The occurrence and identification of series of organic sulphur compounds in oils and sediment extracts: II. Their presence in samples from hypersaline and non-hypersaline palaeoenvironments and possible application as source, palaeoenvironmental and maturity indicators. Geochim. Cosmochim. Acta 1989, 53, 1323–1341. [Google Scholar]
- Sinninghe Damsté, J.S.; Keely, B.J.; Betts, S.E.; Baas, M.; Maxwell, J.R.; de Leeuw, J.W. Variations in abundances and distributions of isoprenoid chromans and long-chain alkylbenzenes in sediments of the Mulhouse Basin: A molecular sedimentary record of palaeosalinity. Org. Geochem. 1993, 20, 1201–1215. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Jiang, A.Z.; Sun, Y.G.; Xie, L.J.; Chai, P.X. Stable carbon isotope compositions of isoprenoid chromans in Cenozoic saline lacustrine source rocks from the Western Qaidam Basin, NW China: Source implications. Chin. Sci. Bull. 2012, 57, 657–667. [Google Scholar] [CrossRef]
- van Aarssen, B.G.K.; Bastow, T.P.; Alexander, R.; Kagi, R.I. Distributions of methylated naphthalenes in crude oils: Indicators of maturity, biodegradation and mixing. Org. Geochem. 1999, 30, 1213–1227. [Google Scholar] [CrossRef]
- Grice, K.; Schouten, S.; Nissenbaum, A.; Charrach, J.; Sinninghe Damsté, J.S. A remarkable paradox: Sulfurised freshwater algal (Botryococcus braunii) lipids in an ancient hypersaline euxinic ecosystem. Org. Geochem. 1998, 28, 195–216. [Google Scholar] [CrossRef]
- Grice, K.; Schouten, S.; Peters, K.E.; Sinninghe Damsté, J.S. Molecular isotopic characterisation of hydrocarbon biomarkers in Palaeocene–Eocene evaporitic, lacustrine source rocks from the Jianghan Basin, China. Org. Geochem. 1998, 29, 1745–1764. [Google Scholar] [CrossRef]
- Sinninghe Damsté, J.S.; Kenig, F.; Koopmans, M.P.; Koster, J.; Schouten, S.; Hayes, J.M.; de Leeuw, J.W. Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Acta 1995, 59, 1895–1900. [Google Scholar] [CrossRef]
- Martins, L.L.; Schulz, H.M.; Severiano Ribeiro, H.J.P.; Nascimento, C.A.; Souza, E.S.; da Cruz, G.F. Organic geochemical signals of controlling freshwater dynamics on salinity stratification in organic-rich shales in the Lower Permian Irati Formation (Paraná Basin, Brazil). Org. Geochem. 2020, 140, 103958. [Google Scholar] [CrossRef]
- Lan, X.D.; Liu, H. The geochemical characteristics of the Paleogene lacustrine source rock and Cenozoic oil in the eastern Huanghekou Sag, Bohai Bay Basin, China: An oil–source rock correlation. J. Pet. Sci. Eng. 2022, 214, 110434. [Google Scholar] [CrossRef]
- Bechtel, A.; Jia, J.; Strobl, S.A.I.; Sachsenhofer, R.F.; Liu, Z.J.; Gratzer, R.; Püttmann, W. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis. Org. Geochem. 2012, 46, 76–95. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Weng, H.X.; Su, A.G.; Liang, D.G.; Peng, D.H. Geochemical characteristics of Tertiary saline lacustrine oils in the Western Qaidam Basin, northwest China. Appl. Geochem. 2005, 20, 1875–1889. [Google Scholar]
- Bao, J.P.; Wang, T.G.; Gan, Y.N. Dehydroxytocopherol and its geochemical significances. J. Jianghan Pet. Inst. 1989, 11, 11–18. [Google Scholar]
- Jirman, P.; Geršlová, E.; Bubík, M.; Sachsenhofer, R.F.; Bechtel, A.; Więcław, D. Depositional environment and hydrocarbon potential of the Oligocene Menilite Formation in the Western Carpathians: A case study from the Loučka section (Czech Republic). Mar. Pet. Geol. 2019, 107, 334–350. [Google Scholar] [CrossRef]
- Bao, J.P.; Zhu, C.S.; Ma, A.L. The relationship between methylated chromans and maturity of organic matter in the source rocks from Jianghan hypersaline basin. Sci. China Ser. D 2009, 52, 34–41. [Google Scholar] [CrossRef]
- Jiang, K.; Lin, C.; Li, H.; Chen, Q. Effect of paleosalinity and maturity on the distribution of dimethyl-MTTCs. Petrol. Sci. Technol. 2018, 36, 2037–2042. [Google Scholar] [CrossRef]
- Jiang, K.X.; Lin, C.M.; Zhang, X.; Cai, C.F.; Xiao, F.; He, W.X.; Peng, L. Variations in abundance and distribution of methyltrimethyltridecylchromans (MTTCs) in sediments from saline lacustrine settings in Cenozoic lacustrine basins, China. Org. Geochem. 2018, 121, 58–67. [Google Scholar] [CrossRef]
- Jiang, K.X.; Lin, C.M.; Peng, L.; Zhang, X.; Cai, C.F. Methyltrimethyltridecylchromans (MTTCs) in lacustrine sediments in the northern Bohai Bay Basin, China. Org. Geochem. 2019, 133, 1–9. [Google Scholar] [CrossRef]
- Burazer, N.; Šajnović, A.; Vasić, N.; Kašanin-Grubin, M.; Životić, D.; Mendonça Filho, J.G.; Vulić, P.; Jovančićević, B. Influence of paleoenvironmental conditions on distribution and relative abundance of saturated and aromatic hydrocarbons in sediments from the NW part of the Toplica basin, Serbia. Mar. Pet. Geol. 2020, 115, 104252. [Google Scholar] [CrossRef]
- Koopmans, M.P.; Rijpstra, W.I.C.; de Leeuw, J.W.; Lewan, M.D.; Damsté, J.S.S. Artificial maturation of an immature sulfur- and organic matter-rich limestone from the Ghareb Formation, Jordan. Org. Geochem. 1998, 28, 503–521. [Google Scholar] [CrossRef]
- Zuo, Y.H.; Ye, B.; Wu, W.T.; Zhang, Y.X.; Ma, W.X.; Tang, S.L.; Zhou, Y.S. Present temperature field and Cenozoic thermal history in the Dongpu depression, Bohai Bay Basin, North China. Mar. Pet. Geol. 2017, 88, 696–711. [Google Scholar] [CrossRef]
- Zhang, D.L.; Tang, Y.J.; Li, H.B.; Xu, T.W.; Wang, T. Methyltrimethyltridecylchromans in Mature Oils from Saline Lacustrine Settings in the Dongpu Depression, Bohai Bay Basin, East China. ACS Omega 2021, 6, 17400–17412. [Google Scholar] [CrossRef]
- Tang, Y.J.; Jing, Y.R.; Xu, T.W.; Zhang, C.F.; Lü, L.S.; Yang, X.Y.; Pei, B.B. Detection and potential geochemical significance of methyltrimethyltridecylchromans in mature crude oils. J. Nat. Gas Geosci. 2023, 8, 127–141. [Google Scholar] [CrossRef]
- Wang, M.; Chen, H.H.; Huang, C.J.; Kemp, D.B.; Xu, T.W.; Zhang, H.G.; Li, M.S. Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China. Earth Planet. Sci. Lett. 2020, 535, 116116. [Google Scholar]
- Gao, G.H.; Cao, J.; Xu, T.W.; Zhang, H.G.; Zhang, Y.X.; Hu, K. Nuclear magnetic resonance spectroscopy of crude oil as proxies for oil source and thermal maturity based on 1H and 13C spectra. Fuel 2020, 271, 117622. [Google Scholar] [CrossRef]
- Liu, X.Y.; Chen, H.H.; Mu, X.S.; Zhang, H.A.; Fan, J.J.; Huang, Y.H.; Zhao, K.; Mansour, A.; Gentzis, T.; Ostadhassan, M. Organic matter preservation conditions in the third member of the Shahejie Formation (Dongpu Depression, China). Int. J. Coal Geol. 2023, 277, 104334. [Google Scholar] [CrossRef]
- Li, J.D.; Xu, T.W.; Tang, Y.J.; Lu, K. Geochemical characteristics and source correlation of crude oil in Machang area, Dongpu Depression. Fault Block Oil Gas. Field 2019, 26, 426–428+479. [Google Scholar]
- Wu, J.Q.; Chu, D.L.; Luo, G.; Wignall, P.B.; Algeo, T.J.; Xie, S.C. Stepwise deforestation during the Permian-Triassic boundary crisis linked to rising temperatures. Earth Planet. Sci. Lett. 2023, 620, 118350. [Google Scholar] [CrossRef]
- Cranwell, P.A. Organic geochemistry of Cam Loch (Sutherland) sediments. Chem. Geol. 1977, 20, 205–221. [Google Scholar] [CrossRef]
- Tong, X.N.; Hu, J.F.; Xi, D.P.; Zhu, M.B.; Song, J.Z.; Peng, P.A. Depositional environment of the Late Santonian lacustrine source rocks in the Songliao Basin (NE China): Implications from organic geochemical analyses. Org. Geochem. 2018, 124, 215–227. [Google Scholar] [CrossRef]
- Ficken, K.J.; Li, B.; Swain, D.L.; Eglinton, G. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org. Geochem. 2000, 31, 745–749. [Google Scholar] [CrossRef]
- Eglinton, G.; Hamilton, R.J. Leaf epicuticular waxes. Science 1967, 156, 1322–1335. [Google Scholar] [CrossRef]
- Shanmugam, G.N. Significance of Coniferous Rain Forests and Related Organic Matter in Generating Commercial Quantities of Oil, Gippsland Basin, Australia. AAPG (Am. Assoc. Pet. Geol.) Bull. 1985, 69, 1241–1254. [Google Scholar] [CrossRef]
- Xiao, H.; Li, M.J.; Yang, Z.; Zhu, Z.L. Distribution patterns and geochemical implications of Ci-C23 tricyclic terpanes insource rocks and crude oils occurring in various depositional environments. Geochemica 2019, 48, 161–170. [Google Scholar]
- Huang, W.Y.; Meinschein, W.G. Sterols as ecological indicators. Geochim. Cosmochim. Acta 1979, 43, 739–745. [Google Scholar] [CrossRef]
- Diasty, W.S.E.; Moldowan, J.M.; Peters, K.E.; Hammad, M.M.; Essa, G.I. Organic geochemistry of possible Middle Miocene–Pliocene source rocks in the west and northwest Nile Delta, Egypt. J. Pet. Sci. Eng. 2021, 208, 109357. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide 2. In Biomarkers and Isotopes in Petroleum Exploration and Earth History; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- ten Haven, H.L.; de Leeuw, J.W.; Rullkötter, J.; Damsté, J.S.S. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature 1987, 330, 641–643. [Google Scholar] [CrossRef]
- Rowland, S.J. Production of acyclic isoprenoid hydrocarbons by laboratory maturation of methanogenic bacteria. Org. Geochem. 1990, 15, 9–16. [Google Scholar] [CrossRef]
- Wang, G.L.; Chang, X.C.; Wang, T.G.; Simoneit, B.R.T. Pregnanes as molecular indicators for depositional environments of sediments and petroleum source rocks. Org. Geochem. 2015, 78, 110–120. [Google Scholar] [CrossRef]
- Hughes, W.B.; Holba, A.G.; Dzou, L.I.P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim. Cosmochim. Acta 1995, 59, 3581–3598. [Google Scholar] [CrossRef]
- Cui, Y.; Kump, L.R.; Ridgwell, A.J.; Charles, A.J.; Junium, C.K.; Diefendorf, A.F.; Freeman, K.H.; Urban, N.M.; Harding, I.C. Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nat. Geosci. 2011, 4, 481–485. [Google Scholar] [CrossRef]
- Witkowski, C.R.; Weijers, J.W.H.; Blais, B.; Schouten, S.; Sinninghe Damsté, J.S. Molecular fossils from phytoplankton reveal secular Pco2 trend over the Phanerozoic. Sci. Adv. 2018, 4, 4556. [Google Scholar] [CrossRef]
- Xu, H.Y.; Liu, Q.Y.; Jin, Z.J.; Zhu, D.Y.; Meng, Q.Q.; Wu, X.Q.; Li, P.P.; Zhu, B.Q. Organic compounds in geological hydrothermal systems: A critical review of molecular transformation and distribution. Earth Sci. Rev. 2024, 252, 104757. [Google Scholar] [CrossRef]
- Bray, E.E.; Evans, E.D. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 1961, 22, 2–15. [Google Scholar] [CrossRef]
- Scalan, E.S.; Smith, J.E. An improved measure of the odd-even predominance in the normal alkanes of sediment extracts and petroleum. Geochim. Cosmochim. Acta 1970, 34, 611–620. [Google Scholar] [CrossRef]
- Ensminger, A.; Albrecht, P.; Ourisson, G.; Tissot, B. Evolution of polycyclic alkanes under the effect of burial (Early Toarcian shales, Paris Basin). Adv. Geochem. 1977, 1975, 45–52. [Google Scholar]
- Seifert, W.K.; Moldowan, J.M. Use of biological markers in petroleum exploration. Methods Geochem. Geophys. 1986, 24, 261–290. [Google Scholar]
- Radke, M.; Welte, D.H.; Willsch, H. Geochemical study on a well in the Western Canada Basin: Relation of the aromatic distribution pattern to maturity of organic matter. Geochim. Cosmochim. Acta 1982, 46, 1–10. [Google Scholar] [CrossRef]
- Radke, M.; Rullkötter, J.; Vriend, S.P. Distribution of naphthalenes in crude oils from the Java Sea: Source and maturation effects. Geochim. Cosmochim. Acta 1994, 58, 3675–3689. [Google Scholar] [CrossRef]
- Bao, J.P.; Wang, T.G.; Zhou, Y.Q.; Yu, F.X.; Wang, J.Y.; Zhou, Q.L.; Chen, F.J. The Relationship between Methyl Phenanthrene Ratiosand the Evolution of Organic Matter. J. Jianghan Pet. Inst. 1992, 14, 8–13+19. [Google Scholar]
- Hughes, W.B. Use of thiophenic organosulfur compounds in characterizing crude oils derived from carbonate versus siliciclastic sources. AAPG Bull. 1984, 18, 181–196. [Google Scholar]
- Li, M.J.; Simoneit, B.R.T.; Zhong, N.N.; Fang, R.H. The distribution and origin of dimethyldibenzothiophenes in sediment extracts from the Liaohe Basin, East China. Org. Geochem. 2013, 65, 63–73. [Google Scholar] [CrossRef]
- Luo, J.; Cheng, K.M.; Fu, L.X.; Hu, Y.J.; Jiang, N.H. Alkylated dibenzothiophene index-a new method to assess thermal, maturity of source rocks. Acta Pet. Sin. 2001, 22, 27–31. [Google Scholar]
- Wang, X.X.; Cai, J.G.; Bao, Y.J. Catalysis of Clay Mineral to Organic Matter in Hydrocarbon Genesis. Mar. Pet. Geol. 2006, 11, 27–38. [Google Scholar]
- Schwark, L.; Vliex, M.; Schaeffer, P. Geochemical characterization of Malm Zeta laminated carbonates from the Franconian Alb, SW-Germany (II). Org. Geochem. 1998, 29, 1921–1952. [Google Scholar] [CrossRef]
- Sachsenhofer, R.F.; Hentschke, J.; Bechtel, A.; Coric, S.; Gratzer, R.; Gross, D.; Horsfield, B.; Rachetti, A.; Soliman, A. Hydrocarbon potential and depositional environments of Oligo-Miocene rocks in the Eastern Carpathians (Vrancea Nappe, Romania). Mar. Pet. Geol. 2015, 34, 611–620. [Google Scholar] [CrossRef]
- Lu, H.; Shen, C.C.; Zhang, Z.R.; Liu, M.; Sheng, G.Y.; Peng, P.a.; Hsu, C.S. 2,3,6-/2,3,4-Aryl Isoprenoids in Paleocene Crude Oils from Chinese Jianghan Basin: Constrained by Water Column Stratification. Energy Fuels 2015, 29, 4690–4700. [Google Scholar] [CrossRef]
- Zhao, Z.B.; Grohmann, S.; Zieger, L.; Dai, W.; Littke, R. Evolution of organic matter quantity and quality in a warm, hypersaline, alkaline lake: The example of the Miocene Nördlinger Ries impact crater, Germany. Front. Earth Sci. 2022, 10, 989478. [Google Scholar] [CrossRef]
- Yang, X.Y.; Lv, X.X.; Huang, Y.H.; He, Y.L.; Yang, R.; Wang, R.Y.; Peng, P. The depositional environment of the lacustrine source rocks in the Eocene middle number of the Liushagang Formation of the Weixinan Sag, Beibuwan Basin, China: Implications from organic geochemical analyses. Minerals 2023, 13, 575. [Google Scholar] [CrossRef]
- Yang, X.Y.; Tang, Y.J.; Sun, P.; Hu, Y.M.; Yang, H.F.; Wang, F.L. Aryl isoprenoids in severe biodegradation oils from the Miaoxi Depression, Bohai Bay Basin. Org. Geochem. 2025, 207, 105014. [Google Scholar] [CrossRef]
Well | Sample ID | Depth (m) | Formation | API° | TOC% | Gross Composition (%) | β/γ-MTTC | α/δ-MTTC | α/γ-MTTC | MTTCI | Relative Abundances Proportion of Each MTTC Isomer/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SAT | ARO | NSO + ASPH | δ-MTTC | β-MTTC | γ-MTTC | ζ-MTTC | α-MTTC | ||||||||||
M1 | M1 | 3229.4–3264.5 | E2s3U | 30 | 76.8 | 12.9 | 10.3 | 8.63 | 6.28 | 34.71 | 0.66 | 10.45 | 16.34 | 1.89 | 5.64 | 65.68 | |
M2 | M2 | 2935.4–3208.9 | E2s3M | 41 | 74.1 | 13.8 | 12.1 | 4.32 | 8.90 | 15.82 | 0.68 | 7.59 | 18.45 | 4.27 | 2.13 | 67.56 | |
M3 | M3 | 3216.1–3316.8 | E2s3L | 40 | 78.1 | 14.3 | 7.6 | 31.30 | 9.92 | 110.04 | 0.66 | 6.70 | 18.91 | 0.60 | 7.30 | 66.49 | |
M4 | M4 | 3125.5–3379.1 | E2s3L | 41 | 76.1 | 21.8 | 2.1 | 6.65 | 9.68 | 23.43 | 0.66 | 6.87 | 18.86 | 2.84 | 5.00 | 66.44 | |
M5 | M5 | 2451.9–2657.6 | E2s3M | 40 | 76.1 | 18.0 | 5.9 | 4.94 | 15.34 | 12.55 | 0.60 | 3.93 | 23.72 | 4.80 | 7.27 | 60.27 | |
M6 | M6 | 2570.0–2650.9 | E2s3M | 43 | 76.9 | 15.8 | 7.3 | 5.85 | 12.73 | 17.28 | 0.64 | 5.02 | 21.64 | 3.70 | 5.71 | 63.93 | |
M7 | M7 | 3298.2 | E2s3L | 1.43 | 77.9 | 13.3 | 8.7 | 4.82 | 14.29 | 18.82 | 0.66 | 4.64 | 16.97 | 3.52 | 8.55 | 66.31 | |
M7 | M8 | 3316.7 | E2s3L | 1.16 | 61.3 | 25.7 | 13.0 | 3.92 | 13.10 | 11.08 | 0.62 | 4.75 | 22.00 | 5.62 | 5.38 | 62.26 |
Sample ID | Pr/Ph | CPI | OEP | Pr/n-C17 | Ph/n-C18 | n-Alkanes (%) | C19 + 20/C21 TT | GI | C35/C31–35 H | C21–22/C27–29 ste | Dia/Reg C27 | C27/C29 R | DBT/P | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
∑n-C15–20 | ∑n-C21–25 | ∑n-C27–31 | |||||||||||||
M1 | 1.09 | 1.05 | 1.04 | 0.31 | 0.30 | 46.52 | 34.75 | 18.73 | 0.85 | 0.45 | 0.12 | 0.01 | 0.19 | 1.18 | 0.11 |
M2 | 1.05 | 1.03 | 1.05 | 0.31 | 0.32 | 39.60 | 35.74 | 24.67 | 0.77 | 0.28 | 0.13 | 0.04 | 0.31 | 1.06 | 0.11 |
M3 | 1.19 | 1.08 | 1.03 | 0.26 | 0.25 | 47.35 | 38.51 | 14.14 | 0.83 | 0.08 | 0.00 | 0.05 | 0.42 | 0.96 | 0.09 |
M4 | 1.16 | 1.04 | 1.01 | 0.31 | 0.27 | 37.13 | 37.86 | 25.01 | 0.75 | 0.16 | 0.11 | 0.04 | 0.38 | 1.07 | |
M5 | 1.09 | 1.03 | 1.06 | 0.41 | 0.41 | 37.61 | 37.05 | 25.34 | 0.77 | 0.21 | 0.12 | 0.04 | 0.30 | 1.07 | 0.08 |
M6 | 1.21 | 1.23 | 0.99 | 1.37 | 1.29 | 45.96 | 47.45 | 6.60 | 0.73 | 0.08 | 0.11 | 0.03 | 0.30 | 1.11 | 0.07 |
M7 | 1.11 | 1.07 | 0.96 | 0.83 | 0.83 | 54.48 | 35.95 | 9.57 | 0.56 | 0.09 | 0.11 | 0.01 | 0.16 | 1.16 | 0.04 |
M8 | 1.45 | 1.01 | 0.96 | 0.82 | 0.59 | 56.24 | 36.10 | 7.67 | 0.62 | 0.05 | 0.09 | 0.01 | 0.17 | 1.18 | 0.02 |
Sample ID | C29 20S/(20S + 20R) | C29 ββ/(αα + ββ) | C31 22S/(22S + 22R) | DNR | RC-1 | TNR-2 | RC-2 | MPI1 | F1 | F2 | 4,6-DMDBT/ 1,4-DMDBT | RC-3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | 0.32 | 0.29 | 0.56 | 2.93 | 0.75 | 0.79 | 0.88 | 0.51 | 0.41 | 0.24 | 1.82 | 0.83 |
M2 | 0.46 | 0.46 | 0.59 | 3.22 | 0.78 | 0.84 | 0.90 | 0.48 | 0.40 | 0.22 | 1.91 | 0.84 |
M3 | 0.39 | 0.42 | 0.62 | 3.84 | 0.84 | 0.85 | 0.91 | 0.51 | 0.41 | 0.23 | 1.78 | 0.82 |
M4 | 0.48 | 0.46 | 0.58 | 4.96 | 0.94 | 0.86 | 0.92 | 1.39 | 0.48 | 0.26 | 2.02 | 0.85 |
M5 | 0.46 | 0.45 | 0.59 | 4.61 | 0.91 | 0.86 | 0.92 | 0.62 | 0.44 | 0.24 | 1.64 | 0.80 |
M6 | 0.47 | 0.45 | 0.61 | 4.81 | 0.92 | 0.92 | 0.95 | 0.70 | 0.47 | 0.26 | 1.97 | 0.85 |
M7 | 0.37 | 0.30 | 0.57 | 2.63 | 0.73 | 0.60 | 0.76 | 0.45 | 0.42 | 0.24 | 0.67 | 0.66 |
M8 | 0.37 | 0.30 | 0.58 | 3.29 | 0.79 | 0.67 | 0.80 | 0.41 | 0.41 | 0.23 | 0.61 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Han, M.; Yang, X.; Liu, K.; Chen, L.; Mei, Y.; Han, Y.; Xu, T.; Zhang, C. Methyltrimethyltridecylchromans (MTTCs) in Mature Crude Oils: Implications for Oil Family Classification and Palaeoenvironmental Diagnosis. J. Mar. Sci. Eng. 2025, 13, 1343. https://doi.org/10.3390/jmse13071343
Tang Y, Han M, Yang X, Liu K, Chen L, Mei Y, Han Y, Xu T, Zhang C. Methyltrimethyltridecylchromans (MTTCs) in Mature Crude Oils: Implications for Oil Family Classification and Palaeoenvironmental Diagnosis. Journal of Marine Science and Engineering. 2025; 13(7):1343. https://doi.org/10.3390/jmse13071343
Chicago/Turabian StyleTang, Youjun, Mengyue Han, Xiaoyong Yang, Ke Liu, Lian Chen, Yahao Mei, Yulu Han, Tianwu Xu, and Chengfu Zhang. 2025. "Methyltrimethyltridecylchromans (MTTCs) in Mature Crude Oils: Implications for Oil Family Classification and Palaeoenvironmental Diagnosis" Journal of Marine Science and Engineering 13, no. 7: 1343. https://doi.org/10.3390/jmse13071343
APA StyleTang, Y., Han, M., Yang, X., Liu, K., Chen, L., Mei, Y., Han, Y., Xu, T., & Zhang, C. (2025). Methyltrimethyltridecylchromans (MTTCs) in Mature Crude Oils: Implications for Oil Family Classification and Palaeoenvironmental Diagnosis. Journal of Marine Science and Engineering, 13(7), 1343. https://doi.org/10.3390/jmse13071343