Oil Film Segmentation Method Using Marine Radar Based on Feature Fusion and Artificial Bee Colony Algorithm
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Data Preprocessing
2.3. Texture Feature Extraction
2.3.1. Gray Level Co-Occurrence Matrix (GLCM)
- 1.
- Energy
- 2.
- Entropy
- 3.
- Contrast
- 4.
- Correlation
2.3.2. Tamura
- 1.
- Coarseness
- 2.
- Contrast
- 3.
- Directionality
2.4. Feature Dimensionality Reduction
- 1.
- The data correlation test includes the Kaiser–Meyer–Olkin (KMO) test and sphericity of Bartlett test.
- 2.
- The dataset is standardized for each eigenvalue.
- 3.
- Compute the correlation matrix R = (rij) p × p.
- 4.
- Extract the factor loading matrix using the GLS estimation method.
- 5.
- Select q (q ≤ p) principal factors and perform factor rotation using the quartimax method.
- 6.
- Compute the factor scores and complete feature fusion.
2.5. Bimodal Histogram Method
2.6. Artificial Bee Colony Algorithm
- 1.
- Initialization Phase
- 2.
- Employed Bee Phase
- 3.
- Onlooker Bee Phase
- 4.
- Scout Bee Phase
3. Results and Discussion
3.1. Feature Extraction
3.2. Feature Fusion
3.3. Image Threshold Segmentation
3.4. Artificial Bee Colony Algorithm Segmentation
3.5. Oil Spill Segmentation Mask
3.6. Comparison of the ABC Algorithm with Other Optimization Algorithms
3.7. Experimental Comparison of Generalized Least Square Methods
3.8. The Comparison Between Experimental Algorithms and Deep Neural Networks
3.9. The Influence of Different Sea Conditions on Radar Oil Spill Detection Images
3.10. Discussion on Outcome Indicators
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, J.; Liu, C. Multitask GANs for Oil Spill Classification and Semantic Segmentation Based on SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2532–2546. [Google Scholar] [CrossRef]
- Ma, Y.; Medini, P.C.P.; Nelson, J.R.; Wei, R.; Grubesic, T.H.; Sefair, J.A. A Visual Analytics System for Oil Spill Response and Recovery. IEEE Comput. Graph. Appl. 2021, 41, 91–100. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, A.; Balzter, H.; Ren, P.; Zhou, H. Oil Spill SAR Image Segmentation via Probability Distribution Modeling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 533–554. [Google Scholar] [CrossRef]
- Chen, G.; Huang, J.; Wen, T.; Du, C.; Lin, Y.; Xiao, Y. Multiscale Feature Fusion for Hyperspectral Marine Oil Spill Image Segmentation. J. Mar. Sci. Eng. 2023, 11, 1265. [Google Scholar] [CrossRef]
- Li, Y.; Lyu, X.; Frery, A.C.; Ren, P. Oil Spill Detection with Multiscale Conditional Adversarial Networks with Small-Data Training. Remote Sens. 2021, 13, 2378. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Hu, Y.; Ma, Y.; Li, Z.; Zhang, J. Hyperspectral Marine Oil Spill Monitoring Using a Dual-Branch Spatial–Spectral Fusion Model. Remote Sens. 2023, 15, 4170. [Google Scholar] [CrossRef]
- Adamu, B.; Tansey, K.; Ogutu, B. An investigation into the factors influencing the detectability of oil spills using spectral indices in an oil-polluted environment. Int. J. Remote Sens. 2016, 37, 2338–2357. [Google Scholar] [CrossRef]
- Mohamadi, B.; Liu, F.; Xie, Z. Oil Spill Influence on Vegetation in Nigeria and Its Determinants. Pol. J. Environ. Stud. 2016, 25, 2533–2540. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Ma, L.; Fu, Q.; Li, Y.; Shi, H.; Liu, Z.; Liu, J.; Wang, J.; Jiang, H. Long-Wave Infrared Polarization-Based Airborne Marine Oil Spill Detection and Identification Technology. Photonics 2023, 10, 588. [Google Scholar] [CrossRef]
- Li, Z.; Johnson, W. An Improved Method to Estimate the Probability of Oil Spill Contact to Environmental Resources in the Gulf of Mexico. J. Mar. Sci. Eng. 2019, 7, 41. [Google Scholar] [CrossRef]
- Asif, Z.; Chen, Z.; An, C.; Dong, J. Environmental Impacts and Challenges Associated with Oil Spills on Shorelines. J. Mar. Sci. Eng. 2022, 10, 762. [Google Scholar] [CrossRef]
- Duan, P.; Kang, X.; Ghamisi, P.; Li, S. Hyperspectral Remote Sensing Benchmark Database for Oil Spill Detection with an Isolation Forest-Guided Unsupervised Detector. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5509711. [Google Scholar] [CrossRef]
- Li, B.; Xu, J.; Pan, X.; Chen, R.; Ma, L.; Yin, J.; Liao, Z.; Chu, L.; Zhao, Z.; Lian, J.; et al. Preliminary Investigation on Marine Radar Oil Spill Monitoring Method Using YOLO Model. J. Mar. Sci. Eng. 2023, 11, 670. [Google Scholar] [CrossRef]
- Xu, J.; Pan, X.; Jia, B.; Wu, X.; Liu, P.; Li, B. Oil Spill Detection Using LBP Feature and K-Means Clustering in Shipborne Radar Image. J. Mar. Sci. Eng. 2021, 9, 65. [Google Scholar] [CrossRef]
- Xu, J.; Qian, W.; Chen, Q.; Gu, G.; Lu, Y.; Zhou, Y. Uniform Scattering Power for Monitoring the Spilled Oil on the Sea. IEEE Photonics J. 2018, 10, 6100310. [Google Scholar] [CrossRef]
- Gong, B.; Mao, S.; Li, X.; Chen, B. Mineral Oil Emulsion Species and Concentration Prediction Using Multi-Output Neural Network Based on Fluorescence Spectra in the Solar-Blind UV Band. Anal. Methods 2024, 16, 1836–1845. [Google Scholar] [CrossRef]
- Li, B.; Xu, J.; Pan, X.; Ma, L.; Zhao, Z.; Chen, R.; Liu, Q.; Wang, H. Marine Oil Spill Detection with X-Band Shipborne Radar Using GLCM, SVM and FCM. Remote Sens. 2022, 14, 3715. [Google Scholar] [CrossRef]
- Hou, Y.; Li, Y.; Liu, B.; Liu, Y.; Wang, T. Design and Implementation of a Coastal-Mounted Sensor for Oil Film Detection on Seawater. Sensors 2018, 18, 70. [Google Scholar] [CrossRef]
- Du, K.; Ma, Y.; Li, Z.; Liu, R.; Jiang, Z.; Yang, J. MS3OSD: A Novel Deep Learning Approach for Oil Spills Detection Using Optical Satellite Multisensor Spatial-Spectral Fusion Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 8617–8629. [Google Scholar] [CrossRef]
- Yang, J.; Ma, Y.; Hu, Y.; Jiang, Z.; Zhang, J.; Wan, J.; Li, Z. Decision Fusion of Deep Learning and Shallow Learning for Marine Oil Spill Detection. Remote Sens. 2022, 14, 666. [Google Scholar] [CrossRef]
- Iordache, M.-D.; Viallefont-Robinet, F.; Strackx, G.; Landuyt, L.; Moelans, R.; Nuyts, D.; Vandeperre, J.; Knaeps, E. Feasibility of Oil Spill Detection in Port Environments Based on UV Imagery. Sensors 2025, 25, 1927. [Google Scholar] [CrossRef]
- Ji, M.; Yuan, Y. Dimension Reduction of Image Deep Feature Using PCA. J. Vis. Commun. Image Represent. 2019, 63, 102578. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, S.; Xu, L.; Song, W.; Wang, D.; Huang, D. Dimensionality reduction method for hyperspectral image analysis based on rough set theory. Eur. J. Remote Sens. 2020, 53, 192–200. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S. Spectral—Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [Google Scholar] [CrossRef]
- Li, H.; Cui, J.; Zhang, X.; Han, Y.; Cao, L. Dimensionality Reduction and Classification of Hyperspectral Remote Sensing Image Feature Extraction. Remote Sens. 2022, 14, 4579. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, H.; Wang, G.; Chen, H. Improvement SVM Classification Performance of Hyperspectral Image Using Chaotic Sequences in Artificial Bee Colony. IEEE Access 2020, 8, 73947–73956. [Google Scholar] [CrossRef]
- Zhi, H.; Liu, S. Gray Image Segmentation Based on Fuzzy C-Means and Artificial Bee Colony Optimization. J. Intell. Fuzzy Syst. 2020, 38, 3647–3655. [Google Scholar] [CrossRef]
- Huo, F.; Wang, Y.; Ren, W. Improved artificial bee colony algorithm and its application in image threshold segmentation. Multimed. Tools Appl. 2022, 81, 2189–2212. [Google Scholar] [CrossRef]
- Chen, J.; Yu, W.; Tian, J.; Chen, L.; Zhou, Z. Image Contrast Enhancement Using an Artificial Bee Colony Algorithm. Swarm Evol. Comput. 2018, 38, 287–294. [Google Scholar] [CrossRef]
- Li, K.; Yu, H.; Xu, Y.; Luo, X. Detection of Oil Spills Based on Gray Level Co-Occurrence Matrix and Support Vector Machine. Front. Environ. Sci. 2022, 10, 1049880. [Google Scholar] [CrossRef]
- Kong, L.J.; He, Q.; Liu, G.H. Image retrieval based on deep Tamura feature descriptor. Multimed. Syst. 2024, 30, 148. [Google Scholar] [CrossRef]
- Li, C.; Evans, D.J. GSOR Method for the Equality Constrained Least Squares Problems and the Generalized Least Squares Problems. Int. J. Comput. Math. 2002, 79, 955–960. [Google Scholar] [CrossRef]
- Coskun, O.; Ozturk, C.; Sunar, F.; Karaboga, D. The Artificial Bee Colony Algorithm in Training Artificial Neural Network for Oil Spill Detection. Neural Netw. World 2011, 21, 473–492. [Google Scholar] [CrossRef]
- Ning, J.; Liu, T.; Zhang, C.; Zhang, B. A food source-updating information-guided artificial bee colony algorithm. Neural Comput. Appl. 2018, 30, 775–787. [Google Scholar] [CrossRef]
- Fu, Y.; Xiao, H.; Lee, L.H.; Huang, M. Stochastic Optimization Using Grey Wolf Optimization with Optimal Computing Budget Allocation. Appl. Soft Comput. 2021, 103, 107154. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, R. Multistrategy Improved Whale Optimization Algorithm and Its Application. Comput. Intell. Neurosci. 2022, 2022, 3418269. [Google Scholar] [CrossRef] [PubMed]
- Rajabioun, R. Cuckoo Optimization Algorithm. Appl. Soft Comput. 2011, 11, 5508–5518. [Google Scholar] [CrossRef]
- Heidari, A.A.; Parham, P. An Efficient Modified Grey Wolf Optimizer with Lévy Flight for Optimization Tasks. Appl. Soft Comput. 2017, 60, 115–134. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Xu, B.; Mou, X.; Yao, B.; Guo, Z.; Wang, X.; Huang, Y.; Qian, S.; Cheng, M.; Liu, P.; et al. Oil Film Segmentation Method Using Marine Radar Based on Feature Fusion and Artificial Bee Colony Algorithm. J. Mar. Sci. Eng. 2025, 13, 1453. https://doi.org/10.3390/jmse13081453
Xu J, Xu B, Mou X, Yao B, Guo Z, Wang X, Huang Y, Qian S, Cheng M, Liu P, et al. Oil Film Segmentation Method Using Marine Radar Based on Feature Fusion and Artificial Bee Colony Algorithm. Journal of Marine Science and Engineering. 2025; 13(8):1453. https://doi.org/10.3390/jmse13081453
Chicago/Turabian StyleXu, Jin, Bo Xu, Xiaoguang Mou, Boxi Yao, Zekun Guo, Xiang Wang, Yuanyuan Huang, Sihan Qian, Min Cheng, Peng Liu, and et al. 2025. "Oil Film Segmentation Method Using Marine Radar Based on Feature Fusion and Artificial Bee Colony Algorithm" Journal of Marine Science and Engineering 13, no. 8: 1453. https://doi.org/10.3390/jmse13081453
APA StyleXu, J., Xu, B., Mou, X., Yao, B., Guo, Z., Wang, X., Huang, Y., Qian, S., Cheng, M., Liu, P., & Wu, J. (2025). Oil Film Segmentation Method Using Marine Radar Based on Feature Fusion and Artificial Bee Colony Algorithm. Journal of Marine Science and Engineering, 13(8), 1453. https://doi.org/10.3390/jmse13081453