Feather Waste Biodegradation and Biostimulant Potential of Gordonia alkanivorans S7: A Novel Keratinolytic Actinobacterium for Sustainable Waste Valorization
Abstract
1. Introduction
2. Results
2.1. Optimization of Household Chicken Feather Degradation
2.2. Biodegradation of Household Chicken Feathers in the Specified Optimal Conditions
2.3. Morphology of Feathers
2.4. Chemical Structure of Feathers
2.5. Effect of Inoculum Concentration and Feather Type on the Rate of Their Biodegradation
2.6. Chicken Feather Hydrolysate as a Potential Fertilizer
3. Discussion
4. Materials and Methods
4.1. Microorganism
4.2. Chemicals and Materials
4.3. Optimization of Household Feather Biodegradation Using Taguchi Methodology
(A) | ||||||
Symbol | Factor | Level | ||||
L1 | L2 | L3 | L4 | |||
A | pH | 5 | 6 | 7 | 8 | |
B | Temperature (°C) | 20 | 25 | 30 | 35 | |
C | Feather concentration (% w/v) | 1 | 2 | 3 | 4 | |
D | Inoculum (% v/v) | 0.2 | 0.4 | 0.6 | 0.8 | |
E | RPM | 140 | 160 | 180 | 200 | |
(B) | ||||||
Factor | pH | Temperature (°C) | Feather Concentration (% w/v) | Inoculum (%) | RPM | |
Run | ||||||
1 | L3 | L1 | L3 | L4 | L2 | |
2 | L1 | L2 | L2 | L2 | L2 | |
3 | L2 | L4 | L3 | L2 | L1 | |
4 | L4 | L4 | L1 | L3 | L2 | |
5 | L2 | L1 | L2 | L3 | L4 | |
6 | L1 | L4 | L4 | L4 | L4 | |
7 | L2 | L2 | L1 | L4 | L3 | |
8 | L4 | L3 | L2 | L4 | L1 | |
9 | L3 | L4 | L2 | L1 | L3 | |
10 | L2 | L3 | L4 | L1 | L2 | |
11 | L4 | L2 | L3 | L1 | L4 | |
12 | L4 | L1 | L4 | L2 | L3 | |
13 | L1 | L1 | L1 | L1 | L1 | |
14 | L1 | L3 | L3 | L3 | L3 | |
15 | L3 | L2 | L4 | L3 | L1 | |
16 | L3 | L3 | L1 | L2 | L4 |
4.4. Feather Biodegradation Tests in the Specified Optimal Conditions
4.5. Determination of the Degree of Feather Degradation
4.6. Determination of Keratinase Activity and Protein Concentration
4.7. Elemental Analysis
4.8. Fourier Transform Infrared Spectroscopy (FTIR)
4.9. Scanning Electron Microscopy Analysis of Feathers
4.10. Plant Growth Promotion Tests
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Renub Research. Global Chicken Market, Size, Forecast 2023–2028, Industry Trends, Growth, Share, Outlook, Impact of Inflation, Opportunity Company Analysis. MarketResearch.com 2023. Available online: https://www.marketresearch.com/Renub-Research-v3619/Global-Chicken-Size-Forecast-Trends-33565622/ (accessed on 26 March 2025).
- Goda, D.A.; Bassiouny, A.R.; Abdel Monem, N.M.; Soliman, N.M.; Fatta, Y.R.A. Feather protein lysate optimization and feather meal formation using YNDH protease with keratinolytic activity afterward enzyme partial purification and characterization. Sci. Rep. 2021, 11, 14543. [Google Scholar] [CrossRef]
- Thyagarajan, D.; Barathi, M.; Sakthivadivu, R. Scope of Poultry Waste Utilization. IOSR-JAVS 2013, 6, 29–35. [Google Scholar]
- Kannappan, S.; Dhurai, B. Exploration on amino acid content and morphological structure in chicken feather fiber. J. Text. Appar. Technol. Manag. 2012, 7, 1–6. [Google Scholar]
- Li, Q. Structure, Application, and Biochemistry of Microbial Keratinases. Front. Microbiol. 2021, 12, 674345. [Google Scholar] [CrossRef] [PubMed]
- Pahua-Ramos, M.E.; Hernández-Melchor, D.J.; Camacho-Pérez, B.; Quezada-Cruz, M. Degradation of Chicken Feathers: A Review. Biotechnol. Ind. J. 2017, 13, 153. [Google Scholar]
- Purandaradas, A.; Silambarasan, T.; Murugan, K.; Babujanarthanam, R.; Gandhi, A.D.; Dhandapani, K.V.; Anbumani, D.; Kavitha, P. Development and quantification of biodiesel production from chicken feather meal as a cost-effective feedstock by using green technology. Biochem. Biophys. Rep. 2018, 14, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, N.; Sharma, S.S.; Gupta, A.; Alashwal, B.Y. Keratin based bioplastic film from chicken feathers and its characterization. Int. J. Biol. Macromol. 2018, 111, 352–358. [Google Scholar] [CrossRef]
- Sobucki, L.; Ramos, R.F.; Gubiani, E.; Brunetto, G.; Kaiser, D.R.; Daroit, D.J. Feather hydrolysate as a promising nitrogen-rich fertilizer for greenhouse lettuce cultivation. Int. J. Recycl. Org. Waste Agric. 2019, 8, 493–499. [Google Scholar] [CrossRef]
- McGauran, T.; Harris, M.; Dunne, N.; Smyth, B.M.; Cunningham, E. Production of Feather-Based Biopolymers as a Direct Alternative to Synthetic Plastics. ACS Sustain. Chem. Eng. 2021, 10, 486–494. [Google Scholar] [CrossRef]
- El Salamony, D.H.; Hassouna, M.S.E.; Zaghloul, T.I.; He, Z.; Abdallah, H.M. Bioenergy production from chicken feather waste by anaerobic digestion and bioelectrochemical systems. Microb. Cell Fact. 2024, 23, 102. [Google Scholar] [CrossRef]
- Kshetri, P.; Singh, P.L.; Chanu, S.B.; Singh, T.S.; Rajiv, C.; Tamreihao, K.; Singh, H.N.; Chongtham, T.; Devi, A.K.; Sharma, S.K.; et al. Biological activity of peptides isolated from feather keratin waste through microbial and enzymatic hydrolysis. Electron. J. Biotechnol. 2022, 60, 11–18. [Google Scholar] [CrossRef]
- Qin, X.; Xu, X.; Guo, Y.; Shen, Q.; Liu, J.; Yang, C.; Scott, E.; Bitter, H.; Zhang, C. A sustainable and efficient recycling strategy of feather waste into keratin peptides with antimicrobial activity. Waste Manag. 2022, 144, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Long, K.; Lu, F.; Chen, J. Biodegradation and antibacterial activity of a feather-degrading strain of bacterium. Biocatal. Agric. Biotechnol. 2017, 9, 195–200. [Google Scholar] [CrossRef]
- Sypka, M.; Jodłowska, I.; Białkowska, A.M. Keratinases as versatile enzymatic tools for sustainable development. Biomolecules 2021, 11, 1900. [Google Scholar] [CrossRef]
- Sharma, I.; Pranaw, K.; Soni, H.; Rawat, H.K.; Kango, N. Parametrically optimized feather degradation by Bacillus velezensis NCIM 5802 and delineation of keratin hydrolysis by multi-scale analysis for poultry waste management. Sci. Rep. 2022, 12, 17118. [Google Scholar] [CrossRef]
- Cui, C.; Sun, L.; Chen, X.; Zhu, Y.; Zheng, Z.; Mao, D.; Li, M.; Li, Y.; Cao, Y.; Feng, B.; et al. Improving the biodegradation of chicken feathers by a Bacillus licheniformis ZSZ6 mutant and application of hydrolysate. Int. Biodeterior. Biodegrad. 2023, 180, 105597. [Google Scholar] [CrossRef]
- Bressolier, P.; Letourneau, F.; Urdaci, M.; Verneuil, B. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl. Environ. Microbiol. 1999, 65, 2570–2576. [Google Scholar] [CrossRef] [PubMed]
- Habbeche, A.; Saoudi, B.; Jaouadi, B.; Haberra, S.S.; Kerouaz, B.; Boudelaa, M.; Badis, A.; Ladjama, A. Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. J. Biosci. Bioeng. 2014, 117, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.S.; Wang, Y.; Zhang, D.D.; Zhang, R.X.; Su, C.; Li, H.; Zhang, X.M.; Xu, Z.H.; Shi, J.S. Biochemical characterisation of an extreme alkaline and surfactant-stable keratinase derived from a newly isolated actinomycete Streptomyces aureofaciens K13. RSC Adv. 2015, 5, 24691–24699. [Google Scholar] [CrossRef]
- Barman, N.C.; Zohora, F.T.; Das, K.C.; Mowla, M.G.; Banu, N.A.; Salimullah, M.; Hashem, A. Production, partial optimization and characterization of keratinase enzyme by Arthrobacter sp. NFH5 isolated from soil samples. AMB Express 2017, 7, 181. [Google Scholar] [CrossRef]
- Thankaswamy, S.R.; Sundaramoorthy, S.; Palanivel, S.; Ramudu, K.N. Improved microbial degradation of animal hair waste from leather industry using Brevibacterium luteolum (MTCC 5982). J. Clean. Prod. 2018, 189, 701–708. [Google Scholar] [CrossRef]
- Mitsuiki, S.; Hui, Z.; Matsumoto, D.; Sakai, M.; Moriyama, Y.; Furukawa, K.; Kanouchi, H.; Oka, T. Degradation of PrPSc by keratinolytic protease from Nocardiopsis sp. TOA-1. Biosci. Biotechnol. Biochem. 2006, 70, 1246–1248. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-W.; Liang, S.; Ke, Y.; Deng, J.-J.; Zhang, M.-S.; Liu, D.-L.; Li, J.-Z.; Luo, X.-C. The feather degradation mechanisms of a new Streptomyces sp. isolate SCUT-3. Commun. Biol. 2020, 3, 191. [Google Scholar] [CrossRef]
- Mazotto, A.M.; Couri, S.; Damaso, M.; Vermelho, A.B. Degradation of feather waste by Aspergillus niger keratinases: Comparison of submerged and solid-state fermentation. Int. Biodeterior. Biodegrad. 2013, 85, 189–195. [Google Scholar] [CrossRef]
- Bohacz, J.; Korniłłowicz-Kowalska, T. Fungal diversity and keratinolytic activity of fungi from lignocellulosic composts with chicken feathers. Process Biochem. 2019, 80, 119–128. [Google Scholar] [CrossRef]
- Tożejko, M.; Bochacz, J. Optimization of conditions for feather waste biodegradation by geophilic Trichophyton ajelloi fungal strains towards further agricultural use. Int. J. Environ. Res. Public Health 2022, 19, 10858. [Google Scholar] [CrossRef]
- Kwapisz, E.; Wszelaka, J.; Marchut, O.; Bielecki, S. The effect of nitrate and ammonium ions on kinetie by Gordonia alkanivorans S7. Int. Biodeterior. Biodegrad. 2008, 61, 214–222. [Google Scholar] [CrossRef]
- Romanowska, I.; Kwapisz, E.; Mitka, M.; Bielecki, S. Isolation and preliminary characterization of a respiratory nitrate reductase from hydrocarbon-degrading bacterium Gordonia alkanivorans S7. J. Ind. Microbiol. Biotechnol. 2010, 37, 625–629. [Google Scholar] [CrossRef]
- Romanowska, I.; Strzelecki, B.; Bielecki, S. Biosolubilization of Polish brown coal by Gordonia alkanivorans S7 and Bacillus mycoides NS1020. Fuel Process. Technol. 2015, 131, 430–436. [Google Scholar] [CrossRef]
- Gocławski, J.; Sekulska-Nalewajko, J.; Strzelecki, B.; Romanowska, I. Wettability analysis method for assessing the effect of chemical pretreatment on brown coal biosolubilization by Gordonia alkanivorans S7. Fuel 2019, 256, 115927. [Google Scholar] [CrossRef]
- Alahyaribeik, S.; Ullah, A. Methods of keratin extraction from poultry feathers and their effects on antioxidant activity of extracted keratin. Int. J. Biol. Macromol. 2020, 148, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, M.; Williams, S.T. Ecology of actinomycetes. Annu. Rev. Microbiol. 1983, 37, 189–216. [Google Scholar] [CrossRef]
- Böckle, B.; Galunsky, B.; Müller, R. Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Appl. Environ. Microbiol. 1995, 61, 3705–3710. [Google Scholar] [CrossRef] [PubMed]
- Syed, D.G.; Lee, J.C.; Li, W.-J.; Kim, C.-J.; Agasar, D. Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresour. Technol. 2009, 100, 1868–1871. [Google Scholar] [CrossRef]
- Chitte, R.R.; Nalawade, V.K.; Dey, S. Keratinolytic activity from the broth of a feather-degrading thermophilic Streptomyces thermoviolaceus strain SD8. Lett. Appl. Microbiol. 1999, 28, 131–136. [Google Scholar] [CrossRef]
- Demir, T.; Hameş, E.E.; Öncel, S.S.; Vardar-Sukan, F. An optimization approach to scale up keratinase production by Streptomyces sp. 2M21 by utilizing chicken feather. Int. Biodeterior. Biodegrad. 2015, 103, 134–140. [Google Scholar] [CrossRef]
- Abd ElAziz, N.M.; Khalil, B.E.; Ibrahim, H.F. Enhancement of feather degrading keratinase of Streptomyces swerraensis KN23, applying mutagenesis and statistical optimization to improve keratinase activity. BMC Microbiol. 2023, 23, 158. [Google Scholar] [CrossRef]
- Kerouaz, B.; Jaouadi, B.; Brans, A.; Saoudi, B.; Habbeche, A.; Haberra, S.; Belghith, H.; Gargroui, A.; Ladjama, A. Purification and biochemical characterization of two novel extracellular keratinases with feather-degradation and hide-dehairing potential. Process Biochem. 2021, 106, 137–148. [Google Scholar] [CrossRef]
- Mitsuiki, S.; Ichikawa, M.; Oka, R.; Sakai, M.; Moriyama, Y.; Sameshima, Y.; Goto, M.; Furukawa, K. Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Enzyme Microb. Technol. 2004, 34, 482–489. [Google Scholar] [CrossRef]
- Saha, S.; Dhanasekaran, D.; Shanmugapriya, S.; Latha, S. Nocardiopsis sp. SD5: A potent feather degrading rare actinobacterium isolated from feather waste in Tamil Nadu, India. J. Basic. Microbiol. 2013, 53, 608–616. [Google Scholar] [CrossRef]
- Arenskötter, M.; Bröker, D.; Steinbüchel, A. Biology of the metabolically diverse genus Gordonia. Appl. Environ. Microbiol. 2004, 70, 3195–3204. [Google Scholar] [CrossRef] [PubMed]
- List of Prokaryotic Names with Standing in Nomenclature. Available online: https://lpsn.dsmz.de/genus/gordonia (accessed on 26 March 2025).
- Frantsuzova, E.; Bogun, A.; Shishkina, L.; Vetrova, A.; Delegan, Y. Pangenome analysis and physiological characterization of Gordonia alkanivorans strains capable of utilizing persistent organic pollutants. Eng. Proc. 2023, 37, 110. [Google Scholar] [CrossRef]
- Marchut-Mikolajczyk, O.; Kwapisz, E.; Wieczorek, D.; Antczak, T. Biodegradation of diesel oil hydrocarbons enhanced with Mucor circinelloides enzyme preparation. Int. Biodeterior. Biodegrad. 2015, 104, 142–148. [Google Scholar] [CrossRef]
- Riffel, A.; Lucas, F.; Heeb, P.; Brandelli, A. Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch. Microbiol. 2003, 179, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Khosla, B. Biodegradation of poultry feather waste by keratinase producing Bacillus cereus strain isolated from poultry farms waste disposal site. CSCEE 2021, 4, 100114. [Google Scholar] [CrossRef]
- Nnolim, N.E.; Nwodo, U.U. Bacillus sp. CSK2 produced thermostable alkaline keratinase using agro-wastes: Keratinolytic enzyme characterization. BMC Biotechnol. 2020, 20, 65. [Google Scholar] [CrossRef]
- Lu, W.-J.; Zhang, M.-S.; Lu, D.-L.; Li, Z.-W.; Yang, Z.-D.; Wu, L.; Ni, J.-T.; Chen, W.-D.; Deng, J.J.; Luo, X.-C. Sustainable valorizing high-protein feather waste utilization through solid-state fermentation by keratinase-enhanced Streptomyces sp. SCUT-3 using a novel promoter. Waste Manag. 2024, 174, 528–538. [Google Scholar] [CrossRef]
- Richa, J.; Prakash, C.J.; Shyama, C.A. Feather degradation by Streptomyces exfoliatus CFS 1068. Ann. Microbiol. 2012, 62, 973–978. [Google Scholar] [CrossRef]
- Abdelmoteleb, A.; Gonzalez-Mendoza, D.; Tzintzun-Camacho, O.; Grimaldo-Juárez, O.; Mendez-Trujillo, V.; Moreno-Cruz, C.; Ceceña-Duran, C.; Roumia, A.F. Keratinases from Streptomyces netropsis and Bacillus subtilis and their potential use in the chicken feather degrading. Fermentation 2023, 9, 96. [Google Scholar] [CrossRef]
- Bhange, K.; Chaturvedi, V.; Bhatt, R. Ameliorating effects of chicken feathers in plant growth promotion activity by a keratinolytic strain of Bacillus subtilis. Bioresour. Bioprocess. 2016, 3, 13. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, S.; Aich, A.; Verma, A.K.; Bhuyar, P.; Nadda, A.K.; Mulla, S.I.; Kalia, S. Chicken feather waste hydrolysate as a potential biofertilizer for environmental sustainability in organic agriculture management. Waste Biomass Valor. 2023, 14, 2783–2799. [Google Scholar] [CrossRef]
- Bhari, R.; Kaur, M.; Singh, R.S. Chicken feather waste hydrolysate as a superior biofertilizer in agroindustry. Curr. Microbiol. 2021, 78, 2212–2230. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Bhari, R.; Singh, R.S. Chicken feather waste-derived protein hydrolysate as a potential biostimulant for cultivation of mung beans. Biologia 2021, 76, 1807–1815. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosenbrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- MicroBioTests Inc. Phytotoxicity Test with Phytotoxkit Liquid Samples. Available online: https://www.microbiotests.com/toxkit/phytotoxicity-test-with-phytotoxkit-liquid-samples/ (accessed on 13 December 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Struszczyk-Świta, K.; Drożdżyński, P.; Marcinkowski, P.; Nadziejko, A.; Rodziewicz, M.; Januszewicz, B.; Gierszewska, M.; Marchut-Mikołajczyk, O. Feather Waste Biodegradation and Biostimulant Potential of Gordonia alkanivorans S7: A Novel Keratinolytic Actinobacterium for Sustainable Waste Valorization. Int. J. Mol. Sci. 2025, 26, 6494. https://doi.org/10.3390/ijms26136494
Struszczyk-Świta K, Drożdżyński P, Marcinkowski P, Nadziejko A, Rodziewicz M, Januszewicz B, Gierszewska M, Marchut-Mikołajczyk O. Feather Waste Biodegradation and Biostimulant Potential of Gordonia alkanivorans S7: A Novel Keratinolytic Actinobacterium for Sustainable Waste Valorization. International Journal of Molecular Sciences. 2025; 26(13):6494. https://doi.org/10.3390/ijms26136494
Chicago/Turabian StyleStruszczyk-Świta, Katarzyna, Piotr Drożdżyński, Paweł Marcinkowski, Aleksandra Nadziejko, Magdalena Rodziewicz, Bartłomiej Januszewicz, Magdalena Gierszewska, and Olga Marchut-Mikołajczyk. 2025. "Feather Waste Biodegradation and Biostimulant Potential of Gordonia alkanivorans S7: A Novel Keratinolytic Actinobacterium for Sustainable Waste Valorization" International Journal of Molecular Sciences 26, no. 13: 6494. https://doi.org/10.3390/ijms26136494
APA StyleStruszczyk-Świta, K., Drożdżyński, P., Marcinkowski, P., Nadziejko, A., Rodziewicz, M., Januszewicz, B., Gierszewska, M., & Marchut-Mikołajczyk, O. (2025). Feather Waste Biodegradation and Biostimulant Potential of Gordonia alkanivorans S7: A Novel Keratinolytic Actinobacterium for Sustainable Waste Valorization. International Journal of Molecular Sciences, 26(13), 6494. https://doi.org/10.3390/ijms26136494