Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,077)

Search Parameters:
Keywords = particle formation mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5727 KB  
Article
Mechanical Properties of Dental Composites Modified with Liquid Rubber and Their Effect on Stress Distribution in Fillings
by Monika Sowa, Leszek Borkowski and Krzysztof Pałka
Materials 2025, 18(24), 5664; https://doi.org/10.3390/ma18245664 - 17 Dec 2025
Abstract
Dental composites are commonly used for the restoration of hard tooth tissues, but their low fracture toughness may limit their lifespan. In this study, the effect of liquid rubber modification on the mechanical properties and fracture mechanisms of two types of dental composites, [...] Read more.
Dental composites are commonly used for the restoration of hard tooth tissues, but their low fracture toughness may limit their lifespan. In this study, the effect of liquid rubber modification on the mechanical properties and fracture mechanisms of two types of dental composites, flow and classic, was evaluated. The study used experimental composites containing a mixture of dimethacrylate resins: BisGMA (20% by weight), BisEMA (30% by weight), UDMA (30% by weight), and TEGDMA (20% by weight). Composites were reinforced with Al-Ba-B-Si glass, Ba-Al-B-F-Si glass with particle sizes of 0.7 and 2 μm respectively, as well as pyrogenic silica (20 nm). The inorganic phase was introduced in an amount of 50% vol. for flow material and 80% vol. for classic composite. As a modifier, Hypro 2000X168LC VTB liquid rubber (Huntsman International LLC, USA) was used in an amount of 5% by weight relative to the matrix. The flexural strength, Young’s modulus, and fracture toughness were evaluated. Numerical FEM analysis allowed for the evaluation of stress distribution in the filling area. The results confirmed that the modification of composites with liquid rubber contributes to an increase in fracture toughness. For the flow-type material, the fracture toughness increased from 1.04 to 1.13 MPa· m1/2. At the same time, a decrease in flexural strength from 71.90 MPa to 61.48 MPa and in Young’s modulus from 2.98 GPa to 2.53 GPa. In the case of the classical composite, the modification with liquid rubber also improved the resistance to fracture, increasing it from 1.97 to 2.18 MPa m·1/2 while the flexural strength decreased from 102.30 MPa to 90.96 MPa, and the modulus dropped from 7.33 GPa to 6.16 GPa. FEA analysis confirmed that modified composites exhibit a more favorable stress distribution with lower tensile stress levels (approximately 20 MPa in contrast to 25 MPa for the classic composite). Mechanisms of fracture and strengthening were also identified. The main fracture mechanism was intermolecular cracking with crack deflections. Modification with liquid rubber resulted in the formation of elastic bridges and plastic shear zones at the front of the crack. Full article
(This article belongs to the Special Issue Advanced Dental Materials: From Design to Application, Third Edition)
Show Figures

Graphical abstract

14 pages, 4845 KB  
Article
Elaboration of Natural Hydroxyapatite Coating by Plasma Spraying
by Maya Kebaili, Amina Ghedjemis, Lilia Benchikh, Yazid Aitferhat, Ilyes Abacha, Kamel Hebbache, Cherif Belebchouche and El Hadj Kadri
Physchem 2025, 5(4), 57; https://doi.org/10.3390/physchem5040057 - 17 Dec 2025
Abstract
Metallic implants used in orthopedics, such as titanium alloys, possess excellent mechanical strength but suffer from corrosion and poor bio-integration, often necessitating revision surgeries. Bioactive coatings, particularly hydroxyapatite, can enhance implant osteoconductivity, but high-purity synthetic hydroxyapatite is costly. This study investigates the development [...] Read more.
Metallic implants used in orthopedics, such as titanium alloys, possess excellent mechanical strength but suffer from corrosion and poor bio-integration, often necessitating revision surgeries. Bioactive coatings, particularly hydroxyapatite, can enhance implant osteoconductivity, but high-purity synthetic hydroxyapatite is costly. This study investigates the development and characterization of a low-cost, biocompatible coating using hydroxyapatite derived from an unconventional natural source dromedary bone applied onto a titanium substrate via plasma spraying. Hydroxyapatite powder was synthesized from dromedary femurs through a thermal treatment process at 1000 °C. The resulting powder was then deposited onto a sandblasted titanium dioxide substrate using an atmospheric plasma spray technique. The physicochemical, structural, and morphological properties of both the source powder and the final coating were comprehensively analyzed using Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, X-ray Diffraction, and Fourier-Transform Infrared Spectroscopy. Characterization of the powder confirmed the successful synthesis of pure, crystalline hydroxyapatite, with Fourier-Transform Infrared Spectroscopy analysis verifying the complete removal of organic matter. The plasma-sprayed coating exhibited good adhesion and a homogenous, lamellar microstructure typical of thermal spray processes, with an average thickness of approximately 95 μm. X-ray Diffraction analysis of the coating revealed that while hydroxyapatite remained the primary phase, partial decomposition occurred during spraying, leading to the formation of secondary phases, including tricalcium phosphate and calcium oxide. Scanning Electron Microscopy imaging showed a porous surface composed of fully and partially melted particles, a feature potentially beneficial for bone integration. The findings demonstrate that dromedary bone is a viable and low-cost precursor for producing bioactive hydroxyapatite coatings for orthopedic implants. The plasma spray method successfully creates a well-adhered, porous coating, though process-induced phase changes must be considered for biomedical applications. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

15 pages, 2122 KB  
Article
Effects of Localized Overheating on the Particle Size Distribution and Morphology of Impurities in Transformer Oil
by Shangquan Feng, Ruijin Liao, Lijun Yang, Chen Chen and Xinxi Yu
Energies 2025, 18(24), 6566; https://doi.org/10.3390/en18246566 - 16 Dec 2025
Abstract
Power transformers are critical components of power grids, and their operational status characterization and fault diagnosis are crucial for power system reliability. Oil quality assessment is a crucial method for determining transformer status, and the detection of impurity particles in oil has historically [...] Read more.
Power transformers are critical components of power grids, and their operational status characterization and fault diagnosis are crucial for power system reliability. Oil quality assessment is a crucial method for determining transformer status, and the detection of impurity particles in oil has historically been a key approach. However, recent field tests have revealed the presence of numerous impurity particles less than 5 μm in transformer oil. Current power standards do not address these micron-sized particles, and their sources and mechanisms of action are largely unresolved. Therefore, this paper designed a localized overheating experiment, incorporating microflow imaging technology, to investigate the generation patterns of impurity particles under localized overheating and their quantitative correlation with heat. Field oil samples were also collected and tested to further explore the potential application of these micron-sized particles in transformer overheating assessment. The research results show that insulating oil can decompose and produce impurity particles at temperatures as low as 140 °C. When the temperature is below 140 °C, the number of particles at different heat levels is not significantly different from that of the non-overheated oil sample. However, when the temperature exceeds 140 °C, the number of particles increases significantly with increasing heat. Among the generated particles, particles with a diameter of less than 5 μm account for over 50% of the total number, and their number increases significantly with increasing heat. Their morphology is characterized by a smooth, regular, and spherical shape. Field test results of overheated oil samples are consistent with laboratory tests. Micron-sized particles are highly sensitive to changes in overheating conditions and have the potential to be used as a new characteristic parameter of transformer overheating conditions. In summary, this paper reveals the formation mechanism of impurity particles in insulating oil under localized overheating conditions. It was found that insulating oil can also decompose and generate impurity particles at 140 °C, with the pyrolysis products mainly consisting of particles smaller than 5 μm in diameter, which are not currently considered a concern in existing standards. Further research indicates that these micron-sized particles exhibit high sensitivity to changes in overheating conditions, demonstrating potential application value as a novel characteristic parameter of transformer overheating. Full article
Show Figures

Figure 1

20 pages, 4502 KB  
Article
Transforming Waste into Value: The Role of Recovered Carbon Fibre and Oil Shale Ash in Enhancing Cement-Based Structural Composites
by Regina Kalpokaitė-Dičkuvienė, Inga Stasiulaitiene, Arūnas Baltušnikas and Samy Yousef
Materials 2025, 18(24), 5636; https://doi.org/10.3390/ma18245636 - 15 Dec 2025
Abstract
Economic and technological factors necessitate the use of alternative fuels during oil shale combustion, a process that generates substantial amounts of solid waste with varying ash compositions. This study evaluates the potential of two such waste materials: (i) fly ash derived from the [...] Read more.
Economic and technological factors necessitate the use of alternative fuels during oil shale combustion, a process that generates substantial amounts of solid waste with varying ash compositions. This study evaluates the potential of two such waste materials: (i) fly ash derived from the combustion of oil shale (a fine particulate residue from burning crushed shale rock, sometimes combined with biomass), and (ii) short carbon fibres recovered from the pyrolysis (a process of decomposing materials at high temperatures in the absence of oxygen) of waste wind turbine blades. Oil shale ash from two different sources was investigated as a partial cement replacement, while recycled short carbon fibres (rCFs) were incorporated to enhance the functional properties of mortar composites. Results showed that carbonate-rich ash promoted the formation of higher amounts of monocarboaluminate (a crystalline hydration product in cement chemistry), leading to a refined pore structure and increased volumes of reaction products—primarily calcium silicate hydrates (C–S–H, critical compounds for cement strength). The findings indicate that the mineralogical composition of the modified binder (the mixture that holds solid particles together in mortar), rather than the fibre content, is the dominant factor in achieving a dense microstructure. This, in turn, enhances resistance to water ingress and improves mechanical performance under long-term hydration and freeze–thaw exposure. Life cycle assessment (LCA, a method to evaluate environmental impacts across a product’s lifespan) further demonstrated that combining complex binders with rCFs can significantly reduce the environmental impacts of cement production, particularly in terms of global warming potential (−4225 kg CO2 eq), terrestrial ecotoxicity (−1651 kg 1,4-DCB), human non-carcinogenic toxicity (−2280 kg 1,4-DCB), and fossil resource scarcity (−422 kg oil eq). Overall, the integrative use of OSA and rCF presents a sustainable alternative to conventional cement, aligning with principles of waste recovery and reuse, while providing a foundation for the development of next-generation binder systems. Full article
(This article belongs to the Special Issue Advances in Waste Materials’ Valorization)
Show Figures

Figure 1

35 pages, 15541 KB  
Article
Coupled CFD–DEM Modeling of Sinkhole Development Due to Exfiltration from Buried Pipe Defects
by Jun Xu, Bryce Vaughan and Fei Wang
Eng 2025, 6(12), 365; https://doi.org/10.3390/eng6120365 - 14 Dec 2025
Viewed by 62
Abstract
Leakage from defective buried pipelines can lead to progressive soil erosion and void formation, ultimately resulting in ground collapse or sinkhole development. To better understand the underlying mechanisms of this process, this research utilizes a coupled computational fluid dynamics (CFD)–discrete element method (DEM) [...] Read more.
Leakage from defective buried pipelines can lead to progressive soil erosion and void formation, ultimately resulting in ground collapse or sinkhole development. To better understand the underlying mechanisms of this process, this research utilizes a coupled computational fluid dynamics (CFD)–discrete element method (DEM) modeling approach to investigate soil erosion processes driven by water leakage from defective underground pipelines. The numerical model captures fluid–particle interactions at both macroscopic and microscopic scales, providing detailed insights into erosion initiation, void zone evolution, and particle transport dynamics under varying hydraulic and geometric conditions. Parametric studies were conducted to evaluate the effects of exfiltration pressure, defect size, and particle diameter on erosion behavior. Results show that erosion intensity and particle migration increase with hydraulic pressure up to a threshold, beyond which compaction and particle bridging reduce sustained transport. The intermediate defect size (12.7 mm) consistently produced the most continuous and stable erosion channels, while smaller and larger defects exhibited localized or asymmetric detachment patterns. Particle size strongly influenced erosion susceptibility, with finer grains mobilized more readily under the same flow conditions. The CFD–DEM simulations successfully reproduce the nonlinear and self-reinforcing nature of internal erosion, revealing how hydraulic gradients and particle rearrangement govern the transition from local detachment to large-scale cavity development. These findings advance the understanding of subsurface instability mechanisms around leaking pipelines and provide a physically consistent CFD–DEM framework that aligns well with published studies. The model effectively reproduces the key stages of erosion observed in the literature, offering a valuable tool for assessing erosion-induced risks and for designing preventive measures to protect buried infrastructure. Full article
(This article belongs to the Special Issue Fluid-Structure Interaction in Civil Engineering)
Show Figures

Figure 1

16 pages, 2988 KB  
Article
Tailoring Architecture of Carbon Aerogel via Self-Assembly Template for Balanced Mechanical and Thermal Insulation Performance
by Lei Yang, Xianxin Shao, Lin Lu, Xiaoyan Chen, Yiming Yang, Hao Li, Yiqiang Hong and Yingjie Qiao
Nanomaterials 2025, 15(24), 1874; https://doi.org/10.3390/nano15241874 - 13 Dec 2025
Viewed by 167
Abstract
Carbon aerogels (CAs) had been well applied in extreme condition thermal insulation, but achieving a balance between mechanical robustness and thermal insulation remains challenging. We present a novel strategy to fabricate carbon aerogels with tunable mechanical properties and thermal insulation properties by tailoring [...] Read more.
Carbon aerogels (CAs) had been well applied in extreme condition thermal insulation, but achieving a balance between mechanical robustness and thermal insulation remains challenging. We present a novel strategy to fabricate carbon aerogels with tunable mechanical properties and thermal insulation properties by tailoring their skeleton architecture via molecular assembly. Carbon precursor aerogel with thick neck particle packing structure was obtained by strong hydrogen-bonding-induced self-assembly between polyurethane-urea oligomer (PUU) and phenolic resin (PF), and carbon aerogel retained robust interparticle connections after pyrolysis, resulting in excellent mechanical properties. The presence of PUU leads to denser packing of resin molecules, promotes graphitization of the carbon and formation of nanocrystalline structures at 1400 °C, resulting in optimized compression modulus and strength. The closed pore structure of carbon skeleton was further studied by Small-Angle X-ray Scattering (SAXS), while moderate pore width (0.4–0.6 nm) optimizes the balance between strength (110 MPa) and thermal conductivity (0.30 W/(m·K)). This work demonstrates that molecular-level assembly combined with pyrolysis control enables precise tuning of carbon aerogel structures and properties, providing new insights for high-temperature thermal insulation applications. Full article
(This article belongs to the Topic Advances in Carbon-Based Materials)
Show Figures

Graphical abstract

15 pages, 10835 KB  
Article
Comparison Study on the Microstructure, Hardness and Wear Properties of Ti Alloy Composites Reinforced by Carbon Nanomaterials
by Nguyen Binh An, Tran Van Hau, Tran Bao Trung, Pham Van Trinh and Doan Dinh Phuong
Inorganics 2025, 13(12), 405; https://doi.org/10.3390/inorganics13120405 - 12 Dec 2025
Viewed by 144
Abstract
In this study, titanium alloy-based composites reinforced with carbon nanotubes (CNTs) and graphene (Gr) were fabricated via spark plasma sintering (SPS). The effects of CNT and Gr reinforcements on the microstructure, density, hardness, and tribological properties of the composites were systematically investigated. The [...] Read more.
In this study, titanium alloy-based composites reinforced with carbon nanotubes (CNTs) and graphene (Gr) were fabricated via spark plasma sintering (SPS). The effects of CNT and Gr reinforcements on the microstructure, density, hardness, and tribological properties of the composites were systematically investigated. The results revealed that CNTs and Gr were dispersed within the Ti alloy matrix. All composites exhibited high relative densities about 99%, confirming the strong densification capability of the SPS process. The incorporation of CNTs and Gr significantly enhanced the mechanical performance of the composites. The maximum hardness values of 445.8 HV and 430.5 HV were obtained for CNT/Ti and Gr/Ti composites containing 3 vol.% reinforcement, corresponding to improvements of 34% and 30%, respectively, compared with the unreinforced Ti alloy. Tribological tests further revealed notable reductions in the coefficient of friction and wear rate for both CNT/Ti and Gr/Ti composites. These enhancements are attributed to the formation of a lubricating tribo-film composed of carbonaceous species and oxide particles (TiO2, Al2O3) on the worn surfaces. Among the two reinforcements, the obtained results indicated that CNTs are more effective in enhancing hardness, whereas graphene provides superior improvement in wear resistance of Ti alloy-based composites. Overall, this work demonstrated that the combination of Ti alloys with nanocarbon reinforcements is an effective approach to simultaneously enhance their mechanical and tribological performance. Full article
(This article belongs to the Special Issue Novel Metal Matrix Composite Materials)
Show Figures

Figure 1

17 pages, 2338 KB  
Article
Lignosulfonates as Surfactants to Stabilize Elemental Sulfur Dispersions
by Tatiana N. Lugovitskaya and Denis A. Rogozhnikov
Polymers 2025, 17(24), 3288; https://doi.org/10.3390/polym17243288 - 11 Dec 2025
Viewed by 240
Abstract
During sulfite delignification of wood, sulfo derivatives of lignin—lignosulfonates (LS)—are formed as a byproduct. Due to their amphiphilic nature, LS are used as plasticizers, dispersants, and stabilizers. The functions and performance characteristics of this surface-active polyelectrolyte are determined by its behavior in aqueous [...] Read more.
During sulfite delignification of wood, sulfo derivatives of lignin—lignosulfonates (LS)—are formed as a byproduct. Due to their amphiphilic nature, LS are used as plasticizers, dispersants, and stabilizers. The functions and performance characteristics of this surface-active polyelectrolyte are determined by its behavior in aqueous solution, at surfaces and interfaces, which, in turn, is determined by its chemical composition. This study investigated the effect of LS with various molecular weight compositions (Mw 9–50 kDa) on the behavior and aggregation stability of aqueous dispersions of elemental sulfur (S0) under conditions simulating hydrothermal leaching of sulfide ores. Using conductometry, potentiometry, tensiometry, and viscometry, a detailed study of the physicochemical properties of aqueous LS solutions (CLS 0.02–1.28 g/dm3) obtained from a few sources (Krasnokamsk, Solikamsk, and Norwegian Pulp and Paper Mills) was conducted. The composition, molecular weight, and concentration of LS were found to significantly affect their specific electrical conductivity, pH, intrinsic viscosity, and surface activity. LS introduction during the formation of sulfur sols is shown to promote their stabilization through electrostatic and steric mechanisms. Optimum dispersion stability (293 K, pH 4.5–5.5) was observed at moderate LS concentrations (0.02–0.32 g/dm3), when a stable adsorption layer forms on the surface of sulfur particles. High-molecular-weight LS samples provided more effective spatial stabilization of sulfur particles. It has been established that increasing temperature (293–333 K) and changing pH (1–7) significantly affect the aggregative stability of systems; specifically, the sol stability decreases with increasing temperature, and the stabilizing effect of different LS types reverses upon changing pH. The obtained results highlight the potential of using naturally occurring polymeric dispersants to control the aggregation stability of sulfur-containing heterophase systems and can be applied to the design of stable colloidal systems in chemical engineering and hydrometallurgy. Full article
(This article belongs to the Special Issue Advances in Applied Lignin Research)
Show Figures

Figure 1

20 pages, 7531 KB  
Review
Synthesis, Applications, and Inhibition Mechanisms of Carbon Dots as Corrosion Inhibitors: A Review
by Yin Hu, Tianyao Hong, Sheng Zhou, Yangrui Wang, Shiyu Sheng, Jie Hong, Shifang Wang, Chang Liu, Chuang He, Haijie He and Minjie Xu
Processes 2025, 13(12), 4002; https://doi.org/10.3390/pr13124002 - 11 Dec 2025
Viewed by 225
Abstract
Carbon dots (CDs) have recently emerged as a novel class of eco-friendly and multifunctional corrosion inhibitors owing to their nanoscale dimensions, tunable surface functionalities, and sustainable synthesis pathways. This review summarizes the latest progress in CD-based inhibitors, focusing on synthesis methods, applications, and [...] Read more.
Carbon dots (CDs) have recently emerged as a novel class of eco-friendly and multifunctional corrosion inhibitors owing to their nanoscale dimensions, tunable surface functionalities, and sustainable synthesis pathways. This review summarizes the latest progress in CD-based inhibitors, focusing on synthesis methods, applications, and inhibition mechanisms. Various strategies—including hydrothermal/solvothermal treatment, microwave irradiation, pyrolysis, electrochemical synthesis, and chemical oxidation—have been employed to obtain CDs with tailored size, heteroatom doping, and surface groups, thereby enhancing their inhibition efficiency. CDs have demonstrated remarkable applicability across diverse corrosive environments, including acidic, neutral chloride, CO2-saturated, microbiologically influenced, and alkaline systems, often achieving inhibition efficiencies exceeding 90%. Mechanistically, their performance arises from strong adsorption and compact film formation, heteroatom-induced electronic modulation, suppression of anodic and cathodic reactions, and synergistic effects of particle size and structural configuration. Compared with conventional inhibitors, CDs offer higher efficiency, environmental compatibility, and multifunctionality. Despite significant progress, challenges remain regarding precise structural control, scalability of synthesis, and deeper mechanistic understanding. The effectiveness of CDs inhibitors is highly dependent on factors such as pH, temperature, inhibitor concentration, and exposure time, which should be tailored for specific applications to maximize performance. Future research should focus on integrating sustainable synthesis with rational heteroatom engineering and advanced characterization to achieve long-term, cost-effective, and environmentally benign corrosion protection solutions. Compared to earlier reviews, this review discusses the emerging trends in the field of CDs as corrosion inhibitors. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

14 pages, 14223 KB  
Communication
Alkali-Activated Binders from Copper–Nickel Slag and Fly Ash: A Synergistic Effect
by Alexander M. Kalinkin, Elena V. Kalinkina, Ekaterina A. Kruglyak and Alla G. Ivanova
Minerals 2025, 15(12), 1297; https://doi.org/10.3390/min15121297 - 11 Dec 2025
Viewed by 165
Abstract
The cement industry’s significant carbon footprint has driven research into sustainable alternatives like alkali-activated materials (AAMs). This study investigates the synergistic effect of blending copper–nickel slag (CNS) with fly ash (FA) to produce high-performance AAMs. Mechanically activated mixtures of CNS and FA, with [...] Read more.
The cement industry’s significant carbon footprint has driven research into sustainable alternatives like alkali-activated materials (AAMs). This study investigates the synergistic effect of blending copper–nickel slag (CNS) with fly ash (FA) to produce high-performance AAMs. Mechanically activated mixtures of CNS and FA, with FA content varying from 0 to 100%, were alkali-activated with sodium silicate. A distinct synergy was observed, with the blend of 80% CNS and 20% FA (AACNS–80) achieving the highest compressive strength (99.9 MPa at 28 days), significantly outperforming the single-precursor systems. Analytical techniques including thermogravimetry, FTIR spectroscopy, and SEM–EDS were used to elucidate the mechanisms behind this enhancement. The results indicate that the AACNS–80 formulation promotes a greater extent of reaction and forms a denser, more homogeneous microstructure. The synergy is attributed to an optimal particle packing density and the co-dissolution of precursors, leading to the formation of a complex gel that incorporates magnesium and iron from the slag. This work demonstrates the potential for valorizing copper–nickel slag in the production of high-strength, sustainable binders. Full article
(This article belongs to the Special Issue Characterization and Reuse of Slag)
Show Figures

Figure 1

14 pages, 2352 KB  
Article
Pre-Crosslinked Gel Particles Enhanced by Amphiphilic Nanocarbon Dots in Harsh Reservoirs: Synthesis and Deep Stimulation Mechanism
by Guorui Xu, Xiaoxiao Li, Jinzhou Yang, Chunyu Tong, Xiaolong Wang and Tengfei Wang
Processes 2025, 13(12), 3994; https://doi.org/10.3390/pr13123994 - 10 Dec 2025
Viewed by 161
Abstract
To address the issues of easy degradation, dehydration, and insufficient deep plugging strength of traditional pre-crosslinked gel particles (PPGs) in high-temperature and high-salinity reservoirs, this study innovatively introduced amphiphilic carbon dots (CDs) with both hydrophilic and hydrophobic structures as multifunctional modifiers. The carbon [...] Read more.
To address the issues of easy degradation, dehydration, and insufficient deep plugging strength of traditional pre-crosslinked gel particles (PPGs) in high-temperature and high-salinity reservoirs, this study innovatively introduced amphiphilic carbon dots (CDs) with both hydrophilic and hydrophobic structures as multifunctional modifiers. The carbon dot-reinforced PPGs (CD-PPGs) were successfully prepared through in situ polymerization. Through systematic characterization, microscopic visualization experiments, and macroscopic oil displacement evaluation, the performance enhancement mechanism and profile control behavior were deeply explored. The results show that the amphiphilic carbon dots significantly enhanced the material’s temperature resistance (up to 110 °C), salt resistance (up to 15 × 104 mg/L salinity), and mechanical properties by constructing a “hydrogen bond-hydrophobic association” dual crosslinking system within the PPG network. More importantly, it was found that CD-PPGs exhibit a unique “self-aggregation” ability in deep reservoirs, which enables the in situ formation of high-strength plugging micelles at the target location while ensuring excellent injectability. At a permeability range of 539.0–2988.6 mD, the sealing rate of 0.5 PV CD-PPGs was greater than 95%. With permeabilities of 490.1 mD and 3020.5 mD under heterogeneous reservoir simulation conditions, the total recovery degree after the CD-PPGs was 52.6%, which was 20.5% higher than that of single water flooding. This study not only developed a high-performance profile control nanomaterial but also elucidated its strengthening mechanism, providing new insights and a theoretical basis for advancing deep profile control technology. Full article
Show Figures

Figure 1

8 pages, 502 KB  
Proceeding Paper
Advances in TiO2 Nanoparticles for Rhodamine B Degradation
by Md. Golam Sazid, Asraf Ibna Helal, Harunur Rashid and Md. Redwanur Rashid Nafi
Mater. Proc. 2025, 25(1), 14; https://doi.org/10.3390/materproc2025025014 - 9 Dec 2025
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) have garnered significant attention as photocatalysts for degrading organic pollutants, particularly synthetic dyes such as rhodamine B (RhB), methylene blue, methyl orange, and others. The impact of several synthesis methods, including sol–gel, hydrothermal, and chemical vapor [...] Read more.
Titanium dioxide (TiO2) nanoparticles (NPs) have garnered significant attention as photocatalysts for degrading organic pollutants, particularly synthetic dyes such as rhodamine B (RhB), methylene blue, methyl orange, and others. The impact of several synthesis methods, including sol–gel, hydrothermal, and chemical vapor deposition (CVD) techniques, on the electrical and morphological properties of TiO2 NPs has been studied, emphasizing the distinctive physicochemical properties of TiO2 NPs, including their extensive surface area, significant oxidative capacity, and remarkable chemical stability, which are important in the recent advancements in their use for RhB degradation. A detailed examination of TiO2’s photocatalytic mechanism shows that it is based on the generation of reactive oxygen species (ROS) by photoinduced electron–hole pair formation under ultraviolet (UV) light exposure. In wastewater treatment, TiO2 degrades RhB into less harmful byproducts by the generation of electron–hole pairs that initiate redox reactions under sunlight. This study includes a thorough overview of significant factors influencing photocatalytic efficacy. The parameters include particle size, crystal phase (anatase, rutile, and brookite), surface changes, and the incorporation of metal or non-metal dopants to enhance visible light absorption. Researchers continually seek methods to overcome challenges, including restricted visible-light responsiveness and rapid electron–hole recombination. The investigated approaches include heterojunction generation, composite development, and co-catalyst insertion. This review article aims to address the deficiencies in our understanding of TiO2-based photocatalysis for the degradation of RhB and to propose enhancements for these systems to enable more efficient and sustainable wastewater treatment in the future. Full article
Show Figures

Figure 1

19 pages, 2387 KB  
Article
Green Synthesis of Titanium Dioxide Nanoparticles: Characterization and Evaluation of Their Potential for Photocatalytic and Dielectric Applications
by Manal A. Awad, Khalid M. O. Ortashi, Wadha Alenazi, Fatimah S. Alfaifi and Asma A. Al-Huqail
Molecules 2025, 30(24), 4701; https://doi.org/10.3390/molecules30244701 - 8 Dec 2025
Viewed by 225
Abstract
This study investigated the dielectric and photocatalytic properties of green-synthesized titanium dioxide nanoparticles (TiO2 NPs), which are widely utilized semiconductor materials known for their excellent optical, structural, and electronic characteristics. The TiO2 NPs were synthesized via a green precipitation method from [...] Read more.
This study investigated the dielectric and photocatalytic properties of green-synthesized titanium dioxide nanoparticles (TiO2 NPs), which are widely utilized semiconductor materials known for their excellent optical, structural, and electronic characteristics. The TiO2 NPs were synthesized via a green precipitation method from the aqueous extract of Cymbopogon proximus. A comprehensive set of analytical techniques—UV–Vis spectroscopy, XRD, FTIR, TEM, EDX, and DLS—was employed to determine their optical response, crystalline structure, functional groups, morphology, elemental composition, and particle size distribution. UV–Vis analysis revealed a characteristic absorption peak at 327 nm, and the band gap energy, calculated via the Tauc plot method, was 3.16 eV. The XRD results confirmed the formation of a tetragonal TiO2 phase with an average crystallite size of approximately 4 nm. TEM images further supported the spherical to quasitetragonal morphology and revealed that the aggregated clusters formed conjoint nanostructures. The photocatalytic activity of the TiO2 NPs was evaluated using a 0.5 mM RhB dye solution under UV–visible irradiation. The synthesized nanoparticles achieved a photodegradation efficiency of 97% after 50 h, with a corresponding rate constant of 0.073402 h−1, indicating their potential for effective photocatalytic pollutant removal. Furthermore, the dielectric behavior of the TiO2 NPs was examined at room temperature. The material exhibited a high dielectric constant at low frequencies due to interfacial (Maxwell–Wagner) polarization, along with frequency-dependent AC conductivity attributed to charge-carrier hopping mechanisms. These dielectric properties, combined with strong photocatalytic performance, underscore the suitability of green-synthesized TiO2 NPs for applications in environmental remediation, energy-storage devices, and advanced technologies. Full article
Show Figures

Figure 1

24 pages, 3720 KB  
Review
Metallic Particles in Sodium Battery Anodes: A Review
by Rafaela Ruiz, Carlos Pérez-Vicente and Ricardo Alcántara
Micromachines 2025, 16(12), 1391; https://doi.org/10.3390/mi16121391 - 8 Dec 2025
Viewed by 269
Abstract
Sodium-ion batteries have emerged as a promising alternative to lithium-ion systems, due to the abundance and low cost of sodium resources. However, the demand for higher performance is always increasing, and developing new electrode materials and optimizing their behavior in full cells is [...] Read more.
Sodium-ion batteries have emerged as a promising alternative to lithium-ion systems, due to the abundance and low cost of sodium resources. However, the demand for higher performance is always increasing, and developing new electrode materials and optimizing their behavior in full cells is necessary. Their electrochemical performance remains limited by challenges related to the anode materials. A fundamental understanding of electrode materials is essential to advance their practical application, for example, by designing strategies to minimize irreversible processes and enhance the reversible capacity. Thus, the properties of metals, including nanoparticles and clusters, are critical for various types of sodium batteries, such as sodium-ion microbatteries. Additionally, metallic nanoparticles exhibiting special properties are generated in situ at the negative electrode during the electrochemical cycling of certain batteries. This review focuses on their formation mechanisms, structural and electrochemical effects, and strategies to control their distribution and size. Particular attention is given to the interaction between metallic particles and carbon matrices, as well as their influence on capacity. Finally, current limitations and future perspectives for optimizing the properties of the metallic particles in advanced sodium battery anodes are highlighted. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

16 pages, 6714 KB  
Article
Effect of Fluoride Content in Synthetic Phosphogypsum on the Hydration Behavior and Mechanical Properties of Cemented Paste Backfill
by Bin Liu, Qinli Zhang, Daolin Wang, Yan Feng, Yikun Yang and Qiusong Chen
Appl. Sci. 2025, 15(24), 12939; https://doi.org/10.3390/app152412939 - 8 Dec 2025
Viewed by 171
Abstract
Phosphogypsum-based cemented paste backfill (PCPB) represents an effective solution for managing substantial accumulations of PG. However, its practical application is limited by excessive fluoride content and insufficient strength. To systematically investigate the influence of initial fluoride content on the hydration behavior, microstructures, and [...] Read more.
Phosphogypsum-based cemented paste backfill (PCPB) represents an effective solution for managing substantial accumulations of PG. However, its practical application is limited by excessive fluoride content and insufficient strength. To systematically investigate the influence of initial fluoride content on the hydration behavior, microstructures, and strength development of PCPB specimens, synthetic phosphogypsum was prepared using CaSO4·2H2O and NaF to eliminate impurity interference in this study. A series of specimens was designed with varying initial fluoride content (5–70 mg/L), sand-to-cement ratios (1:6, 1:8, 1:10), and concentrations (63 wt%, 65 wt%). Setting time, unconfined compressive strength, isothermal calorimetry, X-ray diffraction, and scanning electron microscopy were employed to elucidate the effects and underlying mechanisms of fluoride on PCPB performance. The results indicate that higher initial fluoride content markedly delayed setting and reduced early strength. Calorimetric analysis confirmed that fluoride postponed the exothermic peak and extended the induction period, primarily due to the formation of the CaF2 layer on clinker particle surfaces, which hindered nucleation and hydration. The microscopic results further revealed that high fluoride content suppressed the formation of ettringite and C-S-H gels, resulting in more porous and loosely bonded microstructures. Leaching tests indicated that fluoride immobilization in PCPB specimens occurred mainly through CaF2 precipitation, physical encapsulation, and ion exchange. These findings provide theoretical support for the fluoride thresholds in PG below which the adverse effects on cement hydration and strength development can be minimized, contributing to the sustainable goals of waste reduction, harmless disposal, and resource recovery in the phosphate industry. Full article
Show Figures

Figure 1

Back to TopTop