materials-logo

Journal Browser

Journal Browser

Advances in Waste Materials’ Valorization

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Green Materials".

Deadline for manuscript submissions: 25 September 2025 | Viewed by 1184

Special Issue Editor


E-Mail
Guest Editor
Department of Energy Saving and Air Protection, Central Mining Institute–National Research Institute, Pl. Gwarkow 1, 40-166 Katowice, Poland
Interests: environmental engineering; waste valorization; hydrogen economy; sustainable energy systems; renewable energy; carbon materials; thermochemical conversion of solid materials; gasification; adsorption
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The sustainable management of natural resources remains one of the principal economic and environmental challenges. Efforts to address this complex issue range from the development and implementation of cost-effective and more resource- and energy-efficient production technologies to the recovery and reuse of waste materials. Considerable progress has been made so far with the adaptation of circular economy principles, but further advancements and the creation of a more interdisciplinary approach are still needed in this field.

This Special Issue aims to provide a platform for researchers and practitioners from various scientific disciplines, involved in common efforts to reduce natural resource demand and waste volume while reusing and recycling solid, liquid, and gaseous waste materials of industrial, municipal, and agricultural origins, to present recent advances in this field.

Authors are invited to contribute full research and review papers, as well as communications, to this Special Issue.

Prof. Dr. Natalia Howaniec
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • waste
  • valorization
  • utilization
  • reuse
  • recycling
  • circular economy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 3907 KiB  
Article
Valorizing Organic Waste: Selenium Sulfide Production Mediated by Sulfate-Reducing Bacteria
by Shahrzad Safinazlou, Ahmad Yaman Abdin, Eduard Tiganescu, Rainer Lilischkis, Karl-Herbert Schäfer, Claudia Fink-Straube, Muhammad Jawad Nasim and Claus Jacob
Materials 2025, 18(12), 2784; https://doi.org/10.3390/ma18122784 - 13 Jun 2025
Viewed by 423
Abstract
Selenium sulfide, the active ingredient of traditional antidandruff shampoos, is industrially produced from selenium dioxide (SeO2) and hydrogen sulfide (H2S) under acidic conditions. This reaction can also be carried out with natural H2S and H2S [...] Read more.
Selenium sulfide, the active ingredient of traditional antidandruff shampoos, is industrially produced from selenium dioxide (SeO2) and hydrogen sulfide (H2S) under acidic conditions. This reaction can also be carried out with natural H2S and H2S generated by sulfate-reducing bacteria (SRB). These bacteria are robust and, by relying on their conventional growth medium, also thrive in “waste” materials, such as a mixture of cabbage juice and compost on the one side, and a mixture of spoiled milk and mineral water on the other. In these mixtures, SRB are able to utilize the DL-lactate and sulfate (SO42−) present naturally and produce up to 4.1 mM concentrations of H2S in the gas phase above a standard culture medium. This gas subsequently escapes the fermentation vessel and can be collected and reacted with SeO2 in a separate compartment, where it yields, for instance, pure selenium sulfide, therefore avoiding the need for any cumbersome workup or purification procedures. Thus “harvesting” H2S and similar (bio-)gases produced by the fermentation of organic waste materials by suitable microorganisms provides an elegant avenue to turn dirty waste into valuable clean chemical products of considerable industrial and pharmaceutical interest. Full article
(This article belongs to the Special Issue Advances in Waste Materials’ Valorization)
Show Figures

Graphical abstract

20 pages, 2984 KiB  
Article
Comparative LCA Analysis of Selected Recycling Methods for Carbon Fibers and Socio-Economic Analysis
by Nikolina Poranek, Krzysztof Pikoń, Natalia Generowicz-Caba, Maciej Mańka, Joanna Kulczycka, Dimitrios Marinis, Ergina Farsari, Eleftherios Amanatides, Anna Lewandowska, Marcin Sajdak, Sebastian Werle and Szymon Sobek
Materials 2025, 18(11), 2660; https://doi.org/10.3390/ma18112660 - 5 Jun 2025
Viewed by 434
Abstract
Carbon fiber is essential in many industries. Since primary production is highly energy-intensive, recycling technologies are being sought. A goal of the research was to develop at a laboratory scale a chemical recycling method aimed at recovering carbon fiber. Two variants of the [...] Read more.
Carbon fiber is essential in many industries. Since primary production is highly energy-intensive, recycling technologies are being sought. A goal of the research was to develop at a laboratory scale a chemical recycling method aimed at recovering carbon fiber. Two variants of the method have been established and environmentally compared with a primary production version. Methods: The life cycle assessment methodology has been used to assess and quantify the environmental impacts. The cradle to gate analysis was performed with the functional unit defined as a production of 1 kg of carbon fiber. Results: The best environmental option turned out to be a developed chemical recycling technology named Scenario 1. It is a solvolysis performed using an ambient-pressure-operated batch reactor connected to a reflux condenser and an inert gas supply tank, using an ethylene glycol and potassium hydroxide solution. The worst case appeared to be the second variant of the chemical recycling, named Scenario 2 (plasma-enhanced nitric acid solvolysis). Conclusions: In Scenario 1, a production of the ethylene glycol was recognized as a key environmental driver, while in Scenarios 2 and 3 the energy-related impact was the most influential. Full article
(This article belongs to the Special Issue Advances in Waste Materials’ Valorization)
Show Figures

Figure 1

Back to TopTop