Lignosulfonates as Surfactants to Stabilize Elemental Sulfur Dispersions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Study Objects
2.3. Methods
3. Results and Discussion
3.1. LS Behavior in an Aqueous Medium
3.2. Effect of LS of Various Molecular Weight Compositions on the Aggregation Stability of Sulfur Sols
3.2.1. Selecting Optimal Parameters for the Formation and Destruction (Coagulation) of S0 Sols
3.2.2. Effect of the Concentration and Type of LS
3.2.3. Effect of Temperature
3.2.4. Effect of pH
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CAC | critical association concentration |
| HLB | hydrophilic-lipophilic balance |
| LS | lignosulfonates |
| O/W | oil-in-water |
| S° | elemental sulfur |
| SEM | scanning electron microscope |
| TEM | transparent electron microscope |
| W/O | water-in-oil |
References
- Tosin, K.G.; Finimundi, N.; Poletto, M. A Systematic Study of the Structural Properties of Technical Lignins. Polymers 2025, 17, 214. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, M.; Jin, W.; Zhang, J.; Fan, G.; Feng, Y.; Li, Z.; Wang, S.; Lee, J.S.; Luan, G.; et al. A comprehensive review of unlocking the potential of lignin-derived biomaterials: From lignin structure to biomedical application. J. Nanobiotechnol. 2025, 23, 538. [Google Scholar] [CrossRef]
- Ma, H.; Su, L.; Zhang, W.; Sun, Y.; Li, D.; Li, S.; Lin, Y.J.; Zhou, C.; Li, W. Epigenetic regulation of lignin biosynthesis in wood formation. N. Phytol. 2025, 245, 1589–1607. [Google Scholar] [CrossRef]
- Tang, T.; Fei, J.; Zheng, Y.; Xu, J.; He, H.; Ma, M.; Shi, Y.; Chen, S.; Wang, X. Water-soluble Lignosulfonates: Structure, Preparation, and Application. ChemistrySelect 2023, 8, e202204941. [Google Scholar] [CrossRef]
- Melro, E.; Filipe, A.; Sousa, D.; Medronho, B.; Romano, A. Revisiting lignin: A tour through its structural features, characterization methods and applications. N. J. Chem. 2021, 45, 6986–7013. [Google Scholar] [CrossRef]
- Kumar, A.; Makendran, C. Suitability analysis of sodium lignosulphonate a bio polymer as bitumen modifier for low volume roads in India. Innov. Infrastruct. Solut. 2025, 10, 317. [Google Scholar] [CrossRef]
- Moraes, L.R.D.; Consoli, N.C.; Bastos, C.A.B. Stabilization of Dispersive Soil Using Calcium Lignosulfonate: Strength, Durability, and Microstructure Assessment. Geotech. Geol. Eng. 2025, 43, 343. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, Y.; Zhu, B.; Yang, Z.; Yang, X.; Wang, J.; Wang, X.; Shen, Q.; Cheng, P.; Du, D.; et al. Improved cadmium removal from groundwater using sodium lignosulfonate stabilized hydroxyapatite nanoparticles. Process Saf. Environ. Prot. 2025, 204, 108085. [Google Scholar] [CrossRef]
- Wurzer, G.K.; Hettegger, H.; Bischof, R.H.; Fackler, K.; Potthast, A.; Rosenau, T. Agricultural utilization of lignosulfonates. Holzforschung 2022, 76, 155–168. [Google Scholar] [CrossRef]
- Qiu, X.; Kong, Q.; Zhou, M.; Yang, D. Aggregation behavior of sodium lignosulfonate in water solution. J. Phys. Chem. B 2010, 114, 15857–15861. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Li, D.; Li, Z. Effects of lignosulfonate structure on the surface activity and wettability to a hydrophobic powder. BioResources 2014, 9, 7119–7127. [Google Scholar] [CrossRef]
- Li, B.; Ouyang, X.P. Structure and properties of Lignosulfonate with different molecular weight isolated by gel column chromatography. Adv. Mater. Res. 2012, 554, 2024–2030. [Google Scholar] [CrossRef]
- Gundersen, S.A.; Ese, M.H.; Sjöblom, J. Langmuir surface and interface films of lignosulfonates and Kraft lignins in the presence of electrolyte and asphaltenes: Correlation to emulsion stability. Colloids Surf. A Physicochem. Eng. Asp. 2001, 182, 199–218. [Google Scholar] [CrossRef]
- Qiu, X.; Yan, M.; Yang, D.; Pang, Y.; Deng, Y. Effect of straight-chain alcohols on the physicochemical properties of calcium lignosulfonate. J. Colloid Interface Sci. 2009, 338, 151–155. [Google Scholar] [CrossRef]
- Ruwoldt, J.; Øye, G. Effect of low-molecular-weight alcohols on emulsion stabilization with lignosulfonates. ACS Omega 2020, 5, 30168–30175. [Google Scholar] [CrossRef]
- Askvik, K.M.; Hetlesæther, S.; Sjöblom, J.; Stenius, P. Properties of the lignosulfonate–surfactant complex phase. Colloids Surf. A Physicochem. Eng. Asp. 2001, 182, 175–189. [Google Scholar] [CrossRef]
- Subramanian, S.; Øye, G. Aqueous carbon black dispersions stabilized by sodium lignosulfonates. Colloid Polym. Sci. 2021, 299, 1223–1236. [Google Scholar] [CrossRef]
- Alazigha, D.P.; Indraratna, B.; Vinod, J.S.; Heitor, A. Mechanisms of stabilization of expansive soil with lignosulfonate admixture. Transp. Geotech. 2018, 14, 81–92. [Google Scholar] [CrossRef]
- Smith, G.A. Hydrophilic-lipophilic deviation. J. Surfactants Deterg. 2025, 28. [Google Scholar] [CrossRef]
- Pasquali, R.C.; Sacco, N.; Bregni, C. The studies on hydrophilic-lipophilic balance (HLB): Sixty years after William C. Griffin’s pioneer work (1949–2009). Lat. Am. J. Pharm. 2009, 28, 313–317. [Google Scholar]
- Setiati, R.; Siregar, S.; Marhaendrajana, T.; Wahyuningrum, D. Challenge sodium lignosulfonate surfactants synthesized from bagasse as an injection fluid based on hydrophil liphophilic balance. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 434, p. 012083. [Google Scholar] [CrossRef]
- Tadros, T.F. Emulsion formation, stability, and rheology. In Emulsion Formation and Stability; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; Volume 1, pp. 1–75. [Google Scholar] [CrossRef]
- Perkins, K.M.; Gupta, C.; Charleson, E.N.; Washburn, N.R. Surfactant properties of PEGylated lignins: Anomalous interfacial activities at low grafting density. Colloids Surf. A Physicochem. Eng. Asp. 2017, 530, 200–208. [Google Scholar] [CrossRef]
- Musl, O.; Sulaeva, I.; Sumerskii, I.; Mahler, A.K.; Rosenau, T.; Falkenhagen, J.; Potthast, A. Mapping of the hydrophobic composition of lignosulfonates. ACS Sustain. Chem. Eng. 2021, 9, 16786–16795. [Google Scholar] [CrossRef]
- Beeckmans, J. Adsorption of Lignosulphonates on Solids. Can. J. Chem. 1962, 40, 265–274. [Google Scholar] [CrossRef]
- Borsalani, H.; Nikzad, M.; Ghoreyshi, A.A. Extraction of lignosulfonate from black liquor into construction of a magnetic lignosulfonate-based adsorbent and its adsorption properties for dyes from aqueous solutions. J. Polym. Environ. 2022, 30, 4068–4085. [Google Scholar] [CrossRef]
- Loginova, M.E.; Movsumzade, E.M.; Teptereva, G.A.; Pugachev, N.V.; Chetvertneva, I.A. Variability of monomolecular adsorption of lignosulfonate systems. Russ. J. Gen. Chem. 2022, 92, 1866–1871. [Google Scholar] [CrossRef]
- Jiang, T.; Jiao, G.; Wang, P.; Zhu, D.; Liu, Z.; Liu, Z. Lignosulphonates in zinc pressure leaching: Decomposition behaviour and effect of lignosulphonates’ characteristics on leaching performance. J. Clean. Prod. 2024, 435, 140355. [Google Scholar] [CrossRef]
- Karimov, K.A.; Rogozhnikov, D.A.; Naboichenko, S.S.; Karimova, L.M.; Zakhar’yan, S.V. Autoclave ammonia leaching of silver from low-grade copper concentrates. Metallurgist 2018, 62, 783–789. [Google Scholar] [CrossRef]
- Kolmachikhina, E.B.; Lugovitskaya, T.N.; Tretiak, M.A.; Rogozhnikov, D.A. Surfactants and their mixtures under conditions of autoclave sulfuric acid leaching of zinc concentrate: Surfactant selection and laboratory tests. Trans. Nonferrous Met. Soc. China 2023, 33, 3529–3543. [Google Scholar] [CrossRef]
- Lugovitskaya, T.; Rogozhnikov, D. Surface Phenomena with the Participation of Sulfite Lignin under Pressure Leaching of Sulfide Materials. Langmuir 2023, 39, 5738–5751. [Google Scholar] [CrossRef] [PubMed]
- Lugovitskaya, T.N.; Rogozhnikov, D.A. Construction of lignosulphonate-containing polymersomes and prospects for their use for elemental sulfur encapsulation. J. Mol. Liq. 2024, 400, 124612. [Google Scholar] [CrossRef]
- Lugovitskaya, T.N.; Bolatbaev, K.N. Stability of elemental sulfur dispersion in the presence of lignin sulfo derivatives. Chem. Plant Raw Mater. 2014, 2, 79. [Google Scholar] [CrossRef][Green Version]
- Meyer, B. Elemental sulfur. Chem. Rev. 1976, 76, 367–388. [Google Scholar] [CrossRef]
- Fediuk, R.; Mugahed Amran, Y.H.; Mosaberpanah, M.A.; Danish, A.; El-Zeadani, M.; Klyuev, S.V.; Vatin, N. A critical review on the properties and applications of sulfur-based concrete. Materials 2020, 13, 4712. [Google Scholar] [CrossRef]
- Kuzas, E.; Rogozhnikov, D.; Dizer, O.; Karimov, K.; Shoppert, A.; Suntsov, A.; Zhidkov, I. Kinetic study on arsenopyrite dissolution in nitric acid media by the rotating disk method. Miner. Eng. 2022, 187, 107770. [Google Scholar] [CrossRef]
- Zakis, G.F. Functional Analysis of Lignin and Their Derivatives; Tappi Press: Atlanta, GA, USA, 1994. [Google Scholar]
- Wang, Z. Preparation and Influencing Factors of Sodium Lignosulfonate Nanoparticles. J. Mater. Process. Technol. 2023, 7, 28–41. [Google Scholar] [CrossRef]
- Lugovitskaya, T.N.; Kolmachikhina, E.B. Associative behavior of Lignosulphonates in moderately concentrated Water, Water–Salt, and water–alcoholic media. Biomacromolecules 2021, 22, 3323–3331. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, M.; Yang, D.; Qiu, X. Effects of pH on aggregation behavior of sodium lignosulfonate (NaLS) in concentrated solutions. J. Polym. Res. 2015, 22, 50. [Google Scholar] [CrossRef]
- Finkenstadt, V.L. Natural polysaccharides as electroactive polymers. Appl. Microbiol. Biotechnol. 2005, 67, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Bordi, F.; Cametti, C.; Colby, R.H. Dielectric spectroscopy and conductivity of polyelectrolyte solutions. J. Phys. Condens. Matter 2004, 16, R1423. [Google Scholar] [CrossRef]
- Lugovitskaya, T.N.; Shipovskaya, A.B.; Shmakov, S.L.; Shipenok, X.M. Formation, structure, properties of chitosan aspartate and metastable state of its solutions for obtaining nanoparticles. Carbohydr. Polym. 2022, 277, 118773. [Google Scholar] [CrossRef] [PubMed]
- Li, I.T.; Walker, G.C. Single polymer studies of hydrophobic hydration. Acc. Chem. Res. 2012, 45, 2011–2021. [Google Scholar] [CrossRef]
- Ernsberger, F.M.; France, W.G. Some Physical and Chemical Properties of Weight-Fractionated Lignosulfonic Acid, including the Dissociation of Lignosulfonates. J. Phys. Chem. 1948, 52, 267–276. [Google Scholar] [CrossRef]
- Vainio, U.; Lauten, R.A.; Serimaa, R. Small-angle X-ray scattering and rheological characterization of aqueous lignosulfonate solutions. Langmuir 2008, 24, 7735–7743. [Google Scholar] [CrossRef]
- Tian, B.; Fan, Z.; Hou, T.; Liu, Z.; Zhang, Z. Exploring Elemental Sulfur-Solvent Interactions via Density Functional Theory. ChemistrySelect 2025, 10, e202405654. [Google Scholar] [CrossRef]
- Lugovitskaya, T.N.; Rogozhnikov, D.A.; Mamyachenkov, S.V. Preparation of lignosulphonate nanoparticles and their applications in dye removal and as plant growth stimulators. J. Mol. Liq. 2025, 417, 126693. [Google Scholar] [CrossRef]
- Lugovitskaya, T.N.; Ulitko, M.V.; Kozlova, N.S.; Rogozhnikov, D.A.; Mamyachenkov, S.V. Self-assembly polymersomes based on sulfite lignins with biological activity. Russ. J. Phys. Chem. A 2023, 97, 534–539. [Google Scholar] [CrossRef]
- Lugovitskaya, T.N.; Naboychenko, S.S. Lignosulfonates as charge carriers and precursors forthe synthesis of nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125127. [Google Scholar] [CrossRef]
- Garcia, A.A.; Druschel, G.K. Elemental sulfur coarsening kinetics. Geochem. Trans. 2014, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, R.G.; Paria, S. Growth kinetics of sulfur nanoparticles in aqueous surfactant solutions. J. Colloid Interface Sci. 2011, 354, 563–569. [Google Scholar] [CrossRef]
- Ruwoldt, J. Emulsion stabilization with lignosulfonates. In Lignin-Chemistry, Structure, and Application; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Yan, M.; Yang, D.; Deng, Y.; Chen, P.; Zhou, H.; Qiu, X. Influence of pH on the behavior of lignosulfonate macromolecules in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2010, 371, 50–58. [Google Scholar] [CrossRef]








| Sample | Content, wt.% | , kDa | |||||||
|---|---|---|---|---|---|---|---|---|---|
| C | H | O | S | Men+ | SO3H | OCH3 | OHphen | ||
| LS1 | 33.9 | 4.72 | 46.8 | 9.5 | Na 5.7 | 13.4 | 11.3 | 2.56 | 18.60 |
| LS2 | 38.82 | 4.36 | 42.35 | 5.50 | Na 6.6 | 12.68 | 10.6 | 2.32 | 9.25 |
| LS3 | 48.70 | 4.52 | 38.20 | 4.24 | Ca 3.0 | 12.30 | 9.2 | 2.10 | 46.30 |
| CLS, g/dm3 | Indices | |||
|---|---|---|---|---|
| pH | æsp × 10−5, S/m | σl–g × 10−3, J/m2 | ||
| LS1 | 0.01 | 4.50 | 0.51 | 72 |
| 0.02 | 4.60 | 0.90 | 72 | |
| 0.04 | 5.10 | 1.10 | 81 | |
| 0.08 | 5.00 | 1.40 | 78 | |
| 0.16 | 4.90 | 2.75 | 72 | |
| 0.32 | 4.90 | 4.45 | 65 | |
| 0.64 | 5.20 | 8.20 | 62 | |
| LS2 | 0.01 | 4.85 | 0.42 | 66 |
| 0.02 | 5.13 | 0.78 | 64 | |
| 0.04 | 5.46 | 1.57 | 72 | |
| 0.08 | 5.71 | 3.01 | 68 | |
| 0.16 | 6.05 | 5.36 | 70 | |
| 0.32 | 5.80 | 10.46 | 70 | |
| 0.64 | 5.34 | 18.17 | 70 | |
| Intrinsic viscosity [η]-0.015 dL/g; | ||||
| Crossover-47 g/dL [39]. | ||||
| - | 0.02 | 4.60 | 0.25 | 72.25 |
| 0.04 | 4.80 | 0.29 | 70.12 | |
| 0.08 | 4.70 | 0.54 | 70.12 | |
| 0.16 | 5.30 | 0.92 | 69.10 | |
| 0.32 | 5.25 | 1.47 | 69.10 | |
| 0.64 | 5.50 | 3.14 | 68.24 | |
| 1.28 | 5.56 | 4.23 | 68.24 | |
| Intrinsic viscosity [η]-0.028 dL/g; | ||||
| Crossover-29 g/dL [39]. | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lugovitskaya, T.N.; Rogozhnikov, D.A. Lignosulfonates as Surfactants to Stabilize Elemental Sulfur Dispersions. Polymers 2025, 17, 3288. https://doi.org/10.3390/polym17243288
Lugovitskaya TN, Rogozhnikov DA. Lignosulfonates as Surfactants to Stabilize Elemental Sulfur Dispersions. Polymers. 2025; 17(24):3288. https://doi.org/10.3390/polym17243288
Chicago/Turabian StyleLugovitskaya, Tatiana N., and Denis A. Rogozhnikov. 2025. "Lignosulfonates as Surfactants to Stabilize Elemental Sulfur Dispersions" Polymers 17, no. 24: 3288. https://doi.org/10.3390/polym17243288
APA StyleLugovitskaya, T. N., & Rogozhnikov, D. A. (2025). Lignosulfonates as Surfactants to Stabilize Elemental Sulfur Dispersions. Polymers, 17(24), 3288. https://doi.org/10.3390/polym17243288

