Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,224)

Search Parameters:
Keywords = panel biomarkers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 875 KiB  
Article
Profile of Selected MicroRNAs as Markers of Sex-Specific Anti-S/RBD Response to COVID-19 mRNA Vaccine in Health Care Workers
by Simona Anticoli, Maria Dorrucci, Elisabetta Iessi, Salvatore Zaffina, Rita Carsetti, Nicoletta Vonesch, Paola Tomao and Anna Ruggieri
Int. J. Mol. Sci. 2025, 26(15), 7636; https://doi.org/10.3390/ijms26157636 - 7 Aug 2025
Abstract
Sex-based immunological differences significantly influence the outcome of vaccination, yet the molecular mediators underpinning these differences remain largely elusive. MicroRNAs (miRNAs), key post-transcriptional regulators of gene expression, have emerged as critical modulators of innate and adaptive immune responses. In this study, we investigated [...] Read more.
Sex-based immunological differences significantly influence the outcome of vaccination, yet the molecular mediators underpinning these differences remain largely elusive. MicroRNAs (miRNAs), key post-transcriptional regulators of gene expression, have emerged as critical modulators of innate and adaptive immune responses. In this study, we investigated the expression profile of selected circulating miRNAs as potential biomarkers of sex-specific humoral responses to the mRNA COVID-19 vaccine in a cohort of health care workers. Plasma samples were collected longitudinally at a defined time point (average 71 days) post-vaccination and analyzed using RT-qPCR to quantify a panel of immune-relevant miRNAs. Anti-spike (anti-S) IgG titers were measured by chemiluminescent immunoassays. Our results revealed sex-dependent differences in miRNA expression dynamics, with miR-221-3p and miR-148a-3p significantly overexpressed in vaccinated female HCWs and miR-155-5p overexpressed in vaccinated males. MiR-148a-3p showed a significant association with anti-S/RBD (RBD: receptor binding domain) IgG levels in a sex-specific manner. Bioinformatic analysis for miRNA targets indicated distinct regulatory networks and pathways involved in innate and adaptive immune responses, potentially underlying the differential immune activation observed between males and females. These findings support the utility of circulating miRNAs as minimally invasive biomarkers for monitoring and predicting sex-specific vaccine-induced immune responses and provide mechanistic insights that may inform tailored vaccination strategies. Full article
(This article belongs to the Special Issue Molecular Research on Immune Response to Virus Infection and Vaccines)
Show Figures

Figure 1

18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 - 7 Aug 2025
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/mouse/day), low-dose live NB23 (1 × 1010 CFU/mouse/day), or high-dose live NB23 (3 × 1010 CFU/mouse/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

13 pages, 1708 KiB  
Article
Lipomatous Hypertrophy of the Interatrial Septum (LHIS) a Biomarker for Cardiovascular Protection? A Hypothesis Generating Case–Control Study
by Pietro G. Lacaita, Valentin Bilgeri, Fabian Barbieri, Yannick Scharll, Wolfgang Dichtl, Gerlig Widmann and Gudrun M. Feuchtner
J. Cardiovasc. Dev. Dis. 2025, 12(8), 301; https://doi.org/10.3390/jcdd12080301 - 4 Aug 2025
Viewed by 112
Abstract
Background: While epicardial adipose tissue (EAT) is a known predictor of adverse cardiovascular outcomes, lipomatous hypertrophy of the interatrial septum (LHIS) is composed of metabolically active fat such as brown adipose tissue, which may exert a different effect. This study investigates the coronary [...] Read more.
Background: While epicardial adipose tissue (EAT) is a known predictor of adverse cardiovascular outcomes, lipomatous hypertrophy of the interatrial septum (LHIS) is composed of metabolically active fat such as brown adipose tissue, which may exert a different effect. This study investigates the coronary atherosclerosis profile in patients with LHIS using CTA, compared with a propensity score-matched control group. Methods: A total of 142 patients were included (n = 71 with LHIS and n = 71 controls) and propensity score-matched for age, gender, BMI, and the major CV risk factors (matching level, <0.05). CTA imaging parameters included HRP, coronary stenosis severity (CADRADS), and CAC score. Results: The mean age was 60.9 years +/− 10.6, there were nine (6.3%) women, and the mean BMI is 28.04 kg/m2 +/− 4.99. HRP prevalence was significantly lower in LHIS patients vs. controls (21.1% vs. 40.8%; p < 0.011), while CAC (p = 0.827) and CADRADS (p = 0.329) were not different, and there was no difference in the obstructive disease rate. There was no difference in lipid panels (cholesterol, LDL, HDL, TG) and statin intake rate. Conclusions: HRP prevalence is lower in patients with LHIS than controls, while coronary stenosis severity and CAC score are not different. Clinical relevance: LHIS may serve as imaging biomarker for reversed CV risk. Full article
(This article belongs to the Section Imaging)
Show Figures

Figure 1

20 pages, 9470 KiB  
Article
A Comparative Analysis of Usual- and Gastric-Type Cervical Adenocarcinoma in a Japanese Population Reveals Distinct Clinicopathological and Molecular Features with Prognostic and Therapeutic Insights
by Umme Farzana Zahan, Hasibul Islam Sohel, Kentaro Nakayama, Masako Ishikawa, Mamiko Nagase, Sultana Razia, Kosuke Kanno, Hitomi Yamashita, Shahataj Begum Sonia and Satoru Kyo
Int. J. Mol. Sci. 2025, 26(15), 7469; https://doi.org/10.3390/ijms26157469 - 1 Aug 2025
Viewed by 209
Abstract
Gastric-type cervical adenocarcinoma (GCA) is a rare and aggressive subtype of cervical adenocarcinoma. Despite its clinical significance, its molecular carcinogenesis and therapeutic targets remain poorly understood. This study aimed to compare the clinicopathological, immunohistochemical, and molecular profiles of GCA and usual-type cervical adenocarcinoma [...] Read more.
Gastric-type cervical adenocarcinoma (GCA) is a rare and aggressive subtype of cervical adenocarcinoma. Despite its clinical significance, its molecular carcinogenesis and therapeutic targets remain poorly understood. This study aimed to compare the clinicopathological, immunohistochemical, and molecular profiles of GCA and usual-type cervical adenocarcinoma (UCA), exploring prognostic and therapeutic biomarkers in a Japanese population. A total of 110 cervical adenocarcinoma cases, including 16 GCA and 94 UCA cases, were retrospectively analyzed for clinicopathological features, and a panel of immunohistochemical markers was assessed. Sanger sequences were performed for the KRAS, PIK3CA, and BRAF genes, and survival and clinicopathological correlations were assessed using Kaplan–Meier and Cox regression analyses. GCA was significantly associated with more aggressive features than UCA, including lymph node involvement, advanced FIGO stages, increasing recurrence rate, and poor survival status. High ARID1B expression was observed in a subset of GCA cases and correlated with worse progression-free and overall survival. Additionally, PD-L1 expression was more frequent in GCA than UCA and was associated with unfavorable prognostic factors. Conversely, UCA cases showed strong p16 expression, supporting their HPV-driven pathogenesis. Molecular profiling revealed KRAS and PIK3CA mutations in both subtypes, while BRAF mutations were identified exclusively in GCA. These findings reveal distinct clinical and molecular profiles for both tumor types and underscore ARID1B and PD-L1 as predictive prognostic and therapeutic biomarkers in GCA, implicating the use of subtype-specific treatment strategies. Full article
(This article belongs to the Special Issue Genomics and Proteomics of Cancer)
Show Figures

Figure 1

14 pages, 882 KiB  
Article
Advancing Neonatal Screening for Pyridoxine-Dependent Epilepsy-ALDH7A1 Through Combined Analysis of 2-OPP, 6-Oxo-Pipecolate and Pipecolate in a Butylated FIA-MS/MS Workflow
by Mylène Donge, Sandrine Marie, Amandine Pochet, Lionel Marcelis, Geraldine Luis, François Boemer, Clément Prouteau, Samir Mesli, Matthias Cuykx, Thao Nguyen-Khoa, David Guénet, Aurélie Empain, Magalie Barth, Benjamin Dauriat, Cécile Laroche-Raynaud, Corinne De Laet, Patrick Verloo, An I. Jonckheere, Manuel Schiff, Marie-Cécile Nassogne and Joseph P. Dewulfadd Show full author list remove Hide full author list
Int. J. Neonatal Screen. 2025, 11(3), 59; https://doi.org/10.3390/ijns11030059 - 30 Jul 2025
Viewed by 306
Abstract
Pyridoxine-dependent epilepsy (PDE) represents a group of rare developmental and epileptic encephalopathies. The most common PDE is caused by biallelic pathogenic variants in ALDH7A1 (PDE-ALDH7A1; OMIM #266100), which encodes α-aminoadipate semialdehyde (α-AASA) dehydrogenase, a key enzyme in lysine catabolism. Affected individuals present with [...] Read more.
Pyridoxine-dependent epilepsy (PDE) represents a group of rare developmental and epileptic encephalopathies. The most common PDE is caused by biallelic pathogenic variants in ALDH7A1 (PDE-ALDH7A1; OMIM #266100), which encodes α-aminoadipate semialdehyde (α-AASA) dehydrogenase, a key enzyme in lysine catabolism. Affected individuals present with seizures unresponsive to conventional anticonvulsant medications but responsive to high-dose of pyridoxine (vitamin B6). Adjunctive lysine restriction and arginine supplementation have also shown potential in improving neurodevelopmental outcomes. Given the significant benefit of early intervention, PDE-ALDH7A1 is a strong candidate for newborn screening (NBS). However, traditional biomarkers are biochemically unstable at room temperature (α-AASA and piperideine-6-carboxylate) or lack sufficient specificity (pipecolate), limiting their utility for biomarker-based NBS. The recent identification of two novel and stable biomarkers, 2S,6S-/2S,6R-oxopropylpiperidine-2-carboxylate (2-OPP) and 6-oxo-pipecolate (oxo-PIP), offers renewed potential for biochemical NBS. We evaluated the feasibility of incorporating 2-OPP, oxo-PIP, and pipecolate into routine butylated FIA-MS/MS workflows used for biochemical NBS. A total of 9402 dried blood spots (DBS), including nine confirmed PDE-ALDH7A1 patients and 9393 anonymized controls were analyzed using a single multiplex assay. 2-OPP emerged as the most sensitive biomarker, identifying all PDE-ALDH7A1 patients with 100% sensitivity and a positive predictive value (PPV) of 18.4% using a threshold above the 99.5th percentile. Combining elevated 2-OPP (above the 99.5th percentile) with either pipecolate or oxo-PIP (above the 85.0th percentile) as secondary marker detected within the same multiplex FIA-MS/MS assay further improved the PPVs to 60% and 45%, respectively, while maintaining compatibility with butanol-derivatized method. Notably, increasing the 2-OPP threshold above the 99.89th percentile, in combination with either pipecolate or oxo-PIP above the 85.0th percentile resulted in both 100% sensitivity and 100% PPV. This study supports the strong potential of 2-OPP-based neonatal screening for PDE-ALDH7A1 within existing NBS infrastructures. The ability to multiplex 2-OPP, pipecolate and oxo-PIP within a single assay offers a robust, practical, high-throughput and cost-effective approach. These results support the inclusion of PDE-ALDH7A1 in existing biochemical NBS panels. Further prospective studies in larger cohorts are needed to refine cutoffs and confirm clinical performance. Full article
Show Figures

Figure 1

30 pages, 1032 KiB  
Review
Circulating Biomarkers for the Early Diagnosis of Alzheimer’s Disease
by Vharoon Sharma Nunkoo, Anamaria Jurcau, Mihaela Les, Alexander Cristian, Marius Militaru, Cristian Marge, Diana Carina Iovanovici and Maria Carolina Jurcau
Int. J. Mol. Sci. 2025, 26(15), 7268; https://doi.org/10.3390/ijms26157268 - 27 Jul 2025
Viewed by 578
Abstract
With a rapidly growing incidence and prevalence, Alzheimer’s disease (AD) is rapidly becoming one of the most disabling, lethal, and expensive diseases of the century. To diagnose AD as early as possible, the scientific world struggles to find reliable and non-invasive biomarkers that [...] Read more.
With a rapidly growing incidence and prevalence, Alzheimer’s disease (AD) is rapidly becoming one of the most disabling, lethal, and expensive diseases of the century. To diagnose AD as early as possible, the scientific world struggles to find reliable and non-invasive biomarkers that could predict the conversion of mild cognitive impairment to AD and delineate the ongoing pathogenic vicious pathways to be targeted with therapy. Research supports the use of blood biomarkers, such as Aβ1-42/Aβ1-40 ratio, phosphorylated tau181, and p-tau217 for diagnostic purposes, although the cut-offs are not clearly established and can depend on the assays used. For more accurate diagnosis, markers of neurodegeneration (neurofilament light) and neuroinflammation (glial fibrillary acidic protein) could be introduced in the biomarker panel. The recent approval of the Lumipulse G p-tau217/Aβ1-42 plasma ratio by the FDA for the early detection of amyloid plaques associated with Alzheimer’s disease in adult patients, aged 55 years and older, exhibiting signs and symptoms of the disease represents a significant advancement in the diagnosis of Alzheimer’s disease, offering a more accessible and less invasive way to diagnose this devastating disease and allow potentially earlier access to treatment options. Full article
Show Figures

Figure 1

17 pages, 2978 KiB  
Article
Soluble Oncoimmunome Signatures Predict Muscle Mass Response to Enriched Immunonutrition in Cancer Patients: Subanalysis of a Multicenter Randomized Clinical Trial
by Sara Cuesta-Sancho, Juan José López Gomez, Pedro Pablo García-Luna, David Primo, Antonio J. Martínez-Ortega, Olatz Izaola, Tamara Casañas, Alicia Calleja, David Bernardo and Daniel de Luis
Nutrients 2025, 17(15), 2421; https://doi.org/10.3390/nu17152421 - 24 Jul 2025
Viewed by 833
Abstract
Background/Objectives: Enriched oral nutritional supplementation (ONS) has been shown to increase muscle mass in cancer patients. This study aims to identify the immunomodulatory effects and predictive biomarkers associated with this intervention. Methods: The soluble levels of 92 immune- and oncology-related mediators were determined [...] Read more.
Background/Objectives: Enriched oral nutritional supplementation (ONS) has been shown to increase muscle mass in cancer patients. This study aims to identify the immunomodulatory effects and predictive biomarkers associated with this intervention. Methods: The soluble levels of 92 immune- and oncology-related mediators were determined before and after an intervention (8 weeks) in 28 patients with cancer receiving either a standard (n = 14) or an enriched ONS (n = 14) using the Olink proteomics analysis pipeline (Olink® Target 96 Immuno-Oncology panel (Uppsala, Sweden)) Results: Patients receiving enriched ONS experienced an average weight gain of 1.4 kg and a muscle mass increase of 2.2 kg after 8 weeks, both statistically significant (p < 0.05), while no such improvements were observed in the standard ONS group. Inflammatory markers TRAIL and LAMP3 were significantly reduced, along with an increase in Gal-1, suggesting lower inflammation and enhanced myogenic differentiation. However, patients who failed to gain muscle mass with the enriched formula showed a more aggressive inflammatory profile, characterized by higher serum levels of soluble MUC16, ARG, and IL12RB1. Interestingly, muscle mass gain could be predicted before the intervention, as responders had lower baseline levels of PGF, CD28, and IL12RB1. These differences were specific to recipients of the enriched ONS, confirming its immunomodulatory effects. Conclusions: Our findings support the use of enriched oral nutritional supplementation (ONS) as an effective strategy not only to enhance caloric and protein intake but also to promote anabolism and preserve muscle mass in cancer patients. The identification of immune profiles suggests that specific biomarkers could be used to predict which patients will benefit most from this type of intervention. This may allow for the implementation of personalized immunonutrition strategies that optimize resource allocation and improve clinical outcomes, particularly in vulnerable populations at risk of cachexia. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

10 pages, 1008 KiB  
Article
Nicotine Therapy for Parkinson’s Disease: A Meta-Analysis of Randomized Controlled Trials
by Chih-Hung Liang, Tsai-Wei Huang, Wei-Ting Chiu, Chen-Chih Chung and Chien-Tai Hong
Biomedicines 2025, 13(8), 1814; https://doi.org/10.3390/biomedicines13081814 - 24 Jul 2025
Viewed by 616
Abstract
Background: Epidemiological studies have reported an inverse association between smoking and Parkinson’s disease (PD) risk, prompting interest in nicotine as a potential therapeutic agent. The present meta-analysis evaluated the efficacy of nicotine therapy in improving motor symptoms and activities of daily living in [...] Read more.
Background: Epidemiological studies have reported an inverse association between smoking and Parkinson’s disease (PD) risk, prompting interest in nicotine as a potential therapeutic agent. The present meta-analysis evaluated the efficacy of nicotine therapy in improving motor symptoms and activities of daily living in patients with PD. Methods: PubMed, Embase, and Cochrane Library were systematically searched to identify randomized controlled trials (RCTs) assessing nicotine therapy in PD. Clinical RCTs administering interventions extending beyond 1 week and reporting motor or nonmotor outcomes were included. Random-effects models were used to analyze short-term (<6 months) and long-term (≥6 months) outcomes by using standardized mean differences (SMDs). Results: This meta-analysis included five RCTs (346 participants). Nicotine therapy led to no significant improvement in motor outcomes in the short term (pooled SMD: −0.452, 95% confidence interval: −1.612 to 0.708) or long term (pooled SMD: 0.174, 95% confidence interval: −0.438 to 0.787). Considerable interstudy heterogeneity was noted. Furthermore, short-term nicotine therapy resulted in no significant improvement in daily functioning, cognition, or quality of life. Conclusions: This meta-analysis revealed a lack of compelling evidence suggesting that nicotine-based therapies improve motor or nonmotor outcomes in PD. The findings highlight a disconnect between epidemiological associations and clinical efficacy. Given the prodromal nature of PD pathology and the challenges of early diagnosis, future preventive strategies should be implemented before symptom onset in high-risk individuals identified using advanced biomarker panels. Full article
(This article belongs to the Special Issue Parkinson’s Disease: Where Are We and Where Are We Going To)
Show Figures

Figure 1

18 pages, 3187 KiB  
Article
Real-World Evaluation of Microsatellite Instability Detection via Targeted NGS Panels in Routine Molecular Diagnostics
by Petra Škerl, Vesna Vogrič, Vida Stegel, Vita Šetrajčič Dragoš, Olga Blatnik, Gašper Klančar and Srdjan Novaković
Int. J. Mol. Sci. 2025, 26(15), 7138; https://doi.org/10.3390/ijms26157138 - 24 Jul 2025
Viewed by 266
Abstract
Microsatellite instability (MSI) is a clinically important biomarker for predicting responses to immune checkpoint inhibitors and identifying individuals with Lynch syndrome. Although MSI detection has been incorporated into Illumina’s next-generation tumor sequencing workflows, interpretation of the results remains challenging due to the absence [...] Read more.
Microsatellite instability (MSI) is a clinically important biomarker for predicting responses to immune checkpoint inhibitors and identifying individuals with Lynch syndrome. Although MSI detection has been incorporated into Illumina’s next-generation tumor sequencing workflows, interpretation of the results remains challenging due to the absence of standardized thresholds and reporting criteria. In this retrospective study, we assessed the performance of MSI detection using Illumina’s targeted NGS panels—TruSight Tumor 170 and TruSight Oncology 500. The NGS-based MSI results were compared to those obtained by the reference method, MSI-PCR, across multiple tumor types in a real-world cohort of 331 cancer patients. The NGS method demonstrated high concordance overall (AUC = 0.922), though sensitivity was lower in colorectal cancers (AUC = 0.867) due to broader score variability and overlapping distributions. Our findings support the clinical utility of Illumina’s NGS-derived MSI scores for identifying MSI-H tumors, with a recommended MSI score cut-off value of ≥13.8%. Additionally, a borderline group was introduced, defined by an MSI score ranging from ≥8.7% to <13.8%. Within this range, the integration of TMB into the MSI classification workflow significantly improves diagnostic accuracy. For samples that remain inconclusive, orthogonal confirmation using MSI-PCR is advised to ensure accurate MSI classification. Full article
Show Figures

Figure 1

28 pages, 1358 KiB  
Review
Understanding the Borderline Brain: A Review of Neurobiological Findings in Borderline Personality Disorder (BPD)
by Eleni Giannoulis, Christos Nousis, Ioanna-Jonida Sula, Maria-Evangelia Georgitsi and Ioannis Malogiannis
Biomedicines 2025, 13(7), 1783; https://doi.org/10.3390/biomedicines13071783 - 21 Jul 2025
Viewed by 892
Abstract
Borderline personality disorder (BPD) is a complex and heterogeneous condition characterized by emotional instability, impulsivity, and impaired regulation of interpersonal relationships. This narrative review integrates findings from recent neuroimaging, neurochemical, and treatment studies to identify core neurobiological mechanisms and highlight translational potential. Evidence [...] Read more.
Borderline personality disorder (BPD) is a complex and heterogeneous condition characterized by emotional instability, impulsivity, and impaired regulation of interpersonal relationships. This narrative review integrates findings from recent neuroimaging, neurochemical, and treatment studies to identify core neurobiological mechanisms and highlight translational potential. Evidence from 112 studies published up to 2025 is synthesized, encompassing structural MRI, resting-state and task-based functional MRI, EEG, PET, and emerging machine learning applications. Consistent disruptions are observed across the prefrontal–amygdala circuitry, the default mode network (DMN), and mentalization-related regions. BPD shows a dominant and stable pattern of hyperconnectivity in the precuneus. Transdiagnostic comparisons with PTSD and cocaine use disorder (CUD) suggest partial overlap in DMN dysregulation, though BPD-specific traits emerge in network topology. Machine learning models achieve a classification accuracy of 70–88% and may support the tracking of early treatment responses. Longitudinal fMRI studies indicate that psychodynamic therapy facilitates the progressive normalization of dorsal anterior cingulate cortex (dACC) activity and reductions in alexithymia. We discuss the role of phenotypic heterogeneity (internalizing versus externalizing profiles), the potential of neuromodulation guided by biomarkers, and the need for standardized imaging protocols. Limitations include small sample sizes, a lack of effective connectivity analyses, and minimal multicenter cohort representation. Future research should focus on constructing multimodal biomarker panels that integrate functional connectivity, epigenetics, and computational phenotyping. This review supports the use of a precision psychiatry approach for BPD by aligning neuroscience with scalable clinical tools. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

12 pages, 1344 KiB  
Article
Transcriptomic Profiling of Paired Primary Tumors and CNS Metastases in Breast Cancer Reveals Immune Modulation Signatures
by Ana Julia Aguiar de Freitas, Muriele Bertagna Varuzza, Stéphanie Calfa, Rhafaela Lima Causin, Vinicius Duval da Silva, Cristiano de Pádua Souza and Márcia Maria Chiquitelli Marques
Int. J. Mol. Sci. 2025, 26(14), 6944; https://doi.org/10.3390/ijms26146944 - 19 Jul 2025
Viewed by 341
Abstract
Breast cancer is a leading cause of central nervous system (CNS) metastases in women, often associated with poor prognosis and limited therapeutic options. However, molecular differences between primary tumors and CNS metastases remain underexplored. We aimed to characterize transcriptomic differences between primary breast [...] Read more.
Breast cancer is a leading cause of central nervous system (CNS) metastases in women, often associated with poor prognosis and limited therapeutic options. However, molecular differences between primary tumors and CNS metastases remain underexplored. We aimed to characterize transcriptomic differences between primary breast tumors and matched CNS metastases and identify immune-related biomarkers associated with metastatic progression and patient outcomes. Transcriptomic profiling was based on 11 matched FFPE sample pairs (primary tumor and CNS metastasis). Paired formalin-fixed paraffin-embedded (FFPE) samples from primary tumors (T1) and CNS metastases (T2) were analyzed using the NanoString nCounter® platform and the PanCancer IO 360™ Gene Expression Panel. Differential gene expression, Z-score transformation, and heatmap visualization were performed in R. In silico survival analyses for overall survival (OS) and recurrence-free survival (RFS) were conducted using publicly available TCGA and GEO datasets. Forty-five genes were significantly differentially expressed between the T1 and T2 samples. Immune-related genes such as CXCL9, IL7R, CD79A, and CTSW showed consistent downregulation in CNS metastases. High expression of CXCL9 and CD79A was associated with improved OS and RFS, whereas high IL7R and CTSW expression correlated with worse outcomes. These findings indicate immune suppression as a hallmark of CNS colonization. Comparative transcriptomic analysis further underscored the distinct molecular landscapes between primary and metastatic tumors. This study highlights transcriptional signatures associated with breast cancer CNS metastases, emphasizing the role of immune modulation in metastatic progression. The identified genes have potential as prognostic biomarkers and therapeutic targets, supporting the need for site-specific molecular profiling in metastatic breast cancer management. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Oncology in Brazil, 3rd Edition)
Show Figures

Graphical abstract

16 pages, 1269 KiB  
Article
The Association of Axonal Damage Biomarkers and Osteopontin at Diagnosis Could Be Useful in Newly Diagnosed MS Patients
by Eleonora Virgilio, Chiara Puricelli, Nausicaa Clemente, Valentina Ciampana, Ylenia Imperatore, Simona Perga, Sveva Stangalini, Elena Boggio, Alice Appiani, Casimiro Luca Gigliotti, Umberto Dianzani, Cristoforo Comi and Domizia Vecchio
Neurol. Int. 2025, 17(7), 110; https://doi.org/10.3390/neurolint17070110 - 17 Jul 2025
Viewed by 281
Abstract
(1) Background: Multiple sclerosis (MS) is a biologically highly heterogeneous disease and has poor predictability at diagnosis. Moreover, robust data indicate that early disease activity strongly correlates with future disability. Therefore, there is a need for strong and reliable biomarkers from diagnosis to [...] Read more.
(1) Background: Multiple sclerosis (MS) is a biologically highly heterogeneous disease and has poor predictability at diagnosis. Moreover, robust data indicate that early disease activity strongly correlates with future disability. Therefore, there is a need for strong and reliable biomarkers from diagnosis to characterize and identify patients who require highly effective disease-modifying treatments (DMTs). Several biomarkers are promising, particularly neurofilament light chains (NFLs), but the relevance of others is less consolidated. (2) Methods: We evaluated a panel of axonal damage and inflammatory biomarkers in cerebrospinal fluid (CSF) and matched serum obtained from a cohort of 60 newly diagnosed MS patients. Disability at diagnosis, negative prognostic factors, and the initial DMT prescribed were carefully recorded. (3) Results: We observed correlations between different axonal biomarkers: CSF and serum NFL versus CSF total tau; and between the inflammatory marker osteopontin (OPN) and axonal biomarkers CSF p-Tau, CSF total tau, and serum NFL. CSF and serum NFL and total tau, as well as CSF OPN, positively correlated with EDSS at diagnosis. Moreover, CSF and serum NFL levels were increased in patients with gadolinium-enhancing lesions (p = 0.01 and p = 0.04, respectively) and in those treated with highly effective DMT (p = 0.049). Furthermore, CSF OPN and both CSF and serum NFL levels significantly differentiated patients based on EDSS, with a combined ROC AUC of 0.88. We calculated and internally validated biomarker (in particular serum NFL) thresholds that significantly identified patients with higher disability. Finally, CSF OPN levels and dissemination in the spinal cord were significant predictors of EDSS at diagnosis. (4) Conclusions: These preliminary exploratory data confirm the pathological interconnection between inflammation and axonal damage from early disease stages, contributing to early disability. Follow-up data, such as longitudinal disability scores, repeated serum measurements, a healthy control group, and external validation of our results, are needed. We suggest that combining several fluid biomarkers may improve the clinical characterization of patients. Full article
Show Figures

Figure 1

22 pages, 368 KiB  
Review
Early Detection of Pancreatic Cancer: Current Advances and Future Opportunities
by Zijin Lin, Esther A. Adeniran, Yanna Cai, Touseef Ahmad Qureshi, Debiao Li, Jun Gong, Jianing Li, Stephen J. Pandol and Yi Jiang
Biomedicines 2025, 13(7), 1733; https://doi.org/10.3390/biomedicines13071733 - 15 Jul 2025
Viewed by 711
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains among the most lethal malignancies, with a five-year survival rate below 12%, largely attributable to its asymptomatic onset, late-stage diagnosis, and limited curative treatment options. Although PDAC accounts for approximately 3% of all cancers, it is projected to [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) remains among the most lethal malignancies, with a five-year survival rate below 12%, largely attributable to its asymptomatic onset, late-stage diagnosis, and limited curative treatment options. Although PDAC accounts for approximately 3% of all cancers, it is projected to become the second leading cause of cancer-related mortality in the United States by 2030. A major contributor to its dismal prognosis is the lack of validated early detection strategies for asymptomatic individuals. In this review, we present a comprehensive synthesis of current advances in the early detection of PDAC, with a focus on the identification of high-risk populations, novel biomarker platforms, advanced imaging modalities, and artificial intelligence (AI)-driven tools. We highlight high-risk groups—such as those with new-onset diabetes after age 50, pancreatic steatosis, chronic pancreatitis, cystic precursor lesions, and hereditary cancer syndromes—as priority populations for targeted surveillance. Novel biomarker panels, including circulating tumor DNA (ctDNA), miRNAs, and exosomes, have demonstrated improved diagnostic accuracy in early-stage disease. Recent developments in imaging, such as multiparametric MRI, contrast-enhanced endoscopic ultrasound, and molecular imaging, offer improved sensitivity in detecting small or precursor lesions. AI-enhanced radiomics and machine learning models applied to prediagnostic CT scans and electronic health records are emerging as valuable tools for risk prediction prior to clinical presentation. We further refine the Define–Enrich–Find (DEF) framework to propose a clinically actionable strategy that integrates these innovations. Collectively, these advances pave the way for personalized, multimodal surveillance strategies with the potential to improve outcomes in this historically challenging malignancy. Full article
Show Figures

Graphical abstract

16 pages, 2010 KiB  
Article
Circulating microRNAs as Potential Diagnostic Tools for Asthma and for Indicating Severe Asthma Risk
by Elena V. Vorobeva, M. Aref Kyyaly, Collin L. Sones, Peijun J. W. He, S. Hasan Arshad, Tilman Sanchez-Elsner and Ramesh J. Kurukulaaratchy
Int. J. Mol. Sci. 2025, 26(14), 6676; https://doi.org/10.3390/ijms26146676 - 11 Jul 2025
Viewed by 268
Abstract
Asthma places a significant burden at individual and societal levels, but there remains no gold-standard objective test for asthma diagnosis or asthma severity risk prediction. MicroRNAs (miRNAs) are short non-coding RNA sequences that are attracting interest as biological signatures of health and disease [...] Read more.
Asthma places a significant burden at individual and societal levels, but there remains no gold-standard objective test for asthma diagnosis or asthma severity risk prediction. MicroRNAs (miRNAs) are short non-coding RNA sequences that are attracting interest as biological signatures of health and disease status. We sought to construct serum miRNA panels that could serve as potential biomarkers to aid in the diagnosis of asthma and predict asthma severity. Thirty-five asthma-related miRNAs were screened in the serum of three patient groups (never-asthma, mild-asthma, and severe-asthma; n = 50/group) drawn from two well-characterised cohorts. miRCURY LNA technology was used, followed by GeneGlobe analysis. The associations of miRNA expression with clinical outcomes of interest and diagnostic value of the proposed miRNA panels were assessed. We identified an asthma diagnosis panel comprising upregulated miR-223-3p, miR-191-5p, and miR-197-3p (area under curve (AUC) = 0.813, sensitivity 76% and specificity 72%). Compared with mild-asthma individuals, we also identified an asthma severity risk panel comprising upregulated miR-223-3p plus downregulated miR-30a-5p, miR-660-5p, and miR-125b-5p (AUC = 0.759, sensitivity 78%, specificity 64%). Individual miRNAs showed associations with worse clinical asthma severity and impaired quality of life. miRNA panels with high sensitivity and specificity offer potential as biomarkers for asthma diagnosis and asthma severity. Full article
Show Figures

Graphical abstract

15 pages, 365 KiB  
Article
Delayed Bone Age and Osteoprotegerin Levels in Pediatric Celiac Disease: A Three-Year Case–Control Study
by Ruzha Pancheva, Yoana Dyankova, Niya Rasheva, Krassimira Koleva, Violeta Iotova, Mariya Dzhogova, Marco Fiore and Miglena Georgieva
Nutrients 2025, 17(14), 2295; https://doi.org/10.3390/nu17142295 - 11 Jul 2025
Viewed by 363
Abstract
Introduction: Celiac disease (CD) impairs bone development in children through inflammation and nutrient malabsorption. Osteoprotegerin (OPG), a decoy receptor for RANKL, plays a role in bone remodeling and is increasingly recognized as a potential biomarker of bone metabolism and inflammation. However, its clinical [...] Read more.
Introduction: Celiac disease (CD) impairs bone development in children through inflammation and nutrient malabsorption. Osteoprotegerin (OPG), a decoy receptor for RANKL, plays a role in bone remodeling and is increasingly recognized as a potential biomarker of bone metabolism and inflammation. However, its clinical significance in pediatric CD remains unclear. Aim: To evaluate the relationship between OPG levels, growth parameters, and delayed bone age in children with CD, and to assess OPG’s potential as a biomarker of bone health and disease activity. Methods: This three-year case–control study included 146 children: 25 with newly diagnosed CD (Group A), 54 with established CD on a gluten-free diet (Group B), and 67 healthy controls (Group C). Participants underwent clinical, anthropometric, and laboratory assessments at baseline and after 6 months (Groups A and B). OPG and osteocalcin were measured, and bone age was assessed radiologically. Statistical analyses included ANOVA, Spearman’s correlations, and binomial logistic regression. Results: OPG levels were highest in newly diagnosed children (Group A), showing a non-significant decrease after gluten-free diet initiation. OPG correlated negatively with age and height in CD patients and controls, and positively with hemoglobin and iron in Group B. Logistic regression revealed no significant predictive value of OPG for delayed bone age, although a trend was observed in Group B (p = 0.091). Children in long-term remission exhibited bone maturation patterns similar to healthy peers. Conclusions: OPG levels reflect disease activity and growth delay in pediatric CD but lack predictive power for delayed bone age. While OPG may serve as a secondary marker of bone turnover and inflammatory status, it is not suitable as a standalone biomarker for skeletal maturation. These findings highlight the need for integrative biomarker panels to guide bone health monitoring in children with CD. Full article
(This article belongs to the Special Issue Nutritional Deficiency and Celiac Disease)
Show Figures

Figure 1

Back to TopTop