Profile of Selected MicroRNAs as Markers of Sex-Specific Anti-S/RBD Response to COVID-19 mRNA Vaccine in Health Care Workers
Abstract
1. Introduction
2. Results
2.1. Description of the Study Population
2.2. Sex Differences in Humoral Response to COVID-19 Vaccination
2.3. MiRNA Expression Profile in Plasma from COVID-19 Vaccinated Male and Female HCWs and Their Association with Anti-S/RBD Levels
2.4. Targets of miR-148a-3p, miR-221-3p, and miR-155-5p
3. Discussion
4. Materials and Methods
4.1. Population and Study Design
4.2. RNA Extraction, cDNA Synthesis, and Quantitative Analysis by qRT-PCR of the Selected MicroRNAs
4.3. Statistical Analyses
4.4. MicroRNA-Target Interaction Network
4.5. Functional Enrichment Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gote, V.; Bolla, P.K.; Kommineni, N.; Butreddy, A.; Nukala, P.K.; Palakurthi, S.S.; Khan, W. A Comprehensive Review of mRNA Vaccines. Int. J. Mol. Sci. 2023, 24, 2700. [Google Scholar] [CrossRef]
- Bachmann, M.; Gültekin, N.; Stanga, Z.; Fehr, J.S.; Ülgür, I.I.; Schlagenhauf, P. Disparities in response to mRNA SARS-CoV-2 vaccines according to sex and age: A systematic review. New Microbes New Infect. 2024, 63, 101551. [Google Scholar] [CrossRef]
- Nam, M.; Yun, S.G.; Kim, S.; Kim, C.G.; Cha, J.H.; Lee, C.; Kang, S.; Park, S.G.; Kim, S.B.; Lee, K.; et al. Humoral and Cellular Immune Responses to Vector, Mix-and-Match, or mRNA Vaccines against SARS-CoV-2 and the Relationship between the Two Immune Responses. Microbiol. Spectr. 2022, 10, e02495-21. [Google Scholar] [CrossRef]
- Gu, Y.; Shunmuganathan, B.; Qian, X.; Gupta, R.; Tan, R.S.W.; Kozma, M.; Purushotorman, K.; Murali, T.M.; Tan, N.Y.J.; Preiser, P.R.; et al. Employment of a high throughput functional assay to define the critical factors that influence vaccine induced cross-variant neutralizing antibodies for SARS-CoV-2. Sci. Rep. 2023, 13, 21810. [Google Scholar] [CrossRef]
- Anticoli, S.; Dorrucci, M.; Iessi, E.; Chiarotti, F.; Di Prinzio, R.R.; Vinci, M.R.; Zaffina, S.; Puro, V.; Colavita, F.; Mizzoni, K.; et al. Association between sex hormones and anti-S/RBD antibody responses to COVID-19 vaccines in healthcare workers. Hum. Vaccin. Immunother. 2023, 19, 2273697. [Google Scholar] [CrossRef]
- Van Tilbeurgh, M.; Lemdani, K.; Beignon, A.S.; Chapon, C.; Tchitchek, N.; Cheraitia, L.; Lopez, E.M.; Pascal, Q.; Le Grand, R.; Maisonnasse, P.; et al. Predictive Markers of Immunogenicity and Efficacy for Human Vaccines. Vaccines 2021, 9, 579. [Google Scholar] [CrossRef]
- Atherton, L.J.; Jorquera, P.A.; Bakre, A.A.; Tripp, R.A. Determining Immune and miRNA Biomarkers Related to Respiratory Syncytial Virus (RSV) Vaccine Types. Front. Immunol. 2019, 10, 2323. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Hsieh, Y.-S.; Cheng, M.-H.; Shen, C.-F.; Shen, C.-J.; Cheng, C.-M. Using MicroRNA Arrays as a Tool to Evaluate COVID-19 Vaccine Efficacy. Vaccines 2022, 10, 1681. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, X.; Xiao, L.; Wang, L.; Qiang, S. The Role of microRNA in the Inflammatory Response of Wound Healing. Front. Immunol. 2022, 13, 852419. [Google Scholar] [CrossRef]
- Gaál, Z. Role of microRNAs in Immune Regulation with Translational and Clinical Applications. Int. J. Mol. Sci. 2024, 25, 1942. [Google Scholar] [CrossRef]
- Di Palo, A.; Siniscalchi, C.; Salerno, M.; Russo, A.; Gravholt, C.H.; Potenza, N. What microRNAs could tell us about the human X chromosome. Cell Mol. Life Sci. 2020, 77, 4069–4080. [Google Scholar] [CrossRef]
- Miyashita, Y.; Yoshida, T.; Takagi, Y.; Tsukamoto, H.; Takashima, K.; Kouwaki, T.; Makino, K.; Fukushima, S.; Nakamura, K.; Oshiumi, H. Circulating extracellular vesicle microRNAs associated with adverse reactions, proinflammatory cytokine, and antibody production after COVID-19 vaccination. NPJ Vaccines 2022, 7, 16. [Google Scholar] [CrossRef]
- de Candia, P.; Torri, A.; Gorletta, T.; Fedeli, M.; Bulgheroni, E.; Cheroni, C.; Marabita, F.; Crosti, M.; Moro, M.; Pariani, E.; et al. Intracellular modulation, extracellular disposal and serum increase of MiR-150 mark lymphocyte activation. PLoS ONE 2013, 8, e75348. [Google Scholar] [CrossRef]
- Haralambieva, I.H.; Ratishvili, T.; Goergen, K.M.; Grill, D.E.; Simon, W.L.; Chen, J.; Ovsyannikova, I.G.; Poland, G.A.; Kennedy, R.B. Effect of lymphocyte miRNA expression on influenza vaccine-induced immunity. Vaccine 2025, 55, 127023. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, S.; Liu, L.; Zhao, Y.; Lin, W.; Ni, J. Increased serum microRNA-155 level associated with nonresponsiveness to hepatitis B vaccine. Clin. Vaccine Immunol. 2013, 20, 1089–1091. [Google Scholar] [CrossRef]
- Haralambieva, I.H.; Kennedy, R.B.; Simon, W.L.; Goergen, K.M.; Grill, D.E.; Ovsyannikova, I.G.; Poland, G.A. Differential miRNA expression in B cells is associated with inter-individual differences in humoral immune response to measles vaccination. PLoS ONE 2018, 13, e0191812. [Google Scholar] [CrossRef]
- Vianello, E.; Persson, J.; Andersson, B.; van Veen, S.; Dias, T.L.; Santoro, F.; Östensson, M.; Obudulu, O.; Agbajogu, C.; Torkzadeh, S. Global blood miRNA profiling unravels early signatures of immunogenicity of Ebola vaccine rVSVΔG-ZEBOV-GP. iScience 2023, 26, 108574. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wigton, E.J.; Mikami, Y.; McMonigle, R.J.; Castellanos, C.A.; Wade-Vallance, A.K.; Zhou, S.K.; Kageyama, R.; Litterman, A.; Roy, S.; Kitamura, D.; et al. MicroRNA-directed pathway discovery elucidates an miR-221/222-mediated regulatory circuit in class switch recombination. J. Exp. Med. 2021, 218, e20201422. [Google Scholar] [CrossRef]
- Jafarzadeh, A.; Naseri, A.; Shojaie, L.; Nemati, M.; Jafarzadeh, S.; Baghi, H.B.; Hamblin, M.R.; Akhlagh, S.A.; Mirzaei, H. MicroRNA-155 and antiviral immune responses. Int. Immunopharmacol. 2021, 101 Pt A, 108188. [Google Scholar] [CrossRef]
- Oshiumi, H. Circulating Extracellular Vesicles Carry Immune Regulatory miRNAs and Regulate Vaccine Efficacy and Local Inflammatory Response After Vaccination. Front. Immunol. 2021, 12, 685344. [Google Scholar] [CrossRef]
- Miyashita, Y.; Ishikawa, K.; Fukushima, Y.; Kouwaki, T.; Nakamura, K.; Oshiumi, H. Immune-regulatory microRNA expression levels within circulating extracellular vesicles correspond with the appearance of local symptoms after seasonal flu vaccination. PLoS ONE 2019, 14, e0219510. [Google Scholar] [CrossRef]
- Rosenberger, C.M.; Podyminogin, R.L.; Navarro, G.; Zhao, G.W.; Askovich, P.S.; Weiss, M.J.; Aderem, A. miR-451 Regulates Dendritic Cell Cytokine Responses to Influenza Infection. J. Immunol. 2012, 189, 5965–5975. [Google Scholar] [CrossRef]
- Sharma, S.; Eghbali, M. Influence of sex differences on microRNA gene regulation in disease. Biol. Sex Differ. 2014, 5, 3. [Google Scholar] [CrossRef]
- Zhong, B.; Cui, C.; Cui, Q. Identification and Analysis of Sex-Biased MicroRNAs in Human Diseases. Genes 2023, 14, 1688. [Google Scholar] [CrossRef]
- Klinge, C.M. miRNAs regulated by estrogens, tamoxifen, and endocrine disruptors and their downstream gene targets. Mol. Cell Endocrinol. 2015, 418 Pt 3, 273–297. [Google Scholar] [CrossRef]
- Liu, X.; Zhan, Z.; Xu, L.; Ma, F.; Li, D.; Guo, Z.; Li, N.; Cao, X. MicroRNA-148/152 Impair Innate Response and Antigen Presentation of TLR-Triggered Dendritic Cells by Targeting Camkiiα. J. Immunol. 2010, 185, 7244–7251. [Google Scholar] [CrossRef]
- Pracht, K.; Meinzinger, J.; Schulz, S.R.; Daum, P.; Côrte-Real, J.; Hauke, M.; Roth, E.; Kindermann, D.; Mielenz, D.; Schuh, W.; et al. miR-148a controls metabolic programming and survival of mature CD19-negative plasma cells in mice. Eur. J. Immunol. 2021, 51, 1089–1109. [Google Scholar] [CrossRef]
- Murata, T.; Takayama, K.; Katayama, S.; Urano, T.; Horie-Inoue, K.; Ikeda, K.; Takahashi, S.; Kawazu, C.; Hasegawa, A.; Ouchi, Y.; et al. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis. 2010, 13, 356–361. [Google Scholar] [CrossRef]
- Tao, S.; He, H.; Chen, Q.; Yue, W. GPER mediated estradiol reduces miR-148a to promote HLA-G expression in breast cancer. Biochem. Biophys. Res. Commun. 2014, 451, 74–78. [Google Scholar] [CrossRef]
- Quero, L.; Tiaden, A.N.; Hanser, E.; Roux, J.; Laski, A.; Hall, J.; Kyburz, D. miR-221-3p Drives the Shift of M2-Macrophages to a Pro-Inflammatory Function by Suppressing JAK3/STAT3 Activation. Front. Immunol. 2020, 10, 3087. [Google Scholar] [CrossRef] [PubMed]
- Gaytán-Pacheco, N.; Ibáñez-Salazar, A.; Herrera-Van Oostdam, A.S.; Oropeza-Valdez, J.J.; Magaña-Aquino, M.; López, J.A.; Monárrez-Espino, J.; López-Hernández, Y. miR-146a, miR-221, and miR-155 are Involved in Inflammatory Immune Response in Severe COVID-19 Patients. Diagnostics 2022, 13, 133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, J.; Huang, S.; Liu, X.; Zhang, Y.; Wei, S.; Hu, X. miR-155: An Important Role in Inflammation Response. J. Immunol. Res. 2022, 2022, 7437281. [Google Scholar] [CrossRef]
- Licursi, V.; Conte, F.; Fiscon, G.; Paci, P. MIENTURNET: An interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinform. 2019, 20, 545. [Google Scholar] [CrossRef]
Study Population | Males | Females | |
---|---|---|---|
n = 128 | 47 (36.7%) | 81 (63.3%) | |
Age (years), median (IQR); (range) | 45 (36–54); (23–72) | 42 (36–51); (26–72) | 47 (35.5–54.5); (23–64) |
Age Groups | |||
23–45 years (n) | 67 (52.3%) | 29 (43.3%) | 38 (56.7%) |
46–72 years (n) | 61 (47.7%) | 18 (29.5%) | 43 (70.5%) |
Interval (days) median (IQR); (range) | 71 (70–79); (55–100) | 71 (70–81); (55–100) | 71 (69–78); (56–100) |
Anti-S/RBD Titer (AU/L) GMT (95% CI) | p-Value | |
---|---|---|
All subjects | 921.5 | |
(790.7–1074) | ||
F | 1069 (925.8–1234) | 0.0123 |
M | 713.9 | |
(509.1–1001) | ||
Age | ||
≤45 years | 1031 | 0.42 |
(925.8–1234) | ||
>45 years | 713.9 | |
(509.1–1001) | ||
Sex and age | ||
F ≤ 45 years | 1031 | 0.37 |
870.7–1220 | ||
F > 45 years | 978.9 | |
830.9–1153 | ||
M ≤ 45 years | 862.7 | 0.48 |
(696.5–1068) | ||
M > 45 years | 526.2 | |
(225.6–1227) |
Description | KEGG ID | p-Value | FDR * | Genes |
---|---|---|---|---|
Epstein–Barr virus infection | hsa05169 | 8.74364 × 10−8 | 2.49 × 10−6 | HLA-G/BCL2/CDKN1B/RUNX3/ BCL2L11/PDIA3/STAT3/IKBKB/BAX |
FoxO signaling pathway | hsa04068 | 8.86186 × 10−7 | 1.37 × 10−5 | IRS1/CDKN1B/BCL2L11/S1PR1/STAT3/ TGFB2/IKBKB |
Human T-cell leukemia virus 1 infection | hsa05166 | 2.79378 × 10−5 | 0.000259 | HLA-G/MMP7/SMAD2/TGFB2/IKBKB/ BAX/NRP1 |
Human papillomavirus infection | hsa05165 | 4.59073 × 10−5 | 0.000387 | HLA-G/WNT10B/CDKN1B/ITGB8/ITGA5/ WNT1/IKBKB/BAX |
TGF-beta signaling pathway | hsa04350 | 7.06962 × 10−5 | 0.000504 | TGIF2/ACVR1/ROCK1/SMAD2/TGFB2 |
PI3K-Akt signaling pathway | hsa04151 | 8.29241 × 10−5 | 0.000517 | IRS1/BCL2/CDKN1B/ITGB8/ITGA5/MET/ BCL2L11/IKBKB |
Herpes simplex virus 1 infection | hsa05168 | 8.36848 × 10−5 | 0.000517 | HLA-G/BCL2/ITGA5/PDIA3/IKBKB/BAX |
MAPK signaling pathway | hsa04010 | 0.000177249 | 0.000912 | RPS6KA5/CDC25B/MAP3K4/MET/MAP3K9/ TGFB2/IKBKB |
Measles | hsa05162 | 0.000232811 | 0.001135 | BCL2/CDKN1B/STAT3/IKBKB/BAX |
Human cytomegalovirus infection | hsa05163 | 0.000274049 | 0.001156 | HLA-G/ROCK1/PDIA3/STAT3/IKBKB/BAX |
Apoptosis—multiple species | hsa04215 | 0.000288247 | 0.001161 | BCL2/BCL2L11/BAX |
Hepatitis B | hsa05161 | 0.000486342 | 0.001733 | BCL2/STAT3/TGFB2/IKBKB/BAX |
Apoptosis | hsa04210 | 0.00219604 | 0.005812 | BCL2/BCL2L11/IKBKB/BAX |
Adipocytokine signaling pathway | hsa04920 | 0.002859899 | 0.006971 | IRS1/STAT3/IKBKB |
p53 signaling pathway | hsa04115 | 0.003478888 | 0.007952 | BCL2/SERPINE1/BAX |
Cellular senescence | hsa04218 | 0.003692136 | 0.007952 | HLA-G/SERPINE1/SMAD2/TGFB2 |
Cell cycle | hsa04110 | 0.003777087 | 0.007952 | CDC25B/CDKN1B/SMAD2/TGFB2 |
mTOR signaling pathway | hsa04150 | 0.003777087 | 0.007952 | IRS1/WNT10B/WNT1/IKBKB |
Chemokine signaling pathway | hsa04062 | 0.00765295 | 0.014769 | VAV2/ROCK1/STAT3/IKBKB |
Th17 cell differentiation | hsa04659 | 0.009837214 | 0.017193 | SMAD2/STAT3/IKBKB |
Hormone signaling | hsa04081 | 0.011813777 | 0.020265 | CCKBR/IRS1/ACVR1/STAT3 |
Regulation of actin cytoskeleton | hsa04810 | 0.014353241 | 0.024174 | ITGB8/VAV2/ITGA5/ROCK1 |
Antigen processing and presentation | hsa04612 | 0.043197093 | 0.053352 | HLA-G/PDIA3 |
Description | KEGG ID | p-Value | FDR * | Genes |
---|---|---|---|---|
FoxO signaling pathway | hsa04068 | 1.02 × 10−7 | 4.28 × 10−6 | CDKN1B/BCL2L11/FOXO3/TNFSF10/BNIP3/ PTEN/SIRT1/MDM2/PIK3R1 |
Cellular senescence | hsa04218 | 4.82 × 10−6 | 4.84 × 10−5 | FOXO3/PTEN/TP53/ETS1/RB1/SIRT1/MDM2/PIK3R1 |
Apoptosis | hsa04210 | 1.87 × 10−5 | 0.000141 | BCL2L11/BBC3/TNFSF10/FOS/TP53/APAF1/PIK3R1 |
Mitophagy—animal | hsa04137 | 4.31 × 10−5 | 0.000217 | FOXO3/BNIP3L/TBK1/BNIP3/TP53/BECN1 |
Autophagy—animal | hsa04140 | 7.54 × 10−5 | 0.000325 | DDIT4/TBK1/BNIP3/PTEN/RAB1A/PIK3R1/BECN1 |
p53 signaling pathway | hsa04115 | 9.46 × 10−5 | 0.000329 | BBC3/PTEN/TP53/APAF1/MDM2 |
PI3K-Akt signaling pathway | hsa04151 | 0.00034 | 0.000906 | CDKN1B/BCL2L11/FOXO3/KIT/DDIT4/PTEN/ TP53/MDM2/PIK3R1 |
Cell cycle | hsa04110 | 0.000409 | 0.00103 | CDKN1B/CDKN1C/TP53/WEE1/RB1/MDM2 |
TNF signaling pathway | hsa04668 | 0.000815 | 0.001891 | ICAM1/FOS/SELE/PIK3R1/SOCS3 |
mTOR signaling pathway | hsa04150 | 0.002861 | 0.004887 | DDIT4/PTEN/DVL2/PIK3R1/GRB10 |
Toll-like receptor signaling pathway | hsa04620 | 0.004558 | 0.007239 | TBK1/FOS/TICAM1/PIK3R1 |
Leukocyte transendothelial migration | hsa04670 | 0.005682 | 0.008869 | ICAM1/PIK3R1/MMP2/CXCL12 |
Thyroid hormone signaling pathway | hsa04919 | 0.006783 | 0.010066 | ESR1/TP53/MDM2/PIK3R1 |
Estrogen signaling pathway | hsa04915 | 0.010646 | 0.014602 | FOS/ESR1/PIK3R1/MMP2 |
JAK-STAT signaling pathway | hsa04630 | 0.020074 | 0.025239 | PIK3R1/STAT5A/SOCS3/SOCS1 |
NF-kappa B signaling pathway | hsa04064 | 0.027183 | 0.031548 | ICAM1/TICAM1/CXCL12 |
Th17 cell differentiation | hsa04659 | 0.029922 | 0.033859 | FOS/RUNX1/STAT5A |
Chemokine signaling pathway | hsa04062 | 0.031384 | 0.034647 | FOXO3/PAK1/PIK3R1/CXCL12 |
MAPK signaling pathway | hsa04010 | 0.037664 | 0.040358 | KIT/FOS/TP53/PAK1/STMN1 |
AMPK signaling pathway | hsa04152 | 0.039796 | 0.040938 | FOXO3/SIRT1/PIK3R1 |
T-cell receptor signaling pathway | hsa04660 | 0.039796 | 0.040938 | FOS/PAK1/PIK3R1 |
Description | KEGG ID | p-Value | FDR * | Genes |
---|---|---|---|---|
Hepatitis B | hsa05161 | 6.35 × 10−13 | 2.25 × 10−11 | TAB2/IKBKE/KRAS/JUN/FADD/MYD88/YWHAZ/ SMAD4/APAF1/SMAD3/CXCL8/NFKB1/E2F2/PIK3R1/FOS/MAPK14/MYC/MAPK13/STAT1/ CASP3 |
Epstein–Barr virus infection | hsa05169 | 4.26 × 10−11 | 1.13 × 10−9 | TAB2/IKBKE/ICAM1/JUN/FADD/MYD88/RAC1/ SAP30L/MAP3K14/APAF1/CCND1/NFKB1/E2F2/PIK3R1/MAPK14/MYC/MAPK13/STAT1/ CCND2/CASP3 |
Cellular senescence | hsa04218 | 2.48 × 10−9 | 2.93 × 10−8 | RHEB/FOXO3/KRAS/ETS1/SMAD2/SMAD3/CCND1/CXCL8/NFKB1/E2F2/PIK3R1/MAPK14/MYC/MAPK13/CCND2/PTEN |
TNF signaling pathway | hsa04668 | 4.03 × 10−9 | 3.89 × 10−8 | TAB2/CEBPB/EDN1/ICAM1/SELE/JUN/FADD/MAP3K14/ NFKB1/PIK3R1/FOS/MAPK14/MAPK13/CASP3 |
Toll-like receptor signaling pathway | hsa04620 | 1.26 × 10−8 | 9.28 × 10−8 | TAB2/IKBKE/JUN/FADD/MYD88/RAC1/CXCL8/NFKB1/PIK3R1/FOS/MAPK14/MAPK13/STAT1 |
IL-17 signaling pathway | hsa04657 | 2.44 × 10−8 | 1.62 × 10−7 | TAB2/CEBPB/IKBKE/JUN/FADD/IL17RB/CXCL8/NFKB1/ FOS/MAPK14/MAPK13/CASP3 |
Hepatitis C | hsa05160 | 1.68 × 10−7 | 9.4 × 10−7 | CLDN1/IKBKE/KRAS/FADD/YWHAZ/APAF1/CCND1/ NFKB1/E2F2/PIK3R1/MYC/STAT1/CASP3/ NR1H3 |
Measles | hsa05162 | 2.35 × 10−7 | 1.25 × 10−6 | TAB2/IKBKE/JUN/FADD/MYD88/APAF1/CCND1/NFKB1/PIK3R1/FOS/STAT1/CCND2/CASP3 |
Th17 cell differentiation | hsa04659 | 9.74 × 10−7 | 4.14 × 10−6 | IFNGR1/SMAD2/JUN/SMAD4/SMAD3/NFKB1/ FOS/MAPK14/HIF1A/MAPK13/STAT1 |
FoxO signaling pathway | hsa04068 | 1.03 × 10−6 | 4.23 × 10−6 | FOXO3/KRAS/BCL6/SMAD4/GABARAPL1/SMAD3/ CCND1/PIK3R1/MAPK14/MAPK13/CCND2/ PTEN |
T-cell receptor signaling pathway | hsa04660 | 3 × 10−6 | 1.1 × 10−5 | RHOA/KRAS/JUN/CARD11/MAP3K14/PAK2/NFKB1/PIK3R1/FOS/MAPK14/MAPK13 |
MAPK signaling pathway | hsa04010 | 4.1 × 10−6 | 1.28 × 10−5 | TAB2/FGF7/KRAS/CSF1R/JUN/MAP3K10/MYD88/RAC1/RAPGEF2/MAP3K14/PAK2/NFKB1/FOS/MAPK14/MYC/MAPK13/CASP3 |
NOD-like receptor signaling pathway | hsa04621 | 7.68 × 10−6 | 2.27 × 10−5 | TAB2/PKN2/RHOA/IKBKE/JUN/FADD/MYD88/GABARAPL1/CXCL8/NFKB1/MAPK14/MAPK13/STAT1 |
Cell cycle | hsa04110 | 3.56 × 10−5 | 8.22 × 10−5 | TRIP13/SMAD2/ANAPC16/YWHAZ/SMAD4/ SMAD3/WEE1/CCND1/E2F2/MYC/CCND2 |
PI3K-Akt signaling pathway | hsa04151 | 4.75 × 10−5 | 0.000108 | RHEB/PKN2/FGF7/FOXO3/KRAS/MYB/CSF1R/ NOS3/YWHAZ/RAC1/CCND1/NFKB1/PIK3R1/ MYC/RPTOR/CCND2/PTEN |
Influenza A | hsa05164 | 8.15 × 10−5 | 0.00017 | IKBKE/IFNGR1/ICAM1/FADD/MYD88/APAF1/ CXCL8/NFKB1/PIK3R1/STAT1/CASP3 |
B-cell receptor signaling pathway | hsa04662 | 8.48 × 10−5 | 0.000172 | INPP5D/KRAS/JUN/CARD11/RAC1/NFKB1/ PIK3R1/FOS |
Apoptosis | hsa04210 | 0.000274 | 0.000448 | KRAS/JUN/FADD/MAP3K14/APAF1/NFKB1/ PIK3R1/FOS/CASP3 |
TGF-beta signaling pathway | hsa04350 | 0.000281 | 0.000453 | SMAD5/SMAD1/RHOA/SMAD2/SKI/SMAD4/ SMAD3/MYC |
Coronavirus disease—COVID-19 | hsa05171 | 0.000346 | 0.000536 | TAB2/AGTR1/IKBKE/JUN/MYD88/CXCL8/NFKB1/ PIK3R1/FOS/MAPK14/MAPK13/STAT1 |
Th1 and Th2 cell differentiation | hsa04658 | 0.000617 | 0.000887 | IFNGR1/JUN/NFKB1/FOS/MAPK14/MAPK13/ STAT1 |
RIG-I-like receptor signaling pathway | hsa04622 | 0.000892 | 0.001193 | IKBKE/FADD/CXCL8/NFKB1/MAPK14/MAPK13 |
JAK-STAT signaling pathway | hsa04630 | 0.001268 | 0.001607 | SOCS1/IFNGR1/IL13RA1/CCND1/PIK3R1/MYC/ SOCS6/STAT1/CCND2 |
NF-kappa B signaling pathway | hsa04064 | 0.00127 | 0.001607 | TAB2/ICAM1/MYD88/CARD11/MAP3K14/ CXCL8/NFKB1 |
Mitophagy—animal | hsa04137 | 0.00127 | 0.001607 | FOXO3/KRAS/JUN/MITF/GABARAPL1/TOMM20/HIF1A |
Human papillomavirus infection | hsa05165 | 0.002137 | 0.002497 | APC/RHEB/IKBKE/KRAS/CSNK1A1/FADD/ CCND1/NFKB1/PIK3R1/STAT1/CCND2/CASP3/PTEN |
Leukocyte transendothelial migration | hsa04670 | 0.002257 | 0.002608 | CLDN1/RHOA/ICAM1/RAC1/PIK3R1/MAPK14/MAPK13 |
Autophagy—animal | hsa04140 | 0.005021 | 0.005561 | RHEB/KRAS/GABARAPL1/VPS18/PIK3R1/HIF1A/RPTOR/PTEN |
p53 signaling pathway | hsa04115 | 0.006329 | 0.006662 | APAF1/CCND1/CCND2/CASP3/PTEN |
Chemokine signaling pathway | hsa04062 | 0.010868 | 0.010727 | RHOA/FOXO3/KRAS/RAC1/CXCL8/NFKB1/PIK3R1 /STAT1 |
Apoptosis—multiple species | hsa04215 | 0.013437 | 0.012642 | FADD/APAF1/CASP3 |
Natural killer cell mediated cytotoxicity | hsa04650 | 0.018674 | 0.016969 | IFNGR1/KRAS/ICAM1/RAC1/PIK3R1/CASP3 |
Hormone signaling | hsa04081 | 0.056541 | 0.047333 | SMAD5/SMAD1/RHOA/AGTR1/SMAD4/PIK3R1/THRB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anticoli, S.; Dorrucci, M.; Iessi, E.; Zaffina, S.; Carsetti, R.; Vonesch, N.; Tomao, P.; Ruggieri, A. Profile of Selected MicroRNAs as Markers of Sex-Specific Anti-S/RBD Response to COVID-19 mRNA Vaccine in Health Care Workers. Int. J. Mol. Sci. 2025, 26, 7636. https://doi.org/10.3390/ijms26157636
Anticoli S, Dorrucci M, Iessi E, Zaffina S, Carsetti R, Vonesch N, Tomao P, Ruggieri A. Profile of Selected MicroRNAs as Markers of Sex-Specific Anti-S/RBD Response to COVID-19 mRNA Vaccine in Health Care Workers. International Journal of Molecular Sciences. 2025; 26(15):7636. https://doi.org/10.3390/ijms26157636
Chicago/Turabian StyleAnticoli, Simona, Maria Dorrucci, Elisabetta Iessi, Salvatore Zaffina, Rita Carsetti, Nicoletta Vonesch, Paola Tomao, and Anna Ruggieri. 2025. "Profile of Selected MicroRNAs as Markers of Sex-Specific Anti-S/RBD Response to COVID-19 mRNA Vaccine in Health Care Workers" International Journal of Molecular Sciences 26, no. 15: 7636. https://doi.org/10.3390/ijms26157636
APA StyleAnticoli, S., Dorrucci, M., Iessi, E., Zaffina, S., Carsetti, R., Vonesch, N., Tomao, P., & Ruggieri, A. (2025). Profile of Selected MicroRNAs as Markers of Sex-Specific Anti-S/RBD Response to COVID-19 mRNA Vaccine in Health Care Workers. International Journal of Molecular Sciences, 26(15), 7636. https://doi.org/10.3390/ijms26157636