Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (226)

Search Parameters:
Keywords = oxyfuels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2372 KB  
Article
Effects of Radiation Reabsorption on the Flammability Limit and Critical Fuel Concentration of Methane Oxy-Fuel Diffusion Flame
by Shuochao Wang, Jingfu Wang, Ying Chen, Yi Li, Jiquan Chen, Shun Li and Zewei Yan
Molecules 2026, 31(1), 124; https://doi.org/10.3390/molecules31010124 - 29 Dec 2025
Viewed by 183
Abstract
This study numerically investigates the critical fuel concentration and flammable regions of methane–air and methane oxy-fuel counterflow diffusion flames. The goal is to determine the effects of strain rate, oxidizer composition, and radiative heat transfer models on flame extinction. Calculations were performed using [...] Read more.
This study numerically investigates the critical fuel concentration and flammable regions of methane–air and methane oxy-fuel counterflow diffusion flames. The goal is to determine the effects of strain rate, oxidizer composition, and radiative heat transfer models on flame extinction. Calculations were performed using the counterflow diffusion flame with the adiabatic (ADI), optically thin (OTM), and statistical narrow-band (SNB) radiation models at strain rates of 10 s−1, 80 s−1, and 200 s−1. The key findings are as follows: For methane–air flames, radiation reabsorption has a negligible impact. The flammable region decreases with increasing strain rate (SLow > SMid > SHigh) across all models. In O2/CO2 flames, radiation plays a significant role. While the ADI and SNB models maintain the same trend as in air flames, the OTM yields a different order (SMid > SHigh > SLow). Reducing oxygen concentration increases the critical fuel concentration and shrinks the flammable region. When the oxygen concentration is between 0.35 and 0.40, the combustion characteristics of O2/CO2 flames resemble those of conventional air flames. In conclusion, this work highlights the critical influence of radiation modeling and oxidizer composition on oxy-fuel flame extinction limits, providing insights for combustion system design under CO2 dilution. Full article
(This article belongs to the Special Issue Chemical Conversion and Utilization of CO2)
Show Figures

Figure 1

17 pages, 2071 KB  
Article
Experimental Research on Fuel-N Transforming Characteristics of Low-Volatile Coal Under Oxy-Fuel Pyrolysis Conditions
by Fan Hu, Xinying Wu, Yuhao Li, Haohua Liao, Xingyu Lou, Chong Ma, Tai Zhang and Zhaohui Liu
Fire 2026, 9(1), 17; https://doi.org/10.3390/fire9010017 - 26 Dec 2025
Viewed by 324
Abstract
Achieving efficient and clean use of low-volatile coal is of vital importance to China’s energy system. This study aims to elucidate how the high-concentration-CO2 atmosphere influences the migration pathways of fuel-bound nitrogen during the pyrolysis of low-volatile coal, thereby providing critical insights [...] Read more.
Achieving efficient and clean use of low-volatile coal is of vital importance to China’s energy system. This study aims to elucidate how the high-concentration-CO2 atmosphere influences the migration pathways of fuel-bound nitrogen during the pyrolysis of low-volatile coal, thereby providing critical insights for the prediction and control of NOx emissions under oxy-fuel conditions. A high-temperature drop-tube furnace system capable of high heating rates (up to 104–105 °C/s) was employed to comparatively investigate the pyrolysis behavior of a typical low-volatile coal (volatile matter content of 7.44%) under Ar and pure CO2 atmospheres at 1000–1400 °C. The outcomes show that the CO2 atmosphere significantly promoted the release of volatiles, with the volatile release rate at 1400 °C reaching 2.1 times that under the Ar atmosphere. While volatile nitrogen primarily consists of HCN and NH3 with HCN dominance at lower temperatures, NH3 release exceeds HCN by more than tenfold at 1400 °C. CO2 promotes nitrogen release through enhanced gasification reactions, reducing char nitrogen proportion while increasing volatile nitrogen yield approximately fourfold at elevated temperatures. The X-ray photoelectron spectroscopy analysis reveals the transformation pathway of nitrogen functionalities from quaternary nitrogen to pyridine nitrogen and subsequently to pyridine under oxy-fuel conditions. These findings provide fundamental insights into fuel nitrogen evolution mechanisms and offer theoretical support for optimizing oxy-fuel combustion processes toward efficient NOx control. Full article
Show Figures

Figure 1

22 pages, 4093 KB  
Article
Off-Design Operation of a Carbon Capture Enabler Oxy-Fuel Combustion Engine with O2 Self-Production
by Diego Contreras, Luis Miguel García-Cuevas, Francisco José Arnau, José Ramón Serrano and Fabio Alberto Gutiérrez
Appl. Sci. 2026, 16(1), 77; https://doi.org/10.3390/app16010077 - 21 Dec 2025
Viewed by 218
Abstract
This work examines the behaviour of a spark-ignition engine using oxy-fuel combustion, coupled with an oxygen production cycle based on a mixed ionic-electronic ceramic membrane. Through 1D-0D simulations, two compression ratios are studied: the original ratio of 9.6 and the optimised CR of [...] Read more.
This work examines the behaviour of a spark-ignition engine using oxy-fuel combustion, coupled with an oxygen production cycle based on a mixed ionic-electronic ceramic membrane. Through 1D-0D simulations, two compression ratios are studied: the original ratio of 9.6 and the optimised CR of 20, under various load levels and altitude conditions. The results show that operational limits exist at part-load conditions, where reducing the load without implementing additional control strategies may compromise system performance. It is observed that at low loads, the intake pressure can fall below atmospheric pressure, encouraging the presence of N2 in the combustion process. Additionally, the engine can operate efficiently up to an altitude of 4000 m, although increasing boosting is required to maintain proper membrane conditions. These findings emphasise the importance of load control and the potential need for energy assistance under certain circumstances. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

23 pages, 5725 KB  
Article
CPFD Modeling of an Industrial Oxy-Fuel Cement Calciner: Hydrodynamics, Temperature Distribution, and CO2 Enrichment
by Changhua Chen, Minyan Lin, Zhouzheng Jin, Xueping Peng and Chenghang Zheng
Energies 2025, 18(24), 6419; https://doi.org/10.3390/en18246419 - 8 Dec 2025
Viewed by 423
Abstract
Oxy-fuel combustion technology is a critical pathway for carbon capture in the cement industry. However, the high-concentration CO2 atmosphere significantly alters multiphysics coupling in the calciner and systematic studies on its comprehensive effects remain limited. To address this, a Computational Particle Fluid [...] Read more.
Oxy-fuel combustion technology is a critical pathway for carbon capture in the cement industry. However, the high-concentration CO2 atmosphere significantly alters multiphysics coupling in the calciner and systematic studies on its comprehensive effects remain limited. To address this, a Computational Particle Fluid Dynamics (CPFD) model using the MP-PIC method was implemented using the commercial software Barracuda Virtual Reactor 22.1.2 to simulate an industrial-scale oxy-fuel cement calciner and validated against industrial data. Under oxy-fuel combustion with 50% oxygen concentration in the tertiary air, simulations showed a 38.4% increase in the solid–gas mass ratio compared to conventional air combustion, resulting in a corresponding 37.7% increase in total pressure drop. Flow resistance was concentrated primarily in the constriction structures. Local temperatures exceeded 1200 °C in high-oxygen regions. The study reveals a competition between the inhibitory effect of high CO2 partial pressure on limestone decomposition and the promoting effect of elevated overall temperature. Although the CO2-rich atmosphere thermodynamically suppresses calcination, the higher operating temperature under oxy-fuel combustion effectively compensates, achieving a raw meal decomposition rate of 92.7%, which meets kiln feed requirements. This research elucidates the complex coupling mechanisms among flow, temperature, and reactions in a full-scale oxy-fuel calciner, providing valuable insights for technology design and optimization. Full article
Show Figures

Figure 1

36 pages, 2395 KB  
Review
Advancements in Carbon Capture, Utilization, and Storage (CCUS): A Comprehensive Review of Technologies and Prospects
by Nisreen Salem, Kamalpreet Kaur Brar, Ali Asgarian, Kulwinder Kaur, Sara Magdouli and Nancy N. Perreault
Clean Technol. 2025, 7(4), 109; https://doi.org/10.3390/cleantechnol7040109 - 4 Dec 2025
Viewed by 1749
Abstract
Carbon dioxide (CO2) is the most significant anthropogenic greenhouse gas (GHG), accounting for approximately 81% of total emissions, with methane (CH4), nitrous oxide (N2O), and fluorinated gases contributing the remainder. Rising atmospheric CO2 concentrations, driven primarily [...] Read more.
Carbon dioxide (CO2) is the most significant anthropogenic greenhouse gas (GHG), accounting for approximately 81% of total emissions, with methane (CH4), nitrous oxide (N2O), and fluorinated gases contributing the remainder. Rising atmospheric CO2 concentrations, driven primarily by fossil fuel combustion, industrial processes, and transportation, have surpassed the Earth’s natural sequestration capacity, intensifying climate change impacts. Carbon Capture, Utilization, and Storage (CCUS) offers a portfolio of solutions to mitigate these emissions, encompassing pre-combustion, post-combustion, oxy-fuel combustion, and direct air capture (DAC) technologies. This review synthesizes advancements in CO2 capture materials including liquid absorbents (amines, amino acids, ionic liquids, hydroxides/carbonates), solid adsorbents (metal–organic frameworks, zeolites, carbon-based materials, metal oxides), hybrid sorbents, and emerging hydrogel-based systems and their integration with utilization and storage routes. Special emphasis is given to CO2 mineralization using mine tailings, steel slag, fly ash, and bauxite residue, as well as biological mineralization employing carbonic anhydrase (CA) immobilized in hydrogels. The techno-economic performance of these pathways is compared, highlighting that while high-capacity sorbents offer scalability, hydrogels and biomineralization excel in low-temperature regeneration and integration with waste valorization. Challenges remain in cost reduction, material stability under industrial flue gas conditions, and integration with renewable energy systems. The review concludes that hybrid, cross-technology CCUS configurations combining complementary capture, utilization, and storage strategies will be essential to meeting 2030 and 2050 climate targets. Full article
Show Figures

Figure 1

17 pages, 4812 KB  
Article
Turn Milling of Inconel 718 Produced via Additive Manufacturing Using HVOF and DMLS Methods
by Michal Povolný, Michal Straka, Miroslav Gombár, Jan Hnátík, Jan Kutlwašer, Josef Sklenička and Jaroslava Fulemová
J. Manuf. Mater. Process. 2025, 9(12), 399; https://doi.org/10.3390/jmmp9120399 - 4 Dec 2025
Viewed by 587
Abstract
Additive and coating technologies, such as high-velocity oxy-fuel (HVOF) thermal spraying and direct metal laser sintering (DMLS), often require extensive post-processing to meet dimensional and surface quality requirements, which remains challenging for nickel-based superalloys such as Inconel 718. This study presents the design [...] Read more.
Additive and coating technologies, such as high-velocity oxy-fuel (HVOF) thermal spraying and direct metal laser sintering (DMLS), often require extensive post-processing to meet dimensional and surface quality requirements, which remains challenging for nickel-based superalloys such as Inconel 718. This study presents the design and topology optimisation of a cutting tool with a linear cutting edge, capable of operating in turn-milling or turning modes, offering a viable alternative to conventional grinding. A non-optimised tool served as a baseline for comparison with a topology-optimised variant improving cutting-force distribution and stiffness-to-mass ratio. Finite element analyses and experimental turn-milling trials were performed on DMLS and HVOF Inconel 718 using carbide and CBN inserts. The optimised tool achieved significantly reduced roughness values: for DMLS, Ra decreased from 0.514 ± 0.069 µm to 0.351 ± 0.047 µm, and for HVOF from 0.606 ± 0.069 µm to 0.407 ± 0.069 µm. Rz was similarly improved, decreasing from 4.234 ± 0.343 µm to 3.340 ± 0.439 µm (DMLS) and from 5.349 ± 0.552 µm to 4.521 ± 0.650 µm (HVOF). The lowest measured Ra, 0.146 ± 0.030 µm, was obtained using CBN inserts at the highest tested cutting speed. All improvements were statistically significant (p < 0.005). No measurable tool wear was observed due to the small engagement and the use of a fresh cutting edge for each pass. The resulting surface quality was comparable to grinding and clearly superior to conventional turning. These findings demonstrate that combining topology optimisation with a linear-edge tool provides a practical and efficient finishing approach for additively manufactured and thermally sprayed Inconel 718 components. Full article
Show Figures

Figure 1

31 pages, 3100 KB  
Article
Simulation and Techno-Economic Analysis of Oxyfuel Combustion of Sewage Sludge Under Different Carbon Capture Conditions
by Szymon Herdzik, Utku Ege Birgi and Matthias Gaderer
Energies 2025, 18(23), 6226; https://doi.org/10.3390/en18236226 - 27 Nov 2025
Viewed by 418
Abstract
Legal requirements are increasingly promoting the thermal treatment of sewage sludge in Germany, and alternative disposal methods are being investigated. Oxyfuel combustion is one promising thermal process for treating sewage sludge. However, the flue gas produced during the combustion process contains high levels [...] Read more.
Legal requirements are increasingly promoting the thermal treatment of sewage sludge in Germany, and alternative disposal methods are being investigated. Oxyfuel combustion is one promising thermal process for treating sewage sludge. However, the flue gas produced during the combustion process contains high levels of CO2, a greenhouse gas that poses environmental harm. To address this issue, this study analyzed oxyfuel combustion and various CO2 capture methods, aiming to utilize CO2 as a feedstock for methanol production. Energy and material balance simulations were carried out using Aspen Plus. Four distinct carbon capture methods: membrane carbon capture, cryogenic carbon capture, monoethanolamine carbon capture, and ionic liquid carbon capture were modeled. Three different oxygen configurations were tested: pure air, pure oxygen, and a 50/50 air–oxygen mixture. The oxygen separation systems, including air separation units and alkaline electrolyzers, were also studied and modeled. As a result, 14 different scenarios were created. The performances, energy efficiency, and economic results of each scenario were compared to one another and to existing literature, allowing for the identification of the most effective approaches. The oxyfuel combustion scenarios achieved the highest methanol output. MEA and ionic liquid capture combined with air combustion proved to be the most cost-effective options, while cryogenic capture incurred the highest costs due to its helium-based cooling requirements. Although ASU-based oxyfuel combustion achieved the lowest specific energy requirement for methanol production, electrolysis-integrated configurations remained economically disadvantageous, underscoring the critical influence of electricity prices on the overall feasibility of the system. Full article
Show Figures

Figure 1

13 pages, 2874 KB  
Article
Microstructure and Dry-Sliding Tribology of Thermal-Spray Coatings on Cu for Continuous Casting Molds
by Indira Abizhanova, Saule Abdulina, Dastan Buitkenov, Małgorzata Rutkowska-Gorczyca, Arystanbek Kussainov and Dauir Kakimzhanov
Processes 2025, 13(11), 3688; https://doi.org/10.3390/pr13113688 - 15 Nov 2025
Viewed by 572
Abstract
The low hardness of copper alloys, which are the substrate material used for continuous casting molds, makes them prone to plastic deformation, wear, and high-temperature oxidation, leading to premature failure and the formation of surface defects on billets. In this work, the microstructure, [...] Read more.
The low hardness of copper alloys, which are the substrate material used for continuous casting molds, makes them prone to plastic deformation, wear, and high-temperature oxidation, leading to premature failure and the formation of surface defects on billets. In this work, the microstructure, phase composition, mechanical, and tribological properties of Cr3C2–NiCr coatings deposited by high-velocity oxy-fuel (HVOF) spraying onto copper substrates used in molds were investigated. This research was driven by the need to extend the service life of copper molds in continuous steel casting processes. It was established that spraying parameters have a decisive influence on porosity, coating thickness, microhardness, and friction behavior under conditions simulating billet contact with the working surface of the mold. Among the investigated regimes, the coating deposited at a powder feed rate of 11.39 m/s exhibited a dense lamellar structure and the highest level of microhardness. Tribological tests confirmed that this coating exhibited the lowest coefficient of friction, whereas the other coatings were characterized by higher porosity and poorer wear resistance. Thus, the results emphasize the necessity of optimizing spraying parameters to develop highly effective HVOF protective coatings for copper molds operating under extreme thermomechanical loads during steel casting. Full article
(This article belongs to the Special Issue Microstructure Properties and Characterization of Metallic Material)
Show Figures

Figure 1

33 pages, 2548 KB  
Review
Overview of Wear-Resistant Coatings in Marine Environments
by Fengming Du, Renhao Mo, Zhen Guo, Jinlong Wang, Yuxing Yang and Shuai Zhang
J. Mar. Sci. Eng. 2025, 13(11), 2121; https://doi.org/10.3390/jmse13112121 - 10 Nov 2025
Viewed by 1637
Abstract
Marine engineering equipment operates under extreme conditions such as high salinity, humidity, and flow velocity during marine resource exploration. These harsh environments impose strict requirements on surface performance, especially in terms of wear and corrosion resistance. Wear-resistant coatings are increasingly regarded as a [...] Read more.
Marine engineering equipment operates under extreme conditions such as high salinity, humidity, and flow velocity during marine resource exploration. These harsh environments impose strict requirements on surface performance, especially in terms of wear and corrosion resistance. Wear-resistant coatings are increasingly regarded as a crucial surface engineering approach to mitigate multi-mechanism degradation and improve the long-term reliability of marine equipment. In this review, the typical wear mechanisms in marine environments are systematically analyzed. Corresponding to different service scenarios, the main categories of coating materials, such as metal matrix composite coatings, cermet coatings, functionally graded coatings, and nanolayered coatings are summarized in terms of their structure and performance characteristics. Furthermore, mainstream fabrication techniques, including high-velocity oxy-fuel (HVOF), high-velocity air-fuel (HVAF), laser cladding, cold spray, and physical/chemical vapor deposition (PVD/CVD), are reviewed with respect to their influence on coating micro-structure and properties. Standardized evaluation methods for coating performance are also discussed. Finally, the current research challenges are identified, and future development trends are outlined, with an emphasis on multifunctional, intelligent, and environmentally friendly coating systems. This work aims to provide a systematic reference and theoretical basis for the design and application of wear-resistant coatings in marine environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

45 pages, 2852 KB  
Review
The Role of Carbon Capture, Utilization, and Storage (CCUS) Technologies and Artificial Intelligence (AI) in Achieving Net-Zero Carbon Footprint: Advances, Implementation Challenges, and Future Perspectives
by Ife Fortunate Elegbeleye, Olusegun Aanuoluwapo Oguntona and Femi Abiodun Elegbeleye
Technologies 2025, 13(11), 509; https://doi.org/10.3390/technologies13110509 - 8 Nov 2025
Viewed by 1973
Abstract
Carbon dioxide (CO2), the primary anthropogenic greenhouse gas, drives significant and potentially irreversible impacts on ecosystems, biodiversity, and human health. Achieving the Paris Agreement target of limiting global warming to well below 2 °C, ideally 1.5 °C, requires rapid and substantial [...] Read more.
Carbon dioxide (CO2), the primary anthropogenic greenhouse gas, drives significant and potentially irreversible impacts on ecosystems, biodiversity, and human health. Achieving the Paris Agreement target of limiting global warming to well below 2 °C, ideally 1.5 °C, requires rapid and substantial global emission reductions. While recent decades have seen advances in clean energy technologies, carbon capture, utilization, and storage (CCUS) remain essential for deep decarbonization. Despite proven technical readiness, large-scale carbon capture and storage (CCS) deployment has lagged initial targets. This review evaluates CCS technologies and their contributions to net-zero objectives, with emphasis on sector-specific applications. We found that, in the iron and steel industry, post-combustion CCS and oxy-combustion demonstrate potential to achieve the highest CO2 capture efficiencies, whereas cement decarbonization is best supported by oxy-fuel combustion, calcium looping, and emerging direct capture methods. For petrochemical and refining operations, oxy-combustion, post-combustion, and chemical looping offer effective process integration and energy efficiency gains. Direct air capture (DAC) stands out for its siting flexibility, low land-use conflict, and ability to remove atmospheric CO2, but it’s hindered by high costs (~$100–1000/t CO2). Conversely, post-combustion capture is more cost-effective (~$47–76/t CO2) and compatible with existing infrastructure. CCUS could deliver ~8% of required emission reductions for net-zero by 2050, equivalent to ~6 Gt CO2 annually. Scaling deployment will require overcoming challenges through material innovations aided by artificial intelligence (AI) and machine learning, improving capture efficiency, integrating CCS with renewable hybrid systems, and establishing strong, coordinated policy frameworks. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

18 pages, 1311 KB  
Article
Thermo-Energetic Analysis of Electrolytic Oxygen Valorization via Biomass Oxy-Fuel Combustion: A Case Study Applied to a Power-to-Liquid Route for Methanol Synthesis
by Flávio S. Pereira, Argimiro R. Secchi and Alexandre Szklo
Thermo 2025, 5(4), 41; https://doi.org/10.3390/thermo5040041 - 7 Oct 2025
Viewed by 1562
Abstract
The decarbonization of hard-to-defossilize sectors, such as international maritime transport, requires innovative, and at times disruptive, energy solutions that combine efficiency, scalability, and climate benefits. Therefore, power-to-liquid (PtL) routes have stood out for their potential to use low-emission electricity for the production of [...] Read more.
The decarbonization of hard-to-defossilize sectors, such as international maritime transport, requires innovative, and at times disruptive, energy solutions that combine efficiency, scalability, and climate benefits. Therefore, power-to-liquid (PtL) routes have stood out for their potential to use low-emission electricity for the production of synthetic fuels, via electrolytic hydrogen and CO2 capture. However, the high energy demand inherent to these routes poses significant challenges to large-scale implementation. Moreover, PtL routes are usually at most neutral in terms of CO2 emissions. This study evaluates, from a thermo-energetic perspective, the optimization potential of an e-methanol synthesis route through integration with a biomass oxy-fuel combustion process, making use of electrolytic oxygen as the oxidizing agent and the captured CO2 as the carbon source. From the standpoint of a first-law thermodynamic analysis, mass and energy balances were developed considering the full oxygen supply for oxy-fuel combustion to be met through alkaline electrolysis, thus eliminating the energy penalty associated with conventional oxygen production via air separation units. The balance closure was based on a small-scale plant with a capacity of around 100 kta of methanol. In this integrated configuration, additional CO2 surpluses beyond methanol synthesis demand can be directed to geological storage, which, when combined with bioenergy with carbon capture and storage (BECCS) strategies, may lead to net negative CO2 emissions. The results demonstrate that electrolytic oxygen valorization is a promising pathway to enhance the efficiency and climate performance of PtL processes. Full article
Show Figures

Figure 1

17 pages, 5383 KB  
Article
High-Temperature Sulfate Corrosion Resistance and Wear Performance of NiCr-Cr3C2 Coatings for the Water Wall of Power Plant Boilers
by Hang Zhang, Zhao Zhang, Cheng Zhou, Fangzhou Jin, Yongfeng Cai, Yifan Ni, Xinmin Ma, Chenghao Fan, Shulin Xiang and Dan Song
Coatings 2025, 15(10), 1152; https://doi.org/10.3390/coatings15101152 - 3 Oct 2025
Viewed by 726
Abstract
Water walls in power plant boilers are prone to failure under extreme conditions involving high temperature, corrosion, and wear, which severely threaten unit reliability and operational economy. In this work, a NiCr-Cr3C2 protective coating was deposited on SA213-T12 steel substrates [...] Read more.
Water walls in power plant boilers are prone to failure under extreme conditions involving high temperature, corrosion, and wear, which severely threaten unit reliability and operational economy. In this work, a NiCr-Cr3C2 protective coating was deposited on SA213-T12 steel substrates using high-velocity oxy-fuel (HVOF) spraying, with arc-sprayed PS45 coating as a reference. The NiCr-Cr3C2 coating exhibited a dense, low-porosity structure with homogeneous dispersion of Cr3C2 hard phases in the NiCr matrix, forming a typical cauliflower-like composite morphology. During high-temperature sulfate corrosion tests at 750 °C, the NiCr-Cr3C2 coating demonstrated superior corrosion resistance, with a weight gain of only 2.7 mg/cm2, significantly lower than that of the PS45 coating and the SA213-T12 substrate. The higher microhardness and lower friction coefficient also indicate excellent high-temperature wear resistance. The enhanced performance of the NiCr-Cr3C2 coating is attributed to the high Cr content, which promotes the formation of a continuous and protective scale composed of Cr2O3 and NiCr2O4, effectively inhibiting corrosive diffusion and penetration. This work demonstrates the application prospects of NiCr-Cr3C2 coatings on water walls of power plant boilers and guides the development of advanced HVOF coatings. Full article
(This article belongs to the Special Issue Anti-Corrosion Coatings: New Ideas to Make Them More Effective)
Show Figures

Figure 1

37 pages, 3755 KB  
Review
Comparative Performance Analysis of Bioenergy with Carbon Capture and Storage (BECCS) Technologies
by Letizia Cretarola and Federico Viganò
Energies 2025, 18(18), 4800; https://doi.org/10.3390/en18184800 - 9 Sep 2025
Viewed by 1145
Abstract
This study presents a comprehensive performance assessment of combustion-based options for Bioenergy with Carbon Capture and Storage (BECCS), widely regarded as key enablers of future climate neutrality. From 972 publications (2000–2025), 16 sources are identified as providing complete data. Seven technologies are considered: [...] Read more.
This study presents a comprehensive performance assessment of combustion-based options for Bioenergy with Carbon Capture and Storage (BECCS), widely regarded as key enablers of future climate neutrality. From 972 publications (2000–2025), 16 sources are identified as providing complete data. Seven technologies are considered: Calcium Looping (CaL), Chemical Looping Combustion (CLC), Hot Potassium Carbonate (HPC), low-temperature solvents (mainly amine-based), molten sorbents, Molten Carbonate Fuel Cells (MCFCs), and oxyfuel. First- and second-law efficiencies are reported for 53 bioenergy configurations (19 reference plants without carbon capture and 34 BECCS systems). Performance is primarily evaluated via the reduction in second-law (exergy) efficiency and the Specific Primary Energy Consumption per CO2 Avoided (SPECCA), both relative to each configuration’s reference plant. MCFC-based systems perform best, followed by CLC; molten sorbents and oxyfuel also show very good performance, although each is documented by a single source. Low-temperature solvents span a wide performance range—from poor to competitive—highlighting the heterogeneity of this category; HPC performs in line with the average of low-temperature solvents. CaL exhibits modest efficiency penalties alongside appreciable energy costs of CO2 capture, a counterintuitive outcome driven by the high performance of the benchmark plants considered in the definition of SPECCA. To account for BECCS-specific features (multiple outputs and peculiar fuels), a dedicated evaluation framework with a revised SPECCA formulation is introduced. Full article
Show Figures

Figure 1

25 pages, 3670 KB  
Article
Pulse-Driven Surface Hardening and Advanced Electrospark Alloying for Maritime Applications
by Oleksiy Melnyk, Oleg Onishchenko, Serhii Kurdiuk, Mykola Bulgakov, Oleksij Fomin, Václav Píštěk and Pavel Kučera
J. Mar. Sci. Eng. 2025, 13(9), 1624; https://doi.org/10.3390/jmse13091624 - 26 Aug 2025
Viewed by 832
Abstract
This study examines advanced electrospark alloying (ESA) as a pulse-driven surface hardening technique for marine engineering components operating in corrosive and abrasive environments. Coatings were deposited using cobalt-based (Stellite 6), nickel-based (NiCrBSi), titanium-based (VT1-0), and boron-based (B4C) electrodes, with pulse energies [...] Read more.
This study examines advanced electrospark alloying (ESA) as a pulse-driven surface hardening technique for marine engineering components operating in corrosive and abrasive environments. Coatings were deposited using cobalt-based (Stellite 6), nickel-based (NiCrBSi), titanium-based (VT1-0), and boron-based (B4C) electrodes, with pulse energies of 0.2–0.5 J, discharge frequencies of 100–200 Hz, electrode feed rates of 5–8 mm/min, applied loads of 15–20 N, and treatment durations of 40–60 s. The effects of processing parameters on coating microstructure, adhesion strength, microhardness, corrosion resistance, and wear behaviour were systematically evaluated. ESA treatments increased microhardness by 35–48% and adhesion strength by 22–30%, while reducing the corrosion rate from 0.043 mm/year to 0.025–0.027 mm/year and lowering wear volume loss by 40–47%. Compared with high-velocity oxy-fuel (HVOF) spraying and laser hardening, ESA achieved 37–58% lower energy consumption and 40–70% lower CO2 emissions. These findings highlight ESA as an energy-efficient and environmentally sustainable option for on-site maintenance and modernisation of maritime equipment. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 4242 KB  
Article
Electrochemical Performance and Cytocompatibility of HVOF-Sprayed Cr3C2-20(Ni20Cr)-20HAp-XSi Coatings for Dental Applications
by John Henao, Oscar Sotelo-Mazon, Rosa M. Montiel-Ruiz, Carlos A. Poblano-Salas, Diego G. Espinosa-Arbelaez, Jorge Corona-Castuera, Astrid Giraldo-Betancur, Ana L. Islas-Garduño and Victor M. Zezatti
Appl. Sci. 2025, 15(17), 9308; https://doi.org/10.3390/app15179308 - 25 Aug 2025
Cited by 1 | Viewed by 939
Abstract
Biocompatible coatings are widely employed in dental applications to enhance the biofunctionality of metallic implants exposed to the aggressive oral environment. Among them, hydroxyapatite (HAp)-based and carbide-reinforced coatings have been explored due to their favorable mechanical and biological performance. In this study, Cr [...] Read more.
Biocompatible coatings are widely employed in dental applications to enhance the biofunctionality of metallic implants exposed to the aggressive oral environment. Among them, hydroxyapatite (HAp)-based and carbide-reinforced coatings have been explored due to their favorable mechanical and biological performance. In this study, Cr3C-20(Ni20Cr)-20HAp-XSi coatings were deposited using the high-velocity oxy-fuel (HVOF) technique. The coatings were applied onto commercially pure titanium substrates, with the silicon content varied between X = 0, 5, 10, and 20 wt%. To evaluate the coatings’ corrosion resistance, electrochemical techniques such as potentiodynamic polarization curves, linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), and open circuit potential (OCP) were employed. Artificial saliva was used as the corrosive medium at 37 °C for 168 h. The feasibility of producing carbide-HAp-Si coatings with excellent corrosion resistance and cytocompatibility via HVOF was demonstrated here, although some of the tested coatings (20 wt% Si) showed reduced electrochemical stability, attributed to faster dissolution processes and associated with a thinner coating layer, as confirmed by SEM analyses. X-ray diffraction (XRD) analyses revealed the formation of new phases in the coatings during thermal spraying, including Cr2O3 and Cr7C3. Additionally, MTT assays using 3T3-L1 fibroblasts showed no significant cytotoxic effects after 24 and 72 h of exposure to some of the coatings, confirming their biocompatibility for potential dental applications. Full article
(This article belongs to the Special Issue Surface Coatings: Materials and Techniques)
Show Figures

Figure 1

Back to TopTop