Advanced Design, Manufacturing, and Applications of Precision Machine Tools

Special Issue Editor

School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Interests: hydrostatic bearings; machine tools; precision machining; measurement
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The pursuit of ultra-high precision and efficiency in modern manufacturing demands continuous innovation in machine tool design, fabrication, and application. This Special Issue focuses on cutting-edge technologies in precision machine tool development, including high-stiffness structural design, thermal error compensation, vibration suppression, advanced control systems, and smart monitoring. Additionally, it explores their applications in critical sectors such as aerospace, automotives, microelectronics, and medical device manufacturing.

We invite original research and reviews addressing challenges in machining accuracy, dynamic performance optimization, energy-efficient machining, and digital twin integration. Contributions may cover theoretical advances, experimental validations, or industrial case studies.

This issue aims to foster discussions on emerging trends, such as AI-driven process optimization and sustainable precision manufacturing, providing a platform for researchers and engineers to share breakthroughs.

You may choose our Joint Special Issue in Machines.

Dr. Jun Zha
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Manufacturing and Materials Processing is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • precision machine tools
  • thermal error compensation
  • vibration control
  • high-performance machining
  • digital twin
  • smart manufacturing
  • AI-driven process optimization
  • ultra-precision machining
  • structural optimization
  • energy-efficient machining

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 4812 KB  
Article
Turn Milling of Inconel 718 Produced via Additive Manufacturing Using HVOF and DMLS Methods
by Michal Povolný, Michal Straka, Miroslav Gombár, Jan Hnátík, Jan Kutlwašer, Josef Sklenička and Jaroslava Fulemová
J. Manuf. Mater. Process. 2025, 9(12), 399; https://doi.org/10.3390/jmmp9120399 - 4 Dec 2025
Abstract
Additive and coating technologies, such as high-velocity oxy-fuel (HVOF) thermal spraying and direct metal laser sintering (DMLS), often require extensive post-processing to meet dimensional and surface quality requirements, which remains challenging for nickel-based superalloys such as Inconel 718. This study presents the design [...] Read more.
Additive and coating technologies, such as high-velocity oxy-fuel (HVOF) thermal spraying and direct metal laser sintering (DMLS), often require extensive post-processing to meet dimensional and surface quality requirements, which remains challenging for nickel-based superalloys such as Inconel 718. This study presents the design and topology optimisation of a cutting tool with a linear cutting edge, capable of operating in turn-milling or turning modes, offering a viable alternative to conventional grinding. A non-optimised tool served as a baseline for comparison with a topology-optimised variant improving cutting-force distribution and stiffness-to-mass ratio. Finite element analyses and experimental turn-milling trials were performed on DMLS and HVOF Inconel 718 using carbide and CBN inserts. The optimised tool achieved significantly reduced roughness values: for DMLS, Ra decreased from 0.514 ± 0.069 µm to 0.351 ± 0.047 µm, and for HVOF from 0.606 ± 0.069 µm to 0.407 ± 0.069 µm. Rz was similarly improved, decreasing from 4.234 ± 0.343 µm to 3.340 ± 0.439 µm (DMLS) and from 5.349 ± 0.552 µm to 4.521 ± 0.650 µm (HVOF). The lowest measured Ra, 0.146 ± 0.030 µm, was obtained using CBN inserts at the highest tested cutting speed. All improvements were statistically significant (p < 0.005). No measurable tool wear was observed due to the small engagement and the use of a fresh cutting edge for each pass. The resulting surface quality was comparable to grinding and clearly superior to conventional turning. These findings demonstrate that combining topology optimisation with a linear-edge tool provides a practical and efficient finishing approach for additively manufactured and thermally sprayed Inconel 718 components. Full article
Show Figures

Figure 1

Back to TopTop