Electrochemical Performance and Cytocompatibility of HVOF-Sprayed Cr3C2-20(Ni20Cr)-20HAp-XSi Coatings for Dental Applications
Abstract
1. Introduction
2. Experimental Procedure
2.1. Powder and Coatings Preparation
2.2. Structural and Electrochemical Evaluation
2.3. Cytocompatiblity Study
2.3.1. Cell Line and Culture Conditions
2.3.2. Cell Viability Assay
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saha, S.; Roy, S. Metallic dental implants wear mechanisms, materials, and manufacturing processes: A literature review. Materials 2022, 16, 161. [Google Scholar] [CrossRef]
- Achitei, D.C.; Baltatu, M.S.; Vizureanu, P.; Sandu, A.V.; Benchea, M.; Istrate, B. Ni-Cr alloys assessment for dental implants suitability. Appl. Sci. 2022, 12, 12814. [Google Scholar] [CrossRef]
- Rudolf, R.; Majerič, P.; Lazić, V.; Raić, K.T. Advanced Dental Metallic Materials, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2024; p. 178. [Google Scholar]
- Quezada-Castillo, E.; Aguilar-Castro, W.; Quezada-Alván, B. Ion release from non precious dental alloys in the oral cavity. Matéria 2022, 27, e202248593. [Google Scholar]
- Xuebai, L.; Fengwei, Z.; Lu, L.; Xuefeng, S.; Fangyuan, Z.; Xiaoqing, C.; Xuewu, L. Robust Bioinspired Ceramic-Based Superhydrophobic Al2O3-STA@WPU Composite Coating via Air Spraying: A Strategy in Enhancing Mechanical Stability and Corrosion Resistance for Steel 45. J. Mater. Res. Technol. 2025, 37, 3089–3104. [Google Scholar] [CrossRef]
- Kumar, R.; Vikram, K.; Sudeepan, J.; Mishra, S.K. Evolution of metallic dental implants: Historical perspective, needs, and application. In Advances Biomedical Comopsites; De Gruyter: Berlin, Germany, 2025; pp. 89–106. [Google Scholar]
- Kovac, V.; Poljsak, B.; Bergant, M.; Scancar, J.; Mezeg, U.; Primozic, J. Differences in metal ions released from orthodontic appliances in an in vitro and in vivo setting. Coatings 2022, 12, 190. [Google Scholar] [CrossRef]
- Inchingolo, A.M.; Malcangi, G.; Ferrante, L.; Del Vecchio, G.; Viapiano, F.; Inchingolo, A.D.; Patano, A. Surface coatings of dental implants: A review. J. Funct. Biomater. 2023, 14, 287. [Google Scholar] [CrossRef]
- Maher, N.; Mahmood, A.; Fareed, M.A.; Kumar, N.; Rokaya, D.; Zafar, M.S. An updated review and recent advancements in carbon-based bioactive coatings for dental implant applications. J. Adv. Res. 2025, 72, 265–286. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, C.; Shi, T.; Yang, H. Robust, fluorine-free, bioinspired PU superhydrophobic composite coating based on modified ceramics nanoparticle: Preparation, characterization and mechanism. Prog. Org. Coat. 2025, 204, 109226. [Google Scholar] [CrossRef]
- Liu, C.; Xu, M.; Wang, Y.; Yin, Q.; Hu, J.; Chen, H.; Liu, H. Exploring the potential of hydroxyapatite-based materials in biomedicine: A comprehensive review. Mater. Sci. Eng. R Rep. 2024, 161, 100870. [Google Scholar] [CrossRef]
- Vasile, V.A.; Pirvulescu, R.A.; Iancu, R.C.; Garhöfer, G.; Schmetterer, L.; Ghita, A.M.; Popa-Cherecheanu, A. Titanium implants coated with hydroxyapatite used in orbital wall reconstruction—A literature review. Materials 2024, 17, 1676. [Google Scholar] [CrossRef]
- Dhiflaoui, H.; Zayani, W.; Chayoukhi, S.; Faure, J.; Khezami, L.; Karrech, A.; Hajjaji, A. Enhanced mechanical, corrosion, and tribological properties of hydroxyapatite coatings for orthopedic and dental applications. Ceram. Int. 2024, 50, 43383–43396. [Google Scholar] [CrossRef]
- Lenka, R.; Swain, S.; Kwon, T.Y.; Rautray, T.R. Surface modification: Carbide-, silicide-, nitride-based surface. In Surface Engineering of Biomaterials; CRC Press: Boca Raton, FL, USA, 2024; pp. 244–270. [Google Scholar]
- Saddow, S.E. Silicon carbide technology for advanced human healthcare applications. Micromachines 2022, 13, 346. [Google Scholar] [CrossRef]
- Banaszek, K.; Dąbrowska, K.; Jakubowski, W.; Klimek, L.; Kula, Z. The Effect of Ti (C,N)-Based Coating Composition on Ni-Cr Alloys on the Initial Adhesion of E. coli Bacteria and C. albicans Fungi. Coatings 2025, 15, 121. [Google Scholar] [CrossRef]
- Calderon, P.D.S.; Rocha, F.R.G.; Xia, X.; Camargo, S.E.A.; Pascoal, A.L.D.B.; Chiu, C.W.; Esquivel-Upshaw, J.F. Effect of Silicon Carbide Coating on Osteoblast Mineralization of Anodized Titanium Surfaces. J. Funct. Biomater. 2022, 13, 247. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, G.; Iemmolo, R.; La Cognata, V.; Zimbone, M.; La Via, F.; Fragalà, M.E.; Cavallaro, S. Biocompatibility between silicon or silicon carbide surface and neural stem cells. Sci. Rep. 2019, 9, 11540. [Google Scholar] [CrossRef] [PubMed]
- Valoor, R.; Sulyaeva, V.; Lakshmiramanan, K.; Gatapova, E.; Ratnayake, P.; Kozhevnikov, A.; Basu, B. Hemocompatibility and Preangiogenic Attributes of SiB x C y N z O m Coatings for Biomedical Applications. ACS Appl. Mater. Interfaces 2024, 16, 24321–24340. [Google Scholar] [CrossRef]
- El-Ghannam, A.; Sultana, F.; Dréau, D.; Tiwari, A.; Yang, I.H.; AlFotawi, R.; Knabe-Ducheyne, C. Novel 3D printed bioactive SiC orthopedic screw promotes bone growth associated activities by macrophages, neurons, and osteoblasts. J. Biomed. Mater. Res. Part A 2025, 113, e37801. [Google Scholar] [CrossRef]
- Yunlong, L.; Hanguang, F.; Zhenguo, X.; Xingye, G.; Jian, L. Effect of Cr3C2 content on microstructure and properties of laser cladding Ti (C,B)/Ni coatings. J. Mater. Eng. Perform. 2022, 31, 5189–5200. [Google Scholar] [CrossRef]
- Feng, Z.; Liang, R.; Liang, S.; He, D.; Shang, L. Synergistic mechanism of HVOF coating and PVD film in tribo-corrosion behaviors of Cr3C2-NiCr/DLC duplex coatings. Diam. Relat. Mater. 2025, 154, 112124. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, G.; Dong, W.; Hong, X.; Guo, C. Recent Advance on Metal Carbides Reinforced Laser Cladding Coatings. Molecules 2025, 30, 1820. [Google Scholar] [CrossRef]
- Roy, R.M.; Ramanaiah, N.; Rao, B.S.K. Dry Sliding Wear Behavior of Cr3C2-Nicr Coated Ti6Al4v Implant Alloy Through Detonation Spray Method. Int. J. Mech. Eng. Technol. 2016, 7, 378–387. [Google Scholar]
- Mathur, M.; Phogat, P.; Jewariya, M.; Wan, M. Surface characteristics and their influence on osseointegration: A scientometric analysis with a focus on dental implants. J. Maxillofac. Oral Surg. 2025, 24, 899–913. [Google Scholar] [CrossRef]
- Coe, S.C.; Wadge, M.D.; Felfel, R.M.; Ahmed, I.; Walker, G.S.; Scotchford, C.A.; Grant, D.M. Production of high silicon-doped hydroxyapatite thin film coatings via magnetron sputtering: Deposition, characterisation, and in vitro biocompatibility. Coatings 2020, 10, 190. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, R.; Xia, Y.; Zhao, Q.; Lu, K.; Ni, X. Enhanced corrosion resistance and biocompatibility of Ti implants by Si-doped coatings. Bioinspir. Biomim. Nanobiomater. 2025, 14, 67–79. [Google Scholar] [CrossRef]
- Toyonaga, M.; Hasebe, T.; Maegawa, S.; Matsumoto, T.; Hotta, A.; Suzuki, T. The property of adhesion and biocompatibility of silicon and fluorine doped diamond-like carbon films. Diamond Relat. Mater. 2021, 119, 108558. [Google Scholar] [CrossRef]
- Safari-Gezaz, M.; Parhizkar, M.; Asghari, E. Investigation of the structural properties of Si4+-doped HAP coatings on Ti-6Al-4V substrate as a corrosion barrier in biomedical media. Colloids Surf. A Physicochem. Eng. Asp. 2024, 699, 134742. [Google Scholar] [CrossRef]
- Shen, B.; He, Z.; Huang, H.; He, F.; Chen, Y.; Wu, P.; Wu, H. Improved biocompatibility of durable Si-DLC periodical nanocomposite coatings modified by plasma treatment for medical implants. Appl. Surf. Sci. 2025, 695, 162907. [Google Scholar] [CrossRef]
- Henao, J.; Poblano-Salas, C.A.; Vargas, F.; Giraldo-Betancur, A.L.; Corona-Castuera, J.; Sotelo-Mazón, O. Principles and applications of thermal spray coatings. In Advanced Surface Coating Techniques for Modern Industrial Applications; IGI Global: Hershey, PA, USA, 2021; pp. 31–70. [Google Scholar]
- Romonti, D.C.; Voicu, G.; Prodana, M. Electrochemical behavior of coated and uncoated nonprecious CoCr and NiCr alloys in artificial and natural saliva. Int. J. Electrochem. Sci. 2015, 10, 6935–6945. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Zhang, Y.; Wang, J.; Xu, Q.; Liu, M. Corrosion characteristic of vitallium 2000 CoCrMo casting alloy in fluoride containing artificial saliva. Int. J. Electrochem. Sci. 2024, 19, 100690. [Google Scholar] [CrossRef]
- Präbst, K.; Engelhardt, H.; Ringgeler, S.; Hübner, H. Basic colorimetric proliferation assays: MTT, WST, and resazurin. In Cell Viability Assays: Methods and Protocols; Springer: New York, NY, USA, 2017; pp. 1–17. [Google Scholar]
- Magnani, M.; Suegama, P.H.; Espallargas, N.; Fugivara, C.S.; Dosta, S.; Guilemany, J.M.; Benedetti, A.V. Corrosion and wear studies of Cr 3 C 2 NiCr-HVOF coatings sprayed on AA7050 T7 under cooling. J. Therm. Spray Technol. 2009, 18, 353–363. [Google Scholar] [CrossRef]
- Guilemany, J.M.; Espallargas, N.; Suegama, P.H.; Benedetti, A.V. Comparative study of Cr3C2–NiCr coatings obtained by HVOF and hard chromium coatings. Corros. Sci. 2006, 48, 2998–3013. [Google Scholar] [CrossRef]
- Zhang, L.C.; Kim, K.B.; Yu, P.; Zhang, W.Y.; Kunz, U.; Eckert, J. Amorphization in mechanically alloyed (Ti, Zr, Nb)–(Cu, Ni)–Al equiatomic alloys. J. Alloys Compd. 2007, 428, 157–163. [Google Scholar] [CrossRef]
- Zhang, L.C.; Xu, J. Glass-forming ability of melt-spun multicomponent (Ti, Zr, Hf)–(Cu, Ni, Co)–Al alloys with equiatomic substitution. J. Non-Cryst. Solids 2004, 347, 166–172. [Google Scholar] [CrossRef]
- Zhang, L.C.; Shen, Z.Q.; Xu, J. Mechanically milling-induced amorphization in Sn-containing Ti-based multicomponent alloy systems. Mater. Sci. Eng. A 2005, 394, 204–209. [Google Scholar] [CrossRef]
- Ma, E.; Xu, J.; Zhang, L.C. Mechanically Alloyed Amorphous Ti50(Cu0.45Ni0.55)44–xAlxSi4B2 Alloys with Supercooled Liquid Region. J. Mater. Res. 2002, 17, 1743–1749. [Google Scholar] [CrossRef]
- Xuan, H.N.; Li, N.; Wang, Z.X.; Oleksandr, D.; Lu, S.; Chen, L.Y. Temperature Curve, Microstructure Evolution, and Interface Bonding of Plasma Sprayed Nickel-Based Coating in Different Remelting Ways. Microstructure Evolution, and Interface Bonding of Plasma Sprayed Nickel-Based Coating in Different Remelting Ways. Surf. Coat. Technol. 2024, 494, 131504. [Google Scholar] [CrossRef]
- Turner, J.; Nandakumar, A.; Anilbhai, N.; Boccaccini, A.R.; Jones, J.R.; Jell, G. The effect of Si species released from bioactive glasses on cell behaviour: A quantitative review. Acta Biomater. 2023, 170, 39–52. [Google Scholar] [CrossRef]
- Pettersson, M.; Skjoldebrand, C.; Filho, L.; Engqvist, H.; Persson, C. Morphology and dissolution rate of wear debris from silicon nitride coatings. ACS Biomater. Sci. Eng. 2016, 2, 998–1004. [Google Scholar] [CrossRef] [PubMed]
- Fares, C.; Hsu, S.M.; Xian, M.; Xia, X.; Ren, F.; Mecholsky, J.J., Jr.; Esquivel-Upshaw, J. Demonstration of a SiC protective coating for titanium implants. Materials 2020, 13, 3321. [Google Scholar] [CrossRef] [PubMed]
- Kula, Z.; Burnat, B.; Dąbrowska, K.; Klimek, L. The Influence of Si (C,N) Layer Composition on the Corrosion of NiCr Prosthetic Alloy. Ceramics 2025, 8, 50. [Google Scholar] [CrossRef]
- Kula, Z.; Dąbrowska, K.; Klimek, L. Structure and Selected Properties of Si (C, N) Coatings on Ni-Cr Prosthetic Alloys. Processes 2025, 13, 624. [Google Scholar] [CrossRef]
- Suegama, P.H.; Fugivara, C.S.; Benedetti, A.V.; Fernández, J.; Delgado, J.; Guilemany, J.M. Electrochemical behaviour of thermally sprayed Cr 3 C 2–NiCr coatings in 0.5 MH 2 SO 4 media. J. Appl. Electrochem. 2002, 32, 1287–1295. [Google Scholar] [CrossRef]
- Oerlikon. Metco 70C-NS. Oerlikon Metco. Available online: https://mymetco.oerlikon.com/en-us/product/ (accessed on 11 July 2025).
- CERN. General Characteristics of Silicon. Available online: https://ssd-rd.web.cern.ch/Data/Si-General.html (accessed on 14 July 2025).
- Rehman, A.U.; Navarrete Segado, P.; Salamci, M.U.; Frances, C.; Tourbin, M.; Grossin, D. Understanding the consolidation mechanism of selective laser sintering/powder bed selective laser process of ceramics: Hydroxyapatite case. Rapid Prototyp. J. 2024, 30, 677–695. [Google Scholar] [CrossRef]
- The American Institute of Mining, Metallurgical, and Petroleum Engineers. Thermodynamic properties of Cr3C2 at high temperature. Am. Inst. Min. Eng. Trans. 1961, 221, 560–567. Available online: https://aimehq.org/doclibrary-assets/search/docs/Volume%20221/221-060.pdf (accessed on 14 July 2025).
- Lopez-Alvarez, M.; Solla, E.L.; González, P.; Serra, J.; Leon, B.; Marques, A.P.; Reis, R.L. Silicon–hydroxyapatite bioactive coatings (Si–HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells. J. Mater. Sci. Mater. Med. 2009, 20, 1131–1136. [Google Scholar] [CrossRef]
- Henao, J.; Sotelo-Mazón, O.; Giraldo-Betancur, A.L.; Hincapie-Bedoya, J.; Espinosa-Arbelaez, D.G.; Poblano-Salas, C.; Martinez-Gomez, L. Study of HVOF-sprayed hydroxyapatite/titania graded coatings under in-vitro conditions. J. Mater. Res. Technol. 2020, 9, 14002–14016. [Google Scholar] [CrossRef]
- Arrieta-González, C.D.; Porcayo-Calderon, J.; Salinas-Bravo, V.M.; Chacon-Nava, J.G.; Martinez-Villafañe, A.; Gonzalez-Rodriguez, J.G. Corrosion behavior of Ni-Cr based coatings in simulated human body fluid environment. Int. J. Electrochem. Sci. 2011, 6, 3644–3655. [Google Scholar] [CrossRef]
- Azem, F.A.; Kiss, A.; Birlik, I.; Braic, V.; Luculescu, C.; Vladescu, A. The corrosion and bioactivity behavior of SiC doped hydroxyapatite for dental applications. Ceram. Int. 2014, 40, 15881–15887. [Google Scholar] [CrossRef]
- Ho, W.F.; Wu, S.C.; Lin, C.W.; Hsu, S.K.; Hsu, H.C. Electrochemical behavior of Ti-20Cr-X alloys in artificial saliva containing fluoride. J. Appl. Electrochem. 2011, 41, 337–343. [Google Scholar] [CrossRef]
- Sharma, M.; Ramesh Kumar, A.V.; Singh, N.; Adya, N.; Saluja, B. Electrochemical corrosion behavior of dental/implant alloys in artificial saliva. J. Mater. Eng. Perform. 2008, 17, 695–701. [Google Scholar] [CrossRef]
- Gurappa, I. Characterization of different materials for corrosion resistance under simulated body fluid conditions. Mater. Charact. 2002, 49, 73–79. [Google Scholar] [CrossRef]
- Gurrappa, I.; Venugopala; Reddy, D. Characterisation of titanium alloy, IMI-834 for corrosion resistance under different environmental conditions. J. Alloys Compd. 2005, 390, 270–274. [Google Scholar] [CrossRef]
- Taranu, B.O.; Bucur, A.I.; Sebarchievici, I. Three-step procedure for the deposition of hydroxyapatite coatings. J. Coat. Technol. Res. 2020, 17, 1075–1082. [Google Scholar] [CrossRef]
- Matos, I.C.; Bastos, I.N.; Diniz, M.G.; de Miranda, M.S. Corrosion in artificial saliva of a Ni-Cr-based dental alloy joined by TIG welding and conventional brazing. J. Prosthet. Dent. 2015, 114, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Porter, A.E. Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition. Micron 2006, 37, 681–688. [Google Scholar] [CrossRef]
- Botelho, C.M.; Brooks, R.A.; Best, S.M.; Lopes, M.A.; Santos, J.D.; Rushton, N.; Bonfield, W. Human osteoblast response to silicon-substituted hydroxyapatite. J. Biomed. Mater. Res. Part A 2006, 79, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Wee, C.Y.; Lim, Q.R.T.; Xu, X.; Yang, Z.; Wang, D.; Thian, E.S. Characterization and in-vitro assessment of silicon-based apatite microspheres for bone tissue engineering applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2024, 112, e35349. [Google Scholar] [CrossRef]
- Laschuk, N.O.; Easton, E.B.; Zenkina, O.V. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv. 2021, 11, 27925–27936. [Google Scholar] [CrossRef]
- Mareci, D.; Sutiman, D.; Cailean, A.; Bolat, G. Electrochemical determination of the corrosion resistance of NiCr dental casting alloys. Prot. Met. Phys. Chem. Surf. 2011, 47, 108–116. [Google Scholar] [CrossRef]
- Kostelac, L.; Pezzato, L.; Settimi, A.G.; Franceschi, M.; Gennari, C.; Brunelli, K.; Dabalà, M. Investigation of hydroxyapatite (HAP) containing coating on grade 2 titanium alloy prepared by plasma electrolytic oxidation (PEO) at low voltage. Surf. Interfaces 2022, 30, 101888. [Google Scholar] [CrossRef]
- Rivera-Grau, L.M.; Casales, M.; Regla, I.; Ortega-Toledo, D.M.; Ascencio-Gutierrez, J.A.; Porcayo-Calderon, J.; Martinez-Gomez, L. Effect of organic corrosion inhibitors on the corrosion performance of 1018 carbon steel in 3% NaCl solution. Int. J. Electrochem. Sci. 2013, 8, 2491–2503. [Google Scholar] [CrossRef]
- Vasilescu, C.; Drob, P.; Vasilescu, E.; Demetrescu, I.; Ionita, D.; Prodana, M.; Drob, S.I. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti–6Al–4V–1Zr alloy surface. Corros. Sci. 2011, 53, 992–999. [Google Scholar] [CrossRef]
- Melero, H.C.; Sakai, R.T.; Vignatti, C.A.; Benedetti, A.V.; Fernández, J.; Guilemany, J.M.; Suegama, P.H. Corrosion Resistance Evaluation of HVOF Produced Hydroxyapatite and TiO 2-hydroxyapatite Coatings in Hanks’ Solution. Mater. Res. 2018, 21, e20170210. [Google Scholar] [CrossRef]
- Rosli, N.S.B.; Rahman, A.A.; Aziz, A.A.; Shamsuddin, S. Determining the size and concentration dependence of gold nanoparticles in vitro cytotoxicity (IC50) test using WST-1 assay. In AIP Conference Proceedings, Proceedings of the National Physics Conference 2014, Kuala Lumpur, Malaysia, 18–19 November 2014; AIP Publishing LLC: Melville, NY, USA, 2015; Volume 1657, p. 060001. [Google Scholar]
- Qiao, H.; Song, G.; Huang, Y.; Yang, H.; Han, S.; Zhan, X.; Fu, L. Si, Sr, Ag co-doped hydroxyapatite/TiO 2 coating: Enhancement of its antibacterial activity and osteoinductivity. RSC Adv. 2019, 9, 13348–13364. [Google Scholar] [CrossRef] [PubMed]
- Shie, M.Y.; Ding, S.J.; Chang, H.C. The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 2011, 7, 2604–2614. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, J.; Zhang, Y.; Zhang, G.; Kang, Y.; Chen, A.; Shao, L. The toxicity of silica nanoparticles to the immune system. Nanomedicine 2018, 13, 1939–1962. [Google Scholar] [CrossRef]
Sample ID | Coating Composition | Cr3C2-20(Ni-20Cr) (wt%) | HAp (wt%) | Si (wt%) |
---|---|---|---|---|
C1 | Cr3C2-20(Ni-20Cr) | 100 | 0 | 0 |
C2 | Cr3C2-20(Ni-20Cr)-20HAp | 80 | 20 | 0 |
C3 | Cr3C2-20(Ni-20Cr)-20HAp-5Si | 75 | 20 | 5 |
C4 | Cr3C2-20(Ni-20Cr)-20HAp-10Si | 70 | 20 | 10 |
C5 | Cr3C2-20(Ni-20Cr)-20HAp-20Si | 60 | 20 | 20 |
Components | Content (g/L) |
---|---|
NaCl | 0.600 |
KCl | 0.720 |
CaCl2-2H2O | 0.220 |
KH2PO4 | 0.680 |
Na2HPO4-12H2O | 0.856 |
KSCN | 0.060 |
NaHCO3 | 1.500 |
Citric acid | 0.030 |
Coating Sample | Ecorr (mV) | icorr (mA/cm2) | Ba (mV) | Bc (mV) |
---|---|---|---|---|
C1 | −281 | 4.78 × 10−2 | 920.1 | 497 |
C2 | −148 | 1.84 × 10−2 | 803.7 | 300.6 |
C3 | −236 | 9.35 × 10−2 | 1365.5 | 776.8 |
C4 | −213 | 1.31 × 10−1 | 1452.5 | 1047.4 |
C5 | −236 | 1.13 × 10−1 | 1044.1 | 1017.2 |
Coating Sample | Rct (Ω·cm2) | Phase Angle (°) |
---|---|---|
C1 | 6656 to 16307 | 70 to 80 |
C2 | 235 to 413 | 70 to 75 |
C3 | 108 to 135 | 65 to 70 |
C4 | 123 to 185 | 64 to 68 |
C5 | 432 to 843 | 25 to 55 |
Coating Sample | IC50 (µg/mL) | |
---|---|---|
24 h | 72 h | |
C1 | >1000 | >1000 |
C2 | >1000 | >1000 |
C3 | >1000 | >1000 |
C4 | >1000 | >1000 |
C5 | >1000 | 535.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henao, J.; Sotelo-Mazon, O.; Montiel-Ruiz, R.M.; Poblano-Salas, C.A.; Espinosa-Arbelaez, D.G.; Corona-Castuera, J.; Giraldo-Betancur, A.; Islas-Garduño, A.L.; Zezatti, V.M. Electrochemical Performance and Cytocompatibility of HVOF-Sprayed Cr3C2-20(Ni20Cr)-20HAp-XSi Coatings for Dental Applications. Appl. Sci. 2025, 15, 9308. https://doi.org/10.3390/app15179308
Henao J, Sotelo-Mazon O, Montiel-Ruiz RM, Poblano-Salas CA, Espinosa-Arbelaez DG, Corona-Castuera J, Giraldo-Betancur A, Islas-Garduño AL, Zezatti VM. Electrochemical Performance and Cytocompatibility of HVOF-Sprayed Cr3C2-20(Ni20Cr)-20HAp-XSi Coatings for Dental Applications. Applied Sciences. 2025; 15(17):9308. https://doi.org/10.3390/app15179308
Chicago/Turabian StyleHenao, John, Oscar Sotelo-Mazon, Rosa M. Montiel-Ruiz, Carlos A. Poblano-Salas, Diego G. Espinosa-Arbelaez, Jorge Corona-Castuera, Astrid Giraldo-Betancur, Ana L. Islas-Garduño, and Victor M. Zezatti. 2025. "Electrochemical Performance and Cytocompatibility of HVOF-Sprayed Cr3C2-20(Ni20Cr)-20HAp-XSi Coatings for Dental Applications" Applied Sciences 15, no. 17: 9308. https://doi.org/10.3390/app15179308
APA StyleHenao, J., Sotelo-Mazon, O., Montiel-Ruiz, R. M., Poblano-Salas, C. A., Espinosa-Arbelaez, D. G., Corona-Castuera, J., Giraldo-Betancur, A., Islas-Garduño, A. L., & Zezatti, V. M. (2025). Electrochemical Performance and Cytocompatibility of HVOF-Sprayed Cr3C2-20(Ni20Cr)-20HAp-XSi Coatings for Dental Applications. Applied Sciences, 15(17), 9308. https://doi.org/10.3390/app15179308