Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,777)

Search Parameters:
Keywords = oxide layers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3299 KiB  
Article
High-Performance Catalytic Oxygen Evolution with Nanocellulose-Derived Biocarbon and Fe/Zeolite/Carbon Nanotubes
by Javier Hernandez-Ortega, Chamak Ahmed, Andre Molina, Ronald C. Sabo, Lorena E. Sanchez Cadena, Bonifacio Alvarado Tenorio, Carlos R. Cabrera and Juan C. Noveron
Catalysts 2025, 15(8), 719; https://doi.org/10.3390/catal15080719 - 28 Jul 2025
Abstract
The oxygen evolution reaction (OER) plays a central role as an anode in electrocatalytic processes such as energy conversion and storage and the generation of molecular oxygen from the electrolysis of water. Currently, precious metal oxides such as IrO2 and RuO2 [...] Read more.
The oxygen evolution reaction (OER) plays a central role as an anode in electrocatalytic processes such as energy conversion and storage and the generation of molecular oxygen from the electrolysis of water. Currently, precious metal oxides such as IrO2 and RuO2 are recognized as reference OER electrocatalysts with reasonably high activity; however, their widespread use in practical devices has been severely hindered by their high cost and scarcity. It is essential to design alternative OER electrocatalysts made of low-cost and abundant earth elements with significant activity and robustness. We report four new nanocellulose-derived Fe–zeolite nanocomposites, namely Fe/Zeolite@CCNC (1), Fe/Zeolite@CCNF (2), Fe/Zeolite/CNT@CCNC (3), and Fe/Zeolite/CNT@CCNF (4). Two different types of nanocellulose were investigated: nanocellulose nanofibrils and nanocellulose nanocrystals. Characterization with TEM, SEM-EDS, PXRD, and XPS is reported. The nanocomposites exhibited electrocatalytic activity for OER that varies based on the origin of biocarbon and the composition content. The effect of adding carbon nanotubes to the nanocomposites was studied, and an improvement in OER catalysis was observed. The electrochemical double-layer capacitance and electrochemical impedance spectroscopy of the nanocomposites are reported. The nanocomposite 3 exhibited the highest performance, with an onset potential value of 1.654 V and an overpotential of 551 mV, which exceeds the activity of RuO2 for OER catalysis at 10 mA/cm2 in the glassy carbon electrode. A 24 h chronoamperometry study revealed that the catalyst is active for ~2 h under continuous operating conditions. BET surface analysis showed that the crystalline nanocellulose-derived composite exhibited 301.47 m2/g, and the fibril nanocellulose-derived composite exhibited 120.39 m2/g, indicating that the increased nanoporosity of the former contributes to the increase in OER catalysis. Full article
Show Figures

Graphical abstract

26 pages, 4449 KiB  
Review
Recent Progress in Electrocatalysts for Hydroquinone Electrochemical Sensing Application
by Mohammad Aslam, Khursheed Ahmad, Saood Ali, Khaled Hamdy and Danishuddin
Biosensors 2025, 15(8), 488; https://doi.org/10.3390/bios15080488 - 28 Jul 2025
Abstract
This review article compiled previous reports in the fabrication of hydroquinone (HQ) electrochemical sensors using differently modified electrodes. The electrode materials, which are also called electrocatalysts, play a crucial role in electrochemical detection of biomolecules and toxic substances. Metal oxides, MXenes, carbon-based materials [...] Read more.
This review article compiled previous reports in the fabrication of hydroquinone (HQ) electrochemical sensors using differently modified electrodes. The electrode materials, which are also called electrocatalysts, play a crucial role in electrochemical detection of biomolecules and toxic substances. Metal oxides, MXenes, carbon-based materials such as reduced graphene oxide (rGO), carbon nanotubes (CNTs), layered double hydroxides (LDH), metal sulfides, and hybrid composites were extensively utilized in the fabrication of HQ sensors. The electrochemical performance, including limit of detection, linearity, sensitivity, selectivity, stability, reproducibility, repeatability, and recovery for real-time sensing of the HQ sensors have been discussed. The limitations, challenges, and future directions are also discussed in the conclusion section. It is believed that the present review article may benefit researchers who are involved in the development of HQ sensors and catalyst preparation for electrochemical sensing of other toxic substances. Full article
Show Figures

Figure 1

19 pages, 2633 KiB  
Article
Influence of Mullite and Halloysite Reinforcement on the Ablation Properties of an Epoxy Composite
by Robert Szczepaniak, Michał Piątkiewicz, Dominik Gryc, Paweł Przybyłek, Grzegorz Woroniak and Joanna Piotrowska-Woroniak
Materials 2025, 18(15), 3530; https://doi.org/10.3390/ma18153530 - 28 Jul 2025
Abstract
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder [...] Read more.
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder additive. The composite samples were exposed to a mixture of combustible gases at a temperature of approximately 1000 °C. The primary parameters analyzed during this study were the temperature on the rear surface of the sample and the ablative mass loss of the tested material. The temperature increase on the rear surface of the sample, which was exposed to the hot stream of flammable gases, was measured for 120 s. Another key parameter considered in the data analysis was the ablative mass loss. The charred layer of the sample played a crucial role in this process, as it helped block oxygen diffusion from the boundary layer of the original material. This charred layer absorbed thermal energy until it reached a temperature at which it either oxidized or was mechanically removed due to the erosive effects of the heating factor. The incorporation of mullite reduced the rear surface temperature from 58.9 °C to 49.2 °C, and for halloysite, it was reduced the rear surface temperature to 49.8 °C. The ablative weight loss dropped from 57% to 18.9% for mullite and to 39.9% for halloysite. The speed of mass ablation was reduced from 77.9 mg/s to 25.2 mg/s (mullite) and 52.4 mg/s (halloysite), while the layer thickness loss decreased from 7.4 mm to 2.8 mm (mullite) and 4.4 mm (halloysite). This research is innovative in its use of halloysite and mullite as functional additives to enhance the ablative resistance of polymer composites under extreme thermal conditions. This novel approach not only contributes to a deeper understanding of composite behavior at high temperatures but also opens up new avenues for the development of advanced thermal protection systems. Potential applications of these materials include aerospace structures, fire-resistant components, and protective coatings in environments exposed to intense heat and flame. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

14 pages, 1354 KiB  
Article
Layered Structures Based on Ga2O3/GaS0.98Se0.02 for Gas Sensor Applications
by Veaceslav Sprincean, Mihail Caraman, Tudor Braniste and Ion Tiginyanu
Surfaces 2025, 8(3), 53; https://doi.org/10.3390/surfaces8030053 - 28 Jul 2025
Abstract
Efficient detection of toxic and flammable vapors remains a major technological challenge, especially for environmental and industrial applications. This paper reports on the fabrication technology and gas-sensing properties of nanostructured Ga2O3/GaS0.98Se0.02. The β-Ga2O [...] Read more.
Efficient detection of toxic and flammable vapors remains a major technological challenge, especially for environmental and industrial applications. This paper reports on the fabrication technology and gas-sensing properties of nanostructured Ga2O3/GaS0.98Se0.02. The β-Ga2O3 nanowires/nanoribbons with inclusions of Ga2S3 and Ga2Se3 microcrystallites were obtained by thermal treatment of GaS0.98Se0.02 slabs in air enriched with water vapors. The microstructure, crystalline quality, and elemental composition of the obtained samples were investigated using electron microscopy, X-ray diffraction, and Raman spectroscopy. The obtained structures show promising results as active elements in gas sensor applications. Vapors of methanol (CH3OH), ethanol (C2H5OH), and acetone (CH3-CO-CH3) were successfully detected using the nanostructured samples. The electrical signal for gas detection was enhanced under UV light irradiation. The saturation time of the sensor depends on the intensity of the UV radiation beam. Full article
Show Figures

Figure 1

17 pages, 3329 KiB  
Article
Mechanistic Insights into Corrosion and Protective Coating Performance of X80 Pipeline Steel in Xinjiang’s Cyclic Freeze–Thaw Saline Soil Environments
by Gang Cheng, Yuqi Wang, Yiming Dai, Shiyi Zhang, Bin Wei, Chang Xiao and Xian Zhang
Coatings 2025, 15(8), 881; https://doi.org/10.3390/coatings15080881 - 28 Jul 2025
Abstract
This study systematically investigated the corrosion evolution and protective mechanisms of X80 pipeline steel in Xinjiang’s saline soil environments under freeze–thaw cycling conditions. Combining regional soil characterization with laboratory-constructed corrosion systems, we employed electrochemical impedance spectroscopy, potentiodynamic polarization, and surface analytical techniques to [...] Read more.
This study systematically investigated the corrosion evolution and protective mechanisms of X80 pipeline steel in Xinjiang’s saline soil environments under freeze–thaw cycling conditions. Combining regional soil characterization with laboratory-constructed corrosion systems, we employed electrochemical impedance spectroscopy, potentiodynamic polarization, and surface analytical techniques to quantify temporal–spatial corrosion behavior across 30 freeze–thaw cycles. Experimental results revealed a distinctive corrosion resistance pattern: initial improvement (cycles 1–10) attributed to protective oxide layer formation, followed by accelerated degradation (cycles 10–30) due to microcrack propagation and chloride accumulation. Synchrotron X-ray diffraction analyses identified sulfate–chloride ion synergism as the primary driver of localized corrosion disparities in heterogeneous soil matrices. A comparative evaluation of asphalt-coated specimens demonstrated a 62%–89% corrosion rate reduction, with effectiveness directly correlating with coating integrity and thickness (200–500 μm range). Molecular dynamics simulations using Materials Studio revealed atomic-scale ion transport dynamics at coating–substrate interfaces, showing preferential Cl permeation through coating defects. These multiscale findings establish quantitative relationships between environmental stressors, coating parameters, and corrosion kinetics, providing a mechanistic framework for optimizing protective coatings in cold-region pipeline applications. Full article
Show Figures

Figure 1

12 pages, 2303 KiB  
Article
Fabrication of Low-Power Consumption Hydrogen Sensor Based on TiOx/Pt Nanocontacts via Local Atom Migration
by Yasuhisa Naitoh, Hisashi Shima and Hiroyuki Akinaga
Nanomaterials 2025, 15(15), 1154; https://doi.org/10.3390/nano15151154 - 25 Jul 2025
Viewed by 152
Abstract
Hydrogen (H2) gas sensors are essential for detecting leaks and ensuring safety, thereby supporting the broader adoption of hydrogen energy. The performance of H2 sensors has been shown to be improved by the incorporation of TiO2 nanostructures. The key [...] Read more.
Hydrogen (H2) gas sensors are essential for detecting leaks and ensuring safety, thereby supporting the broader adoption of hydrogen energy. The performance of H2 sensors has been shown to be improved by the incorporation of TiO2 nanostructures. The key findings are summarized as follows: (1) Resistive random-access memory (ReRAM) technology was used to fabricate extremely compact H2 sensors via various forming techniques, and substantial sensor performance enhancement was investigated. (2) A nanocontact composed of titanium oxide (TiOx)/platinum (Pt) was subjected to various forming operations to establish a Schottky junction with a nanogap structure on a tantalum oxide (Ta2O5) layer, and its properties were assessed. (3) When the Pt electrode was on the positive side during the forming operation used for ReRAM technology, a Pt nanopillar structure was produced. By contrast, when the forming operation was conducted with a positive bias on the TiOx side, a mixed oxide film of Ta and Ti was produced, which indicates local Ta doping into the TiOx. A sensor response of over 1000 times was achieved at a minimal voltage of 1 mV at room temperature. (4) This sensor fabrication technology based on the forming operation is promising for the development of low-power consumption sensors. Full article
Show Figures

Graphical abstract

25 pages, 4278 KiB  
Article
Nanoplastic Disrupts Intestinal Homeostasis in Immature Rats by Altering the Metabolite Profile and Gene Expression
by Justyna Augustyniak, Beata Toczylowska, Beata Dąbrowska-Bouta, Kamil Adamiak, Grzegorz Sulkowski, Elzbieta Zieminska and Lidia Struzynska
Int. J. Mol. Sci. 2025, 26(15), 7207; https://doi.org/10.3390/ijms26157207 - 25 Jul 2025
Viewed by 73
Abstract
Plastic pollution has recently become a serious environmental problem, since the continuous increase in plastic production and use has generated enormous amounts of plastic waste that decomposes to form micro- and nanoparticles (MPs/NPs). Recent evidence suggests that nanoplastics may be potent toxins because [...] Read more.
Plastic pollution has recently become a serious environmental problem, since the continuous increase in plastic production and use has generated enormous amounts of plastic waste that decomposes to form micro- and nanoparticles (MPs/NPs). Recent evidence suggests that nanoplastics may be potent toxins because they are able to freely cross biological barriers, posing health risks, particularly to developing organisms. Therefore, the aim of the current study was to investigate the toxic potential of polystyrene nanoparticles (PS-NPs) on the jejunum of immature rats. Two-week-old animals were orally exposed to environmentally relevant dose of small PS-NPs (1 mg/kg b.w.; 25 nm) for 3 weeks. We detected a significant accumulation of PS-NPs in the epithelium and subepithelial layer of the intestine, which resulted in significant changes in the expression of genes related to gut barrier integrity, nutrient absorption, and endocrine function. Moreover, increased expression of proinflammatory cytokines was observed together with decreased antioxidant capacity and increased markers of oxidative damage to proteins. Additionally, in the jejunal extracts of exposed rats, we also noted changes in the metabolite profile, mainly amino acids involved in molecular pathways related to cellular energy, inflammation, the intestinal barrier, and protein synthesis, which were consistent with the observed molecular markers of inflammation and oxidative stress. Taken together, the results of the metabolomic, molecular, and biochemical analyses indicate that prolonged exposure to PS-NPs may disrupt the proper function of the intestine of developing organisms. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 7113 KiB  
Article
Effect of Cu Content on Corrosion Resistance of 3.5%Ni Weathering Steel in Marine Atmosphere of South China Sea
by Yuanzheng Li, Ziyu Guo, Tianle Fu, Sha Sha, Bing Wang, Xiaoping Chen, Shujun Jia and Qingyou Liu
Materials 2025, 18(15), 3496; https://doi.org/10.3390/ma18153496 - 25 Jul 2025
Viewed by 190
Abstract
The influence of the copper (Cu) content on the corrosion resistance of 3.5%Ni low-carbon weathering steel was investigated using periodic dry–wet cycle accelerated corrosion tests. The mechanical properties of the steels were assessed via tensile and low-temperature impact tests, while corrosion resistance was [...] Read more.
The influence of the copper (Cu) content on the corrosion resistance of 3.5%Ni low-carbon weathering steel was investigated using periodic dry–wet cycle accelerated corrosion tests. The mechanical properties of the steels were assessed via tensile and low-temperature impact tests, while corrosion resistance was evaluated based on weight loss measurements. Surface oxide layers were characterized using three-dimensional laser confocal microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. Electron probe microanalysis (EPMA) was employed to examine the cross-sectional morphology of the oxide layer after 72 h of accelerated corrosion tests. The results indicate that the solution state of Cu increased the strength of 3.5%Ni steels but significantly damaged the low-temperature toughness. As the Cu content increased from 0.75% to 1.25%, the corrosion rate decreased from 4.65 to 3.74 g/m2 h. However, when there was a further increase in the Cu content to 2.15%, there was little decrease in the corrosion rate. With the increase in the Cu content from 0.75% to 2.15%, the surface roughness of 3.5%Ni weathering steel after corrosion decreased from 5.543 to 5.019 μm, and the corrosion behavior was more uniform. Additionally, the α/γ protective factor of the oxide layer of the surface layer increased from 2.58 to 2.84 with an increase in the Cu content from 0.75% to 1.25%, resulting in the oxide layer of the surface layer being more protective. For 1.25%Cu steel, the corrosion current density of rusted samples is lower (ranging from 1.2609 × 10−4 A/cm2 to 3.7376 × 10−4 A/cm2), and the corrosion potential is higher (ranging from −0.85544 V to −0.40243 V). Therefore, the rusted samples are more corrosion resistant. The Cu in the oxide layer of the surface layer forms CuO and CuFeO2, which are helpful for increasing corrosion resistance, which inhibits the penetration of Cl. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

13 pages, 5115 KiB  
Article
Study the Effect of Heat Treatment on the Corrosion Resistance of AISI 347H Stainless Steel
by Yunyan Peng, Bo Zhao, Jianhua Yang, Fan Bai, Hongchang Qian, Bingxiao Shi and Luntao Wang
Materials 2025, 18(15), 3486; https://doi.org/10.3390/ma18153486 - 25 Jul 2025
Viewed by 140
Abstract
AISI 347H stainless steel is widely used in high-temperature environments due to its excellent creep strength and oxidation resistance; however, its corrosion performance remains highly sensitive to thermal oxidation, and the effects of thermal history on its passive film stability are not yet [...] Read more.
AISI 347H stainless steel is widely used in high-temperature environments due to its excellent creep strength and oxidation resistance; however, its corrosion performance remains highly sensitive to thermal oxidation, and the effects of thermal history on its passive film stability are not yet fully understood. This study addresses this knowledge gap by systematically investigating the influence of solution treatment on the corrosion and oxidation resistance of AISI 347H stainless steel. The specimens were subjected to solution heat treatment at 1050 °C, followed by air cooling, and then evaluated through electrochemical testing, high-temperature oxidation experiments at 550 °C, and multiscale surface characterization techniques. The solution treatment refined the austenitic microstructure by dissolving coarse Nb-rich precipitates, as confirmed by SEM and EBSD, and improved passive film integrity. The stabilizing effect of Nb also played a critical role in suppressing sensitization, thereby enhancing resistance to intergranular attack. Electrochemical measurements and EIS analysis revealed a lower corrosion current density and higher charge transfer resistance in the treated samples, indicating enhanced passivation behavior. ToF-SIMS depth profiling and oxide thickness analysis confirmed a slower parabolic oxide growth rate and reduced oxidation rate constant in the solution-treated condition. At 550 °C, oxidation was suppressed by the formation of compact, Cr-rich scales with dual-distributed Nb oxides, effectively limiting diffusion pathways and stabilizing the protective layer. These findings demonstrate that solution treatment is an effective strategy to improve the long-term corrosion and oxidation performance of AISI 347H stainless steel in harsh service environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

24 pages, 4040 KiB  
Review
Progress in Electrode Materials for the Detection of Nitrofurazone and Nitrofurantoin
by Mohammad Aslam, Saood Ali, Khursheed Ahmad and Danishuddin
Biosensors 2025, 15(8), 482; https://doi.org/10.3390/bios15080482 - 24 Jul 2025
Viewed by 111
Abstract
Recently, it has been found that electrochemical sensing technology is one of the significant approaches for the monitoring of toxic and hazardous substances in food and the environment. Nitrofurazone (NFZ) and nitrofurantoin (NFT) possess a hazardous influence on the environment, aquatic life, and [...] Read more.
Recently, it has been found that electrochemical sensing technology is one of the significant approaches for the monitoring of toxic and hazardous substances in food and the environment. Nitrofurazone (NFZ) and nitrofurantoin (NFT) possess a hazardous influence on the environment, aquatic life, and human health. Thus, various advanced materials such as graphene, carbon nanotubes, metal oxides, MXenes, layered double hydroxides (LDHs), polymers, metal–organic frameworks (MOFs), metal-based composites, etc. are widely used for the development of nitrofurazone and nitrofurantoin sensors. This review article summarizes the progress in the fabrication of electrode materials for nitrofurazone and nitrofurantoin sensing applications. The performance of the various electrode materials for nitrofurazone and nitrofurantoin monitoring are discussed. Various electrochemical sensing techniques such as square wave voltammetry (SWV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), amperometry (AMP), cyclic voltammetry (CV), and chronoamperometry (CA) are discussed for the determination of NFZ and NFT. It is observed that DPV, SWV, and AMP/CA are more sensitive techniques compared to LSV and CV. The challenges, future perspectives, and limitations of NFZ and NFT sensors are also discussed. It is believed that present article may be useful for electrochemists as well materials scientists who are working to design electrode materials for electrochemical sensing applications. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrochemical Biosensing Application)
Show Figures

Figure 1

14 pages, 3135 KiB  
Article
Selective Gelation Patterning of Solution-Processed Indium Zinc Oxide Films via Photochemical Treatments
by Seullee Lee, Taehui Kim, Ye-Won Lee, Sooyoung Bae, Seungbeen Kim, Min Woo Oh, Doojae Park, Youngjun Yun, Dongwook Kim, Jin-Hyuk Bae and Jaehoon Park
Nanomaterials 2025, 15(15), 1147; https://doi.org/10.3390/nano15151147 - 24 Jul 2025
Viewed by 151
Abstract
This study presents a photoresist-free patterning method for solution-processed indium zinc oxide (IZO) thin films using two photochemical exposure techniques, namely pulsed ultraviolet (UV) light and UV-ozone, and a plasma-based method using oxygen (O2) plasma. Pulsed UV light delivers short, high-intensity [...] Read more.
This study presents a photoresist-free patterning method for solution-processed indium zinc oxide (IZO) thin films using two photochemical exposure techniques, namely pulsed ultraviolet (UV) light and UV-ozone, and a plasma-based method using oxygen (O2) plasma. Pulsed UV light delivers short, high-intensity flashes of light that induce localised photochemical reactions with minimal thermal damage, whereas UV-ozone enables smooth and uniform surface oxidation through continuous low-pressure UV irradiation combined with in situ ozone generation. By contrast, O2 plasma generates ionised oxygen species via radio frequency (RF) discharge, allowing rapid surface activation, although surface damage may occur because of energetic ion bombardment. All three approaches enabled pattern formation without the use of conventional photolithography or chemical developers, and the UV-ozone method produced the most uniform and clearly defined patterns. The patterned IZO films were applied as active layers in bottom-gate top-contact thin-film transistors, all of which exhibited functional operation, with the UV-ozone-patterned devices exhibiting the most favourable electrical performance. This comparative study demonstrates the potential of photochemical and plasma-assisted approaches as eco-friendly and scalable strategies for next-generation IZO patterning in electronic device applications. Full article
Show Figures

Graphical abstract

18 pages, 4701 KiB  
Article
Investigation of the Wear Resistance of Hard Anodic Al2O3/IF-WS2 Coatings Deposited on Aluminium Alloys
by Joanna Korzekwa, Adam Jarząbek, Marek Bara, Mateusz Niedźwiedź, Krzysztof Cwynar and Dariusz Oleszak
Materials 2025, 18(15), 3471; https://doi.org/10.3390/ma18153471 - 24 Jul 2025
Viewed by 174
Abstract
The anodic oxide layer’s porosity is considered a functional feature, acting as a reservoir of lubricants. This feature enables the design of self-lubricating systems that effectively reduce friction and wear. To improve the tribological performance of Al2O3 anodic coatings on [...] Read more.
The anodic oxide layer’s porosity is considered a functional feature, acting as a reservoir of lubricants. This feature enables the design of self-lubricating systems that effectively reduce friction and wear. To improve the tribological performance of Al2O3 anodic coatings on EN AW 5251 aluminium alloys, this paper presents a modification of the coating with tungsten disulfide (IF-WS2) nanopowder and its effect on coating resistance. The wear properties of Al2O3/IF-WS2 coatings in contact with a cast iron pin were investigated. The results include the analysis of the friction coefficient in the reciprocating motion without oil lubrication at two loads, the analysis of the wear intensity of the cast iron pin, the characterisation of wear scars, and the analysis of SGP parameters. Two-level factorial analysis showed that load and nanomodification significantly affected the load-bearing parameter Rk. Incorporation of the modifier, especially under higher loads, reduced the Rk value, thus improving the tribological durability of the contact pair. Both load and nanomodification had a notable impact on the coefficient of friction. The use of IF-WS2-modified coatings reduced the coefficient, and higher loads further enhanced this effect, by approximately 9% at a load of 0.3 MPa and 15% at a load of 0.6 MPa, indicating improved lubricating conditions under greater contact stress. Full article
(This article belongs to the Special Issue Surface Engineering in Materials (2nd Edition))
Show Figures

Figure 1

22 pages, 11182 KiB  
Article
Application of Laser Thermal Deformation Sintering in the Manufacture of Drum-Type Diamond Tools
by Oleksii Kaglyak, Leonid Golovko, Oleksii Goncharuk, Svitlana Voloshko, Oleksandr Kapustynskyi and Nikolaj Višniakov
J. Manuf. Mater. Process. 2025, 9(8), 251; https://doi.org/10.3390/jmmp9080251 - 24 Jul 2025
Viewed by 196
Abstract
An analysis of the existing methods of sintering diamond-containing composites is presented. On the basis of mathematical modeling and experimental studies, the conditions of the laser liquid-phase sintering of diamond-containing composites under which they retain their strength are determined. The energy and technological [...] Read more.
An analysis of the existing methods of sintering diamond-containing composites is presented. On the basis of mathematical modeling and experimental studies, the conditions of the laser liquid-phase sintering of diamond-containing composites under which they retain their strength are determined. The energy and technological parameters of the laser irradiation process are characterized, which determine the range of laser processing modes within which no oxidation and crack formation occur, and a high-quality composite with specified geometrical parameters is formed. It has been proven that composites consisting of synthetic diamond grains and a metal bond do not lose strength under the condition that the temperature during laser heating does not exceed 1600 °C and the exposure time is 0.3 s. Electron microscopy and X-ray diffractometry were used for experimental studies of the microstructure and phase composition of the sintered layers. A new design and manufacturing method for a drum-type abrasive tool with replaceable diamond inserts for grinding large-sized aircraft and shipbuilding products are proposed. Components of a laser technological complex for the implementation of the process of sintering the diamond-containing layer of the abrasive inserts of the drum have been developed. Full article
Show Figures

Figure 1

12 pages, 10100 KiB  
Article
Surface Microstructure Engineering for Enhancing Li-Ion Diffusion and Structure Stability of Ni-Rich Cathode Materials
by Huanming Zhuo, Shuangshuang Zhao, Ruijie Xu, Lu Zhou, Ye Li, Yuehuan Peng, Xuelong Rao, Yuqiang Tao and Xing Ou
Nanomaterials 2025, 15(15), 1144; https://doi.org/10.3390/nano15151144 - 24 Jul 2025
Viewed by 229
Abstract
Surface microstructure of grains vastly decides the electrochemical performance of nickel-rich oxide cathodes, which can improve their interfacial kinetics and structural stability to realize their further popularization. Herein, taking the representative LiNi0.8Co0.15Al0.05O2 (NCA) materials as an [...] Read more.
Surface microstructure of grains vastly decides the electrochemical performance of nickel-rich oxide cathodes, which can improve their interfacial kinetics and structural stability to realize their further popularization. Herein, taking the representative LiNi0.8Co0.15Al0.05O2 (NCA) materials as an example, a surface heterojunction structure construction strategy to enhance the interface characteristics of high-nickel materials by introducing interfacial ZnO sites has been designed (NCA@ZnO). Impressively, this heterointerface creates a strong built-in electric field, which significantly improves electron/Li-ion diffusion kinetics. Concurrently, the ZnO layer acts as an effective physical barrier against electrolyte corrosion, notably suppressing interfacial parasitic reactions and ultimately optimizing the structure stability of NCA@ZnO. Benefiting from synchronous optimization of interface stability and kinetics, NCA@ZnO exhibits advanced cycling performance with the capacity retention of 83.7% after 160 cycles at a superhigh rate of 3 C during 3.0–4.5 V. The prominent electrochemical performance effectively confirms that the surface structure design provides a critical approach toward obtaining high-performance cathode materials with enhanced long-cycling stability. Full article
Show Figures

Graphical abstract

14 pages, 2646 KiB  
Article
Analog Resistive Switching Phenomena in Titanium Oxide Thin-Film Memristive Devices
by Karimul Islam, Rezwana Sultana and Robert Mroczyński
Materials 2025, 18(15), 3454; https://doi.org/10.3390/ma18153454 - 23 Jul 2025
Viewed by 269
Abstract
Memristors with resistive switching capabilities are vital for information storage and brain-inspired computing, making them a key focus in current research. This study demonstrates non-volatile analog resistive switching behavior in Al/TiOx/TiN/Si(n++)/Al memristive devices. Analog resistive switching offers gradual, controllable [...] Read more.
Memristors with resistive switching capabilities are vital for information storage and brain-inspired computing, making them a key focus in current research. This study demonstrates non-volatile analog resistive switching behavior in Al/TiOx/TiN/Si(n++)/Al memristive devices. Analog resistive switching offers gradual, controllable conductance changes, which are essential for mimicking brain-like synaptic behavior, unlike digital/abrupt switching. The amorphous titanium oxide (TiOx) active layer was deposited using the pulsed-DC reactive magnetron sputtering technique. The impact of increasing the oxide thickness on the electrical performance of the memristors was investigated. Electrical characterizations revealed stable, forming-free analog resistive switching, achieving endurance beyond 300 DC cycles. The charge conduction mechanisms underlying the current–voltage (I–V) characteristics are analyzed in detail, revealing the presence of ohmic behavior, Schottky emission, and space-charge-limited conduction (SCLC). Experimental results indicate that increasing the TiOx film thickness from 31 to 44 nm leads to a notable change in the current conduction mechanism. The results confirm that the memristors have good stability (>1500 s) and are capable of exhibiting excellent long-term potentiation (LTP) and long-term depression (LTD) properties. The analog switching driven by oxygen vacancy-induced barrier modulation in the TiOx/TiN interface is explained in detail, supported by a proposed model. The remarkable switching characteristics exhibited by the TiOx-based memristive devices make them highly suitable for artificial synapse applications in neuromorphic computing systems. Full article
Show Figures

Figure 1

Back to TopTop