Analog Resistive Switching Phenomena in Titanium Oxide Thin-Film Memristive Devices
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ha, H.; Pyo, J.; Lee, Y.; Kim, S. Non-volatile memory and synaptic characteristics of TiN/CeOx/Pt RRAM devices. Materials 2022, 15, 9087. [Google Scholar] [CrossRef] [PubMed]
- Ielmini, D. Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks. Microelectron. Eng. 2018, 190, 44–53. [Google Scholar] [CrossRef]
- Jang, J.; Gi, S.; Yeo, I.; Choi, S.; Jang, S.; Ham, S.; Lee, B.; Wang, G. A Learning-rate modulable and reliable TiOx memristor array for robust, fast, and accurate neuromorphic computing. Adv. Sci. 2022, 9, 2201117. [Google Scholar] [CrossRef] [PubMed]
- Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories—Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater. 2009, 21, 2632–2663. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Zeng, J.; Chen, Q.; Gu, G. High spatial resolution recording of near-infrared hologram based on photo-induced phase transition of vanadium dioxide film. Opt. Lett. 2015, 40, 1595–1598. [Google Scholar] [CrossRef] [PubMed]
- Baek, I.G.; Kim, D.C.; Lee, M.J.; Kim, H.J.; Yim, E.K.; Lee, M.S.; Lee, J.E.; Ahn, S.E.; Seo, S.; Lee, J.H.; et al. Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application. In Proceedings of the IEEE International Electron Devices Meeting, 2005 IEDM, Washington, DC, USA, 5–7 December 2005. [Google Scholar]
- Ismail, M.; Nisa, S.-U.; Rana, A.M.; Akbar, T.; Lee, J.; Kim, S. Enhancement of resistive switching performance by introducing a thin non-stoichiometric CeO2−x layer in TiO2 switching-based resistive random access memory. Appl. Phys. Lett. 2019, 114, 012101. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, C.; Lv, Y.; Zhang, Y.; Liu, W. High-performance flexible polymer memristor based on stable filamentary switching. Nano Lett. 2022, 22, 7246–7253. [Google Scholar] [CrossRef] [PubMed]
- Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28–36. [Google Scholar] [CrossRef]
- Park, J.; Kumar, A.; Zhou, Y.; Oh, S.; Kim, J.H.; Shi, Y.; Jain, S.; Hota, G.; Qiu, E.; Nagle, A.L.; et al. Multi-level, forming and filament free, bulk switching trilayer RRAM for neuromorphic computing at the edge. Nat. Commun. 2024, 15, 3492. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.K.; Sahu, M.C.; Mohanan, K.U.; Mallik, S.K.; Sahoo, S.; Pradhan, G.K.; Sahoo, S. Bipolar resistive switching in TiO2 artificial synapse mimicking pavlov’s associative learning. ACS Appl. Mater. Interfaces 2023, 15, 3574–3585. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Xia, X.; Zhu, C.; Steichen, P.; Quan, W.; Mao, W.; Yang, J.; Chu, L.; Li, X.A. Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 2021, 13, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Barraj, I.; Mestiri, H.; Masmoudi, M. Overview of memristor-based design for analog applications. Micromachines 2024, 15, 505. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, K.U. Resistive switching devices for neuromorphic computing: From foundations to chip level innovations. Nanomaterials 2024, 14, 527. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Gao, C.; Jin, J.; Sun, W.; Wang, B.; Bao, Y.; Liu, C.; Huang, W.; Zeng, H.; Yu, Y. Recent progress in neuromorphic computing from memristive devices to neuromorphic chips. Adv. Devices Instrum. 2024, 5, 0044. [Google Scholar] [CrossRef]
- Wei, Q.; Gao, B.; Tang, J.; Qian, H.; Wu, H. Emerging memory-based chip development for neuromorphic computing: Status, challenges, and perspectives. IEEE Electron Devices Mag. 2023, 1, 33–49. [Google Scholar] [CrossRef]
- Yang, J.; Ryu, H.; Kim, S. Resistive and synaptic properties modulation by electroforming polarity in CMOS-compatible Cu/HfO2/Si device. Chaos Solitons Fractals 2021, 145, 110783. [Google Scholar] [CrossRef]
- Li, Y.; Fang, P.; Fan, X.; Pei, Y. NiO-based memristor with three resistive switching modes. Semicond. Sci. Technol. 2020, 35, 055004. [Google Scholar]
- Pal, P.; Kumbhar, D.D.; Li, H.; Tytov, S.; Syed, A.M.; Atab, N.E. A VOx-based optoelectronic memristor for application in visual perception. J. Phys. D Appl. Phys. 2025, 58, 045108. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.H.; Kim, S.; Choi, C.; Kim, S. Transition of short-term to long-term memory of Cu/TaOx/CNT conductive bridge random access memory for neuromorphic engineering. Carbon 2023, 215, 118438. [Google Scholar] [CrossRef]
- Dongale, T.D.; Desai, N.D.; Khot, K.V.; Volos, C.K.; Bhosale, P.N.; Kamat, R.K. An Electronic Synapse Device Based on TiO2 Thin Film Memristor. J. Nanoelectron. Optoelectron. 2018, 13, 68–75. [Google Scholar] [CrossRef]
- Zhang, K.; Ren, K.; Qin, X.; Zhu, S.; Yang, F.; Zhao, Y.; Zhang, Y. Tunable negative differential resistance and resistive switching properties of amorphous WOx devices. IEEE Trans. Electron Devices 2021, 68, 3807–3812. [Google Scholar] [CrossRef]
- Bera, M.K.; Maiti, C.K. Electrical properties of SiO2/TiO2 high-κ gate dielectric stack. Mater. Sci. Semicond. Process 2006, 9, 909–917. [Google Scholar] [CrossRef]
- El Mesoudy, A.; Machon, D.; Ruediger, A.; Jaouad, A.; Alibart, F.; Ecoffey, S.; Drouin, D. Band gap narrowing induced by oxygen vacancies in reactively sputtered TiO2 thin films. Thin Solid Film. 2023, 769, 139737. [Google Scholar] [CrossRef]
- Jiang, W.H.; Zhang, H.Y.; Wang, D.L.; Wang, J.H. Preparation of aluminum titanate film via non-hydrolytic sol-gel method and its fused salt corrosion resistance. J. Chin. Ceram. Soc. 2010, 38, 783–787. [Google Scholar]
- Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Zhu, B.P.; Wu, D.W.; Zhou, Q.F.; Shi, J.; Shung, K.K. Lead zirconate titanate thick film with enhanced electrical properties for high frequency transducer applications. Appl. Phys. Lett. 2008, 93, 012905. [Google Scholar] [CrossRef]
- Siegel, S.; Baeumer, C.; Gutsche, A.; Witzleben, M.V.; Waser, R.; Menzel, S.; Dittmann, R. Trade-off between data retention and switching speed in resistive switching ReRAM devices. Adv. Electron. Mater. 2021, 7, 2000815. [Google Scholar] [CrossRef]
- Hu, L.; Han, W.; Wang, H. Resistive switching and synaptic learning performance of a TiO2 thin film based device prepared by sol–gel and spin coating techniques. Nanotechnology 2020, 31, 155202. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Jiang, W.H.; Feng, G.; Liu, J.M.; Wu, Q. Low Temperature preparation of aluminum titanate film via sol-gel method. Adv. Mater. Res. 2014, 936, 238–242. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Jiang, C.; Wang, L.; Wang, Z.; Du, Z.; Sun, J.; Abrahams, I.; Huang, X. Nitrogen-doped titanium dioxide nanorod array memristors with synaptic features and tunable memory lifetime for neuromorphic computing. J. Alloys Compd. 2021, 868, 159194. [Google Scholar] [CrossRef]
- Rong, Y.; Yang, Y.; Lv, M.; Liu, Y.; Wang, C.; Cui, D.; Liu, Y.; Yu, C.F.; Wei, G. Resistive switching characteristics of TiO2 films prepared by DC magnetron sputtering: Effects of nitrogen composition and phase structure. J. Vac. Sci. Technol. B 2025, 43, 022208. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Fu, D. Coexistence of bipolar and unipolar resistive switching characteristics of thin TiO2 film grown on Cu foil substrate for flexible nonvolatile memory device. J. Alloys Compd. 2017, 695, 2669–2671. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Y.; Zhu, K.; Sun, F.; Guo, C.; Wu, X.; Cheng, G.; Zheng, R. Core-shell copper nanowire-TiO2 nanotube arrays with excellent bipolar resistive switching properties. Electrochim. Acta 2019, 316, 133–142. [Google Scholar] [CrossRef]
- Kim, S.E.; Lee, J.G.; Ling, L.; Liu, S.E.; Lim, H.K.; Sangwan, V.K.; Hersam, M.C.; Lee, H.B. Sodium-Doped Titania Self-Rectifying Memristors for Crossbar Array Neuromorphic Architectures. Adv. Mater. 2022, 34, 2106913. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.W.; Younis, A.; Li, S.A. Direct growth of TiO2 nanotubes on transparent substrates and their resistive switching characteristics. J. Phys. D Appl. Phys. 2012, 45, 355306. [Google Scholar] [CrossRef]
- Bogle, K.A.; Bachhav, M.N.; Deo, M.S.; Valanoor, N.; Ogale, S.B. Enhanced nonvolatile resistive switching in dilutely cobalt doped TiO2. Appl. Phys. Lett. 2009, 95, 203502. [Google Scholar] [CrossRef]
- Zou, L.; Hu, W.; Xie, W.; Bao, D. Uniform resistive switching properties of fully transparent TiO2-based memory devices. J. Alloys Compd. 2017, 693, 1180–1184. [Google Scholar] [CrossRef]
- Sultana, R.; Islam, K.; Chakraborty, S. Tuning Optical and Electrochemical Properties of Nb2O5 Thin Films via WO3 Doping. Trans. Electr. Electron. Mater. 2025, 26, 48–59. [Google Scholar] [CrossRef]
- Toma, F.T.Z.; Rahman, S.; Hussain, K.M.; Ahmed, S. Thin film deposition techniques: A comprehensive review. J. Mod. Nanotechnol. 2024, 4, 1–16. [Google Scholar] [CrossRef]
- Liu, C.; Gao, B.; Huang, P.; Kang, J. Microstructure evolution characteristics induced by oxygen vacancy generation in anatase TiO2 based resistive switching devices. Semicond. Sci. Technol. 2017, 32, 035018. [Google Scholar] [CrossRef]
- Shi, T.; Yang, R.; Guo, X. Coexistence of analog and digital resistive switching in BiFeO-based memristive devices. Solid State Ion. 2016, 296, 114–119. [Google Scholar] [CrossRef]
- Bhagyalakshmi, K. Analog and digital resistive switching in W/TiO2/ITO devices: The impact of crystallinity and Indium diffusion. Phys. Scr. 2024, 99, 105977. [Google Scholar]
- Lin, C.; Wang, Y.; Ren, Z.; Wang, H.; Xu, X.; Zhao, J.; Ma, Y.; Liu, Y. Analog–digital hybrid memristive devices for image pattern recognition with tunable learning accuracy and speed. Small Methods 2019, 3, 1900160. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, H.; Xia, Q.; Ye, C.; Wei, X.; Wang, J.; Zhang, L.; Zhu, L.Q. Role of oxygen vacancies at the TiO2/HfO2 interface in flexible oxide-based resistive switching memory. Adv. Electron. Mater. 2019, 5, 1800833. [Google Scholar] [CrossRef]
- Trapatseli, M.; Khiat, A.; Cortese, S.; Serb, A.; Carta, D.; Prodromakis, T. Engineering the switching dynamics of TiOx-based RRAM with Al doping. J. Appl. Phys. 2016, 120, 025108. [Google Scholar] [CrossRef]
- Hu, R.; Li, X.; Tang, J.; Li, Y.; Zheng, X.; Gao, B.; Qian, H.; Wu, H. Investigation of resistive switching mechanisms in Ti/TiOx/Pd-based RRAM devices. Adv. Electron. Mater. 2022, 8, 2100827. [Google Scholar] [CrossRef]
- Lermusiaux, L.; Mazel, A.; Carretero-Genevrier, A.; Sanchez, C.; Drisko, G.L. Metal-Induced Crystallization in Metal Oxides. Acc. Chem. Res. 2022, 55, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Obstarczyk, A.; Kaczmarek, D.; Mazur, M.; Wojcieszak, D.; Domaradzki, J.; Kotwica, T.; Morgiel, J. The effect of post-process annealing on optical and electrical properties of mixed HfO2–TiO2 thin film coatings. J. Mater. Sci. Mater. Electron. 2019, 30, 6358–6369. [Google Scholar] [CrossRef]
- Silva, D.; Monteiro, C.S.; Silva, S.O.; Frazão, O.; Pinto, J.V.; Raposo, M.; Ribeiro, P.A.; Sério, S. Sputtering Deposition of TiO2 Thin Film Coatings for Fiber Optic Sensors. Photonics 2022, 9, 342. [Google Scholar] [CrossRef]
- Hu, X.; Wang, W.; Sun, B.; Wang, Y.; Li, J.; Zhou, G. Refining the negative differential resistance effect in a TiOx-based memristor. J. Phys. Chem. Lett. 2021, 12, 5377–5383. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.T.; Ahn, G.; Choi, S.J.; Kim, D.M.; Kim, D.H. Control of the boundary between the gradual and abrupt modulation of resistance in the schottky barrier tunneling-modulated amorphous indium-gallium-zinc-oxide memristors for neuromorphic computing. Electronics 2019, 8, 1087. [Google Scholar] [CrossRef]
- Lim, E.; Ismail, R. Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics 2015, 4, 586–613. [Google Scholar] [CrossRef]
- Sultana, R.; Islama, K.; Rakshita, A.; Mukherjeea, M.; Chakraborty, S. Effect of Zr doping and lattice oxygen release on the resistive switching properties of ZrxHf1−xO2-based metal-oxide-semiconductor devices. Microelectron. Eng. 2019, 216, 111099. [Google Scholar] [CrossRef]
- Chiu, F.C. A Review on Conduction Mechanisms in Dielectric Films. Adv. Mater. Sci. Eng. 2014, 2014, 578168. [Google Scholar] [CrossRef]
- Funck, C.; Menzel, S. Comprehensive model of electron conduction in oxide-based memristive devices. ACS Appl. Electron. Mater. 2021, 3, 3674–3692. [Google Scholar] [CrossRef]
- Shang, D.S.; Wang, Q.; Chen, L.D.; Dong, R.; Li, X.M.; Zhang, W.Q. Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag∕La0.7 Ca0.3MnO3∕ Pt heterostructures. Phys. Rev. B—Condens. Matter Mater. Phys. 2006, 73, 245427. [Google Scholar] [CrossRef]
- Lee, J.-K.; Pyo, J.; Kim, S. Low-Frequency Noise-Based Mechanism Analysis of Endurance Degradation in Al/αTiOx/Al Resistive Random Access Memory Devices. Materials 2023, 16, 2317. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.L.; Zhou, L.W.; Yoon, K.J.; Jiang, H.; Zhao, J.S.; Zhang, K.L.; Yoo, S.; Hwang, C.S. Electronic resistance switching in the Al/TiOx/Al structure for forming-free and area-scalable memory. Nanoscale 2015, 7, 11063–11074. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Sachdev, M.; Miao, G.X. Stack Optimization of TiOx-based resistive switching devices through interface engineering. IEEE Trans. Electron Devices 2025, 72, 2964–2969. [Google Scholar] [CrossRef]
- Kwak, J.S.; Do, Y.H.; Bae, Y.C.; Im, H.S.; Yoo, J.H.; Sung, M.G.; Hwang, Y.T.; Hong, J.P. Roles of interfacial TiOxN1−x layer and TiN electrode on bipolar resistive switching in TiN/TiO2/TiN frameworks. Appl. Phys. Lett. 2010, 96, 223502. [Google Scholar] [CrossRef]
- Lee, A.R.; Bae, Y.C.; Im, H.S.; Hong, J.P. Complementary resistive switching mechanism in Ti-based triple TiOx/TiN/TiOx and TiOx/TiOxNy/TiOx matrix. Appl. Surf. Sci. 2013, 274, 85–88. [Google Scholar] [CrossRef]
- Alzahrani, A.O.M.; Abdel-wahab, M.S.; Alayash, M.; Aida, M.S. Metals and ITO contact nature on ZnO and NiO thin films. Braz. J. Phys. 2021, 51, 1159–1165. [Google Scholar] [CrossRef]
- Eastment, R.M.; Mee, C.H. Work function measurements on (100), (110) and (111) surfaces of aluminium. J. Phys. F 1973, 3, 1738. [Google Scholar] [CrossRef]
- Kim, W.G.; Rhee, S.W. Effect of the top electrode material on the resistive switching of TiO2 thin film. Microelectron. Eng. 2010, 87, 98–103. [Google Scholar] [CrossRef]
- Calzolari, A.; Catellani, A. Controlling the TiN electrode work function at the atomistic level: A first principles investigation. IEEE Access 2020, 8, 156308–156313. [Google Scholar] [CrossRef]
- Park, M.H.; Jeong, J.H.; Kim, W.; Park, S.; Lim, B.M.; Lee, H.S.; Kang, S.J. A facile solution processible self-rectifying and sub-1 V operating memristor via oxygen vacancy gradient within a TiO2 single layer. J. Mater. Chem. C 2024, 12, 6881–6892. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, M.; Bian, J.; Li, Q.; Su, J. Flexible ZnO nanosheet-based artificial synapses prepared by low-temperature process for high recognition accuracy neuromorphic computing. Adv. Funct. Mater. 2022, 32, 2209907. [Google Scholar] [CrossRef]
- Sung Lee, J.; Buhm Lee, S.; Kahng, B.; Won Noh, T. Two opposite hysteresis curves in semiconductors with mobile dopants. Appl. Phys. Lett. 2013, 102, 253503. [Google Scholar]
- Linkai, W.; Ze, J.; Tianling, R. Bipolar switching analysis and negative resistance phenomenon in TiOx-based devices. In Proceedings of the IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China, 15–17 December 2010. [Google Scholar]
- Deng, Y.; Xu, X.; Xu, Z.; Wang, M.; Liu, Q.; Ma, Y.; Chen, J.; Meng, K.; Wu, Y.; Miao, J.; et al. Self-rectifying and forming-free resistive switching behaviors in Pt/La2Ti2O7/Pt structure. Ceram. Int. 2022, 48, 4693–4698. [Google Scholar] [CrossRef]
- Chen, D.; Li, A.; Wu, D. Resistive switching in BiFeO3 based heterostructures due to ferroelectric modulation on interface Schottky barriers. J. Mater. Sci. Mater. Electron. 2014, 25, 3251–3256. [Google Scholar] [CrossRef]
- Matsukatova, A.N.; Vdovichenko, A.Y.; Patsaev, T.D.; Forsh, P.A.; Kashkarov, P.K.; Demin, V.A.; Emelyanov, A.V. Scalable nanocomposite parylene-based memristors: Multifilamentary resistive switching and neuromorphic applications. Nano Res. 2023, 16, 3207–3214. [Google Scholar] [CrossRef]
- Yu, S. Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 2018, 106, 260–285. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Ma, Z.; Chen, K.; Huang, X.; Wang, K. HfO2/TiOx bilayer structure memristor with linear conductance tuning for high density memory and neuromorphic computing. J. Appl. Phys. 2020, 128, 184902. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, K.; Sultana, R.; Mroczyński, R. Analog Resistive Switching Phenomena in Titanium Oxide Thin-Film Memristive Devices. Materials 2025, 18, 3454. https://doi.org/10.3390/ma18153454
Islam K, Sultana R, Mroczyński R. Analog Resistive Switching Phenomena in Titanium Oxide Thin-Film Memristive Devices. Materials. 2025; 18(15):3454. https://doi.org/10.3390/ma18153454
Chicago/Turabian StyleIslam, Karimul, Rezwana Sultana, and Robert Mroczyński. 2025. "Analog Resistive Switching Phenomena in Titanium Oxide Thin-Film Memristive Devices" Materials 18, no. 15: 3454. https://doi.org/10.3390/ma18153454
APA StyleIslam, K., Sultana, R., & Mroczyński, R. (2025). Analog Resistive Switching Phenomena in Titanium Oxide Thin-Film Memristive Devices. Materials, 18(15), 3454. https://doi.org/10.3390/ma18153454