Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,912)

Search Parameters:
Keywords = optical and electrical properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5607 KiB  
Article
Tunable Dual-Mode Resonant Excitation of Dumbbell-Shaped Structures in the Mid-Infrared Band
by Tao Jiang, Yafei Li, Zhuangzhuang Xu, Xike Qian, Rui Shi, Xiufei Li, Meng Wang and Ze Li
Nanomaterials 2025, 15(15), 1181; https://doi.org/10.3390/nano15151181 - 31 Jul 2025
Viewed by 45
Abstract
Metasurfaces have drawn extensive research attention for their unique optical properties and vast application potential. Among the various resonant modes induced in metasurfaces, BIC and electric anapole modes stand out as particularly interesting due to their distinctive physical characteristics. In this work, we [...] Read more.
Metasurfaces have drawn extensive research attention for their unique optical properties and vast application potential. Among the various resonant modes induced in metasurfaces, BIC and electric anapole modes stand out as particularly interesting due to their distinctive physical characteristics. In this work, we designed and investigated novel dimeric dumbbell-shaped metasurfaces incorporating two independently tunable asymmetric parameters. This structural innovation enables the simultaneous excitation of both electric anapole and QBIC modes under normally incident MIR illumination. More importantly, by adjusting these two asymmetric parameters, one can independently tune the resonance peaks of the two modes, thereby overcoming the performance limits of conventional single-peak modulation. This metasurface design demonstrates outstanding performance for dielectric environment-sensing applications. We conducted a comprehensive investigation of the sensing sensitivity for dumbbell-shaped metasurfaces of various geometries. Our simulation results show that the circular-shaped configuration achieved high sensitivity, reaching 20,930 GHz/RIU. This work offers a novel design paradigm for multi-mode control and functionalization of metasurface structures. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

20 pages, 2093 KiB  
Review
A Practical Guide Paper on Bulk and PLD Thin-Film Metals Commonly Used as Photocathodes in RF and SRF Guns
by Alessio Perrone, Muhammad Rizwan Aziz, Francisco Gontad, Nikolaos A. Vainos and Anna Paola Caricato
Chemistry 2025, 7(4), 123; https://doi.org/10.3390/chemistry7040123 - 30 Jul 2025
Viewed by 224
Abstract
This paper serves as a comprehensive and practical resource to guide researchers in selecting suitable metals for use as photocathodes in radio-frequency (RF) and superconducting radio-frequency (SRF) electron guns. It offers an in-depth review of bulk and thin-film metals commonly employed in many [...] Read more.
This paper serves as a comprehensive and practical resource to guide researchers in selecting suitable metals for use as photocathodes in radio-frequency (RF) and superconducting radio-frequency (SRF) electron guns. It offers an in-depth review of bulk and thin-film metals commonly employed in many applications. The investigation includes the photoemission, optical, chemical, mechanical, and physical properties of metallic materials used in photocathodes, with a particular focus on key performance parameters such as quantum efficiency, operational lifetime, chemical inertness, thermal emittance, response time, dark current, and work function. In addition to these primary attributes, this study examines essential parameters such as surface roughness, morphology, injector compatibility, manufacturing techniques, and the impact of chemical environmental factors on overall performance. The aim is to provide researchers with detailed insights to make well-informed decisions on materials and device selection. The holistic approach of this work associates, in tabular format, all photo-emissive, optical, mechanical, physical, and chemical properties of bulk and thin-film metallic photocathodes with experimental data, aspiring to provide unique tools for maximizing the effectiveness of laser cleaning treatment. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

21 pages, 2189 KiB  
Article
Surface Modification, Characterization, and Cytotoxicity of Ti-6Al-4V Alloy Enriched by EDM Process
by Bárbara A. B. dos Santos, Elaine C. S. Corrêa, Wellington Lopes, Liszt Y. C. Madruga, Ketul C. Popat, Roberta M. Sabino and Hermes de Souza Costa
Appl. Sci. 2025, 15(15), 8443; https://doi.org/10.3390/app15158443 - 30 Jul 2025
Viewed by 232
Abstract
This study investigates the surface modification of Ti-6Al-4V alloy through the electrical discharge machining (EDM) process to improve its suitability for orthopedic and dental implant applications. The analysis focused on evaluating the morphological, wettability, roughness, hardness, and biocompatibility properties of the modified surfaces. [...] Read more.
This study investigates the surface modification of Ti-6Al-4V alloy through the electrical discharge machining (EDM) process to improve its suitability for orthopedic and dental implant applications. The analysis focused on evaluating the morphological, wettability, roughness, hardness, and biocompatibility properties of the modified surfaces. Samples were subjected to different dielectric fluids and polarities during EDM. Subsequently, optical microscopy, roughness measurements, Vickers microhardness, contact angle tests, and in vitro cytotoxicity assays were performed. The results demonstrated that EDM processing led to the formation of distinct layers on the sample surfaces, with surface roughness increasing under negative polarity by up to ~304% in Ra and 305% in Rz. Additionally, wettability measurements indicated that the modified surfaces presented a lower water contact angle, which suggests enhanced hydrophilicity. Moreover, the modified samples showed a significant increase in Vickers microhardness, with the highest value reaching 1520 HV in the recast layer, indicating improvements in the mechanical properties. According to ISO 10993-5, all treated samples were classified as non-cytotoxic, presenting RGR values above 75%, similar to the untreated Ti-6Al-4V alloy. Therefore, it is concluded that surface modification through the EDM process has the potential to enhance the properties and safety of biomedical implants made with this alloy. Full article
(This article belongs to the Special Issue Titanium and Its Compounds: Properties and Innovative Applications)
Show Figures

Figure 1

18 pages, 3939 KiB  
Article
Transparent Alicyclic Polyimides Prepared via Copolymerization or Crosslinking: Enhanced Flexibility and Optical Properties for Flexible Display Cover Windows
by Hyuck-Jin Kwon, Jun Hwang, Suk-Min Hong and Chil Won Lee
Polymers 2025, 17(15), 2081; https://doi.org/10.3390/polym17152081 - 30 Jul 2025
Viewed by 220
Abstract
Transparent polyimides with excellent mechanical properties and high optical transmittance have been widely used in various optical and electrical applications. However, due to the rigidity of their aromatic structure, their flexibility is limited, making them unsuitable for applications requiring different form factors, such [...] Read more.
Transparent polyimides with excellent mechanical properties and high optical transmittance have been widely used in various optical and electrical applications. However, due to the rigidity of their aromatic structure, their flexibility is limited, making them unsuitable for applications requiring different form factors, such as flexible display cover windows. Furthermore, the refractive index of most transparent polyimides is approximately 1.57, which differs from that of the optically clear adhesives (OCAs) and window materials that have values typically around 1.5, resulting in visual distortion. This study employed 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 2,2′-bis(trifluoromethyl)benzidine (TFMB) as the base structure of polyimides (6T). Additionally, 1,3-bis(aminomethyl)cyclohexane (BAC) with a monocyclic structure and bis(aminomethyl)bicyclo[2,2,1]heptane (BBH) with a bicyclic structure were introduced as co-monomers or crosslinking agents to 6T. The mechanical, thermal, and optical properties of the obtained copolymers (6T-BAC and 6T-BBH series) and crosslinked polymers (6T-CL-BAC and 6T-CL-BBH series) were compared. Both the copolymer series (6T-BAC and 6T-BBH) and the crosslinked series (6T-CL-BAC and 6T-CL-BBH) exhibited improved optical properties compared to the conventional 6T, with maximum transmittance exceeding 90% and refractive indices ranging from approximately 1.53 to 1.55. Notably, the copolymer series achieved transmittance levels above 95% and exhibited lower refractive indices (~1.53), demonstrating superior optical performance relative not only to the 6T baseline but also to the crosslinked series. The alicyclic polyimides synthesized in this study exhibited mechanical flexibility, high optical transmittance, and a refractive index approaching 1.5, demonstrating their applicability for use as flexible display cover window materials. Full article
Show Figures

Graphical abstract

15 pages, 2504 KiB  
Article
The Effect of the Interaction of Intense Low-Energy Radiation with a Zinc-Oxide-Based Material
by Ihor Virt, Piotr Potera, Nazar Barchuk and Mykola Chekailo
Crystals 2025, 15(8), 685; https://doi.org/10.3390/cryst15080685 - 28 Jul 2025
Viewed by 135
Abstract
Laser annealing of oxide functional thin films makes them compatible with substrates of various types, especially flexible materials. The effects of optical annealing on Ni-doped ZnO thin films were the subject of investigation and analysis in this study. Using pulsed laser deposition, we [...] Read more.
Laser annealing of oxide functional thin films makes them compatible with substrates of various types, especially flexible materials. The effects of optical annealing on Ni-doped ZnO thin films were the subject of investigation and analysis in this study. Using pulsed laser deposition, we deposited polycrystalline ZnNiO films on sapphire and silicon substrates. The deposited film was annealed by laser heating. A continuous CO2 laser was used for this purpose. The uniformly distributed long-wavelength radiation of the CO2 laser can penetrate deeper from the surface of the thin film compared to short-wavelength lasers such as UV and IR lasers. After growth, optical post-annealing processes were applied to improve the conductive properties of the films. The crystallinity and surface morphology of the grown films and annealed films were analyzed using SEM, and their electrical parameters were evaluated using van der Pauw effect measurements. We used electrical conductivity measurements and investigated the photovoltaic properties of the ZnNiO film. After CO2 laser annealing, changes in both the crystalline structure and surface appearance of ZnO were evident. Subsequent to laser annealing, the crystallinity of ZnO showed both change and degradation. High-power CO2 laser annealing changed the structure to a mixed grain size. Surface nanostructuring occurred. This was confirmed by SEM morphological studies. After irradiation, the electrical conductivity of the films increased from 0.06 Sm/cm to 0.31 Sm/cm. The lifetime of non-equilibrium charge carriers decreased from 2.0·10−9 s to 1.2·10−9 s. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 2625 KiB  
Article
Monitoring and Diagnostics of Non-Thermal Plasmas in the Food Sector Using Optical Emission Spectroscopy
by Sanda Pleslić and Franko Katalenić
Appl. Sci. 2025, 15(15), 8325; https://doi.org/10.3390/app15158325 - 26 Jul 2025
Viewed by 100
Abstract
Non-thermal plasma technology is used in the food sector due to its many advantages such as low operating costs, fast and efficient processing at low temperatures, minimal environmental impact, and preservation of sensory and nutritional properties. In this article, the plasma was generated [...] Read more.
Non-thermal plasma technology is used in the food sector due to its many advantages such as low operating costs, fast and efficient processing at low temperatures, minimal environmental impact, and preservation of sensory and nutritional properties. In this article, the plasma was generated using a high-voltage electrical discharge (HVED) with argon at a voltage of 35 kV and a frequency of 60 Hz. Plasma monitoring and diagnostics were performed using optical emission spectroscopy (OES) to optimise the process parameters and for quality control. OES was used as a non-invasive sensor to collect useful information about the properties of the plasma and to identify excited species. The values obtained for electron temperature and electron density (up to 2.3 eV and up to 1023 m3) confirmed that the generated plasma is a non-thermal plasma. Therefore, the use of OES is recommended in the daily control of food processing, as this is necessary to confirm that the processes are non-thermal and suitable for the food sector. Full article
(This article belongs to the Special Issue Innovative Technology in Food Analysis and Processing)
Show Figures

Figure 1

17 pages, 7068 KiB  
Article
Effect of Ni-Based Buttering on the Microstructure and Mechanical Properties of a Bimetallic API 5L X-52/AISI 316L-Si Welded Joint
by Luis Ángel Lázaro-Lobato, Gildardo Gutiérrez-Vargas, Francisco Fernando Curiel-López, Víctor Hugo López-Morelos, María del Carmen Ramírez-López, Julio Cesar Verduzco-Juárez and José Jaime Taha-Tijerina
Metals 2025, 15(8), 824; https://doi.org/10.3390/met15080824 - 23 Jul 2025
Viewed by 285
Abstract
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic [...] Read more.
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic plates. After the root welding pass, buttering with an ERNiCrMo-3 filler wire was performed and multi-pass welding followed using an ER70S-6 electrode. The results obtained by optical and scanning electron microscopy indicated that the shielding atmosphere, welding parameters, and electric arc oscillation enabled good arc stability and proper molten metal transfer from the filler wire to the sidewalls of the joint during welding. Vickers microhardness (HV) and tensile tests were performed for correlating microstructural and mechanical properties. The mixture of ERNiCrMo-3 and ER70S-6 filler materials presented fine interlocked grains with a honeycomb network shape of the Ni–Fe mixture with Ni-rich grain boundaries and a cellular-dendritic and equiaxed solidification. Variation of microhardness at the weld metal (WM) in the middle zone of the bimetallic welded joints (BWJ) is associated with the manipulation of the welding parameters, promoting precipitation of carbides in the austenitic matrix and formation of martensite during solidification of the weld pool and cooling of the WM. The BWJ exhibited a mechanical strength of 380 and 520 MPa for the yield stress and ultimate tensile strength, respectively. These values are close to those of the as-received API 5L X-52 steel. Full article
Show Figures

Figure 1

22 pages, 10488 KiB  
Article
Morphological and Functional Evolution of Amorphous AlN Thin Films Deposited by RF-Magnetron Sputtering
by Maria-Iulia Zai, Ioana Lalau, Marina Manica, Lucia Chiriacescu, Vlad-Andrei Antohe, Cristina C. Gheorghiu, Sorina Iftimie, Ovidiu Toma, Mirela Petruta Suchea and Ștefan Antohe
Surfaces 2025, 8(3), 51; https://doi.org/10.3390/surfaces8030051 - 17 Jul 2025
Viewed by 301
Abstract
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron [...] Read more.
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical profilometry, spectroscopic ellipsometry (SE), and electrical measurements—was performed to explore the physical structure, morphology, and optical and electrical properties of the films. The analysis of the film structure by XRR revealed that increasing sputtering power resulted in thicker, denser AlN layers, while thermal treatment promoted densification by reducing density gradients but also induced surface roughening and the formation of island-like morphologies. Optical studies confirmed excellent transparency (>80% transmittance in the near-infrared region) and demonstrated the tunability of the refractive index with sputtering power, critical for optoelectronic applications. The electrical characterization of Au/AlN/Al sandwich structures revealed a transition from Ohmic to trap-controlled space charge limited current (SCLC) behavior under forward bias—a transport mechanism frequently present in a material with very low mobility, such as AlN—while Schottky conduction dominated under reverse bias. The systematic correlation between deposition parameters, thermal treatment, and the resulting physical properties offers valuable pathways to engineer AlN thin films for next-generation optoelectronic and high-frequency device applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

17 pages, 2381 KiB  
Review
From Na2Cl to CaCl: Progress in the 2D Crystals of Unconventional Stoichiometries in Ambient Conditions
by Mengjiao Wu, Xiaoling Lei and Haiping Fang
Solids 2025, 6(3), 38; https://doi.org/10.3390/solids6030038 - 15 Jul 2025
Viewed by 269
Abstract
Two-dimensional (2D) crystals which present unconventional stoichiometries on graphene surfaces in ambient conditions, such as Na2Cl, Na3Cl, and CaCl, have attracted significant attention in recent years due to their electronic structures and abnormal cation–anion ratios, which differ from those [...] Read more.
Two-dimensional (2D) crystals which present unconventional stoichiometries on graphene surfaces in ambient conditions, such as Na2Cl, Na3Cl, and CaCl, have attracted significant attention in recent years due to their electronic structures and abnormal cation–anion ratios, which differ from those of conventional three-dimensional crystals. This unconventional crystallization is attributed to the cation–π interaction between ions and the π-conjugated system of the graphene surface. Consequently, their physical and chemical properties—including their electrical, optical, magnetic, and mechanical characteristics—often differ markedly from those of conventional crystals. This review summarizes the recent progress made in the fabrication and analysis of the structures, distinctive features, and applications of these 2D unconventional stoichiometry crystals on graphene surfaces in ambient conditions. Their special properties, including their piezoelectricity, metallicity, heterojunction, and room-temperature ferromagnetism, are given particularly close attention. Finally, some significant prospects and further developments in this exciting interdisciplinary field are proposed. Full article
Show Figures

Figure 1

26 pages, 4053 KiB  
Review
A Study on the Multifunctional Properties and Application Perspectives of ZnO/SiC Composite Materials
by Mohammad Nur-E-Alam
Inorganics 2025, 13(7), 235; https://doi.org/10.3390/inorganics13070235 - 10 Jul 2025
Viewed by 395
Abstract
ZnO/SiC nanocomposite materials possess significant potential for various technological fields due to their extraordinary optical, electrical, thermal, and mechanical properties. The synthesis methods, material properties, and diverse applications of ZnO/SiC composites have been systematically explored in this study. The potential application areas of [...] Read more.
ZnO/SiC nanocomposite materials possess significant potential for various technological fields due to their extraordinary optical, electrical, thermal, and mechanical properties. The synthesis methods, material properties, and diverse applications of ZnO/SiC composites have been systematically explored in this study. The potential application areas of this nanocomposite include their roles in photocatalysis, optoelectronic devices, gas sensors, and photovoltaic systems. The synergetic effects of ZnO and SiC are analyzed to highlight their advantages over their individual components. Future research directions must focus on the remaining challenges to optimize these nanoscale composite materials for industrial and emerging applications. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

15 pages, 2579 KiB  
Article
Photo-Scanning Capacitance Microscopy and Spectroscopy Study of Epitaxial GaAsN Layers and GaAsN P-I-N Solar Cell Structures
by Adam Szyszka, Wojciech Dawidowski, Damian Radziewicz and Beata Ściana
Nanomaterials 2025, 15(14), 1066; https://doi.org/10.3390/nano15141066 - 9 Jul 2025
Viewed by 352
Abstract
This work presents a novel approach to investigating epitaxial GaAsN layers and GaAsN-based p-i-n solar cell structures using light-assisted scanning capacitance microscopy (SCM) and spectroscopy. Due to the technological challenges in growing high-quality GaAsN with controlled nitrogen incorporation, the epitaxial layers often exhibit [...] Read more.
This work presents a novel approach to investigating epitaxial GaAsN layers and GaAsN-based p-i-n solar cell structures using light-assisted scanning capacitance microscopy (SCM) and spectroscopy. Due to the technological challenges in growing high-quality GaAsN with controlled nitrogen incorporation, the epitaxial layers often exhibit inhomogeneity in their opto-electrical properties. By combining localized cross-section SCM measurements with wavelength-tunable optical excitation (800–1600 nm), we resolved carrier concentration profiles, internal electric fields, and deep-level transitions across the device structure at a nanoscale resolution. A comparative analysis between electrochemical capacitance–voltage (EC-V) profiling and photoluminescence spectroscopy confirmed multiple localized transitions, attributed to compositional fluctuations and nitrogen-induced defects within GaAsN. The SCM method revealed spatial variations in energy states, including discrete nitrogen-rich regions and gradual variations in the nitrogen content throughout the layer depth, which are not recognizable using standard characterization methods. Our results demonstrate the unique capability of the photo-scanning capacitance microscopy and spectroscopy technique to provide spatially resolved insights into complex dilute nitride structures, offering a universal and accessible tool for semiconductor structures and optoelectronic devices evaluation. Full article
(This article belongs to the Special Issue Spectroscopy and Microscopy Study of Nanomaterials)
Show Figures

Graphical abstract

27 pages, 3554 KiB  
Article
Impact of Poly(Lactic Acid) and Graphene Oxide Nanocomposite on Cellular Viability and Proliferation
by Karina Torres Pomini, Júlia Carolina Ferreira, Laira Mireli Dias da Silva, Paulo Gabriel Friedrich Totti, Monique Gonçalves Alves, Eliana de Souza Bastos Mazuqueli Pereira, Marcelo Melo Soares, Durvanei Augusto Maria and Rose Eli Grassi Rici
Pharmaceutics 2025, 17(7), 892; https://doi.org/10.3390/pharmaceutics17070892 - 9 Jul 2025
Viewed by 377
Abstract
Background/Objectives: Although the nanocomposite of poly(L-lactic acid) with graphene oxide (PLLA-GO) shows promise for tissue engineering, its specific bioactive interactions with diverse cell lineages during early tissue regeneration remain unclear. This study comprehensively investigated the in vitro multifaceted biocompatibility of PLLA-GO using human [...] Read more.
Background/Objectives: Although the nanocomposite of poly(L-lactic acid) with graphene oxide (PLLA-GO) shows promise for tissue engineering, its specific bioactive interactions with diverse cell lineages during early tissue regeneration remain unclear. This study comprehensively investigated the in vitro multifaceted biocompatibility of PLLA-GO using human fibroblasts (FN1 cells), murine mesenchymal stem cells (mBMSCs), and human umbilical vein endothelial cells (HUVECs). Methods: Morphological analyses were performed using optical and scanning electron microscopy, while proliferation dynamics were assessed via CFSE staining. Cell cycle progression was evaluated using flow cytometry, mitochondrial activity was examined through TMRE staining, and inflammatory cytokine profiling was performed via Cytometric Bead Array (CBA). Results: PLLA-GO exhibited primary biocompatibility across all evaluated cell lines, characterized by efficient adhesion and proliferation. However, significant cell-type-dependent modulations were observed. The FN1 cells exhibited proliferative adaptation but induced accelerated scaffold degradation, as evidenced by a substantial increase in cellular debris (5.93% control vs. 34.38% PLLA-GO; p = 0.03). mBMSCs showed a transient initial proliferative response and a significant 21.66% increase in TNF-α production (179.67 pg/mL vs. 147.68 pg/mL in control; p = 0.03). HUVECs demonstrated heightened mitochondrial sensitivity, exhibiting a 32.19% reduction in mitochondrial electrical potential (97.07% control vs. 65.82% PLLA-GO; p ≤ 0.05), alongside reductions in pro-inflammatory cytokines TNF-α (8.73%) and IL-6 (12.47%). Conclusions: The PLLA-GO processing method is crucial for its properties and subsequent cellular interactions. Therefore, rigorous and specific preclinical evaluations—considering both cellular contexts and fabrication—are indispensable to ensure the safety and therapeutic potential of PLLA-GO in tissue engineering and regenerative medicine. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

13 pages, 3092 KiB  
Article
Carbon Dioxide Gas Sensor Based on Terahertz Metasurface with Asymmetric Cross-Shaped Holes Empowered by Quasi-Bound States in the Continuum
by Kai He and Tian Ma
Sensors 2025, 25(13), 4178; https://doi.org/10.3390/s25134178 - 4 Jul 2025
Viewed by 348
Abstract
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped [...] Read more.
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped hole structure. A thorough analysis of the optical properties and the quasi-BIC response is conducted using the finite element method. Utilizing the symmetry-breaking theory, the symmetry of the metal metasurface is broken, allowing the excitation of double quasi-BIC resonance modes with a high quality factor and high sensitivity to be achieved. Analysis of the multipole power distribution diagram and the spatial distribution of the electric field at the two quasi-BIC resonances verifies that the two quasi-BIC resonances of the metasurface are excited by electric dipoles and electric quadrupoles, respectively. Further simulation analysis demonstrates that the refractive index sensitivities of the two quasi-BIC modes of the metasurface reach 404.5 GHz/RIU and 578.6 GHz/RIU, respectively. Finally, the functional material PHMB is introduced into the metasurface to achieve highly sensitive sensing and detection of CO2 gas concentrations. The proposed metallic metasurface structure exhibits significant advantages, including high sensitivity, ease of preparation, and a high Q-value, which renders it highly promising for a broad range of applications in the domains of terahertz biosensing and highly sensitive gas sensing. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices: 2nd Edition)
Show Figures

Figure 1

28 pages, 3287 KiB  
Review
Recent Progress in Photocatalytic Hydrogen Production Using 2D MoS2 Based Materials
by Khursheed Ahmad and Tae Hwan Oh
Catalysts 2025, 15(7), 648; https://doi.org/10.3390/catal15070648 - 2 Jul 2025
Viewed by 673
Abstract
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood [...] Read more.
Due to the increase in energy demand, photocatalytic hydrogen (H2) production has received enormous interest from the scientific community due to its simplicity and cost-effectiveness. The photocatalyst (PC) plays a vital role in H2 evolution, and it is well understood that an efficient PC should have a larger surface area and better charge separation and transport properties. Previously, extensive efforts were made to prepare the efficient PC for photocatalytic H2 production. In some cases, pristine catalyst could not catalyze the catalytic reactions due to a fast recombination rate or poor catalytic behavior. Thus, cocatalysts can be explored to boost the photocatalytic H2 production. In this regard, a promising cocatalyst should have a large surface area, more active sites, decent conductivity, and improved catalytic properties. Molybdenum disulfide (MoS2) is one of the two-dimensional (2D) layered materials that have excellent optical, electrical, and physicochemical properties. MoS2 has been widely utilized as a cocatalyst for the photocatalytic H2 evolution under visible light. Herein, we have reviewed the progress in the fabrication of MoS2 and its composites with metal oxides, perovskite, graphene, carbon nanotubes, graphitic carbon nitrides, polymers, MXenes, metal-organic frameworks, layered double hydroxides, metal sulfides, etc. for photocatalytic H2 evolution. The reports showed that MoS2 is one of the desirable cocatalysts for photocatalytic H2 production applications. The challenges and future perspectives are also mentioned. This study may be beneficial for the researchers working on the design and fabrication of MoS2-based PCs for photocatalytic H2 evolution applications. Full article
Show Figures

Figure 1

26 pages, 3149 KiB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 1 | Viewed by 499
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

Back to TopTop