From Na2Cl to CaCl: Progress in the 2D Crystals of Unconventional Stoichiometries in Ambient Conditions
Abstract
1. Introduction
Conditions | Crystals | Brief Description | Properties | Ref. |
---|---|---|---|---|
High pressure | NaCl3 | 1. The calculated phase diagram features unexpected compounds: NaCl3, which is stable above 20 GPa; NaCl7, which is stable above 142 GPa; and Na2Cl, Na3Cl, and Na3Cl2, which are stable above 100 GPa, 77 GPa, and 120 GPa, respectively. 2. High-pressure experiments were performed in a laser-heated diamond anvil cell at 10 to 80 GPa on the Na-Cl system, using excess chlorine and sodium to synthesize NaCl3 and Na3Cl. | Unusual bonding and electronic properties; metallic Na3Cl | [8] |
NaCl7 | ||||
Na2Cl | ||||
Na3Cl | ||||
Na3Cl2 | ||||
LiHn, n = 2–8 | Every phase of LiHn (n > 1) is computed to become metallic and stable or metastable in the range of 100–165 GPa. | Metallicity | [9] | |
V2O | It is identified to be thermodynamically stable in the pressure range of 80–200 GPa. | Metallic and superconducting properties | [10] | |
H3S | It formed from H2S by decomposition under pressure. | High-Tc superconductivity | [11] | |
IrF8 | Synthesis of IrF8 using IrF6 and F2 as precursors at a pressure above 39 GPa. | / | [12] | |
GaH7 | Calculations show a high estimated Tc above 100 K at 200–300 GPa for GaH7. | Superconductivity | [13] | |
Moderate pressure | PtN2 | PtN2, PtN4, PtN5, and Pt3N4 compounds are stabilized at a moderate pressure of 50 GPa by combining first-principles calculations and particle-swarm-optimized structure search methods. | / | [14] |
PtN4 | / | |||
PtN5 | / | |||
Pt3N4 | Metallic and superconducting properties | |||
Low pressure | LiCs | It is prepared from an approximately equimolar mixture in very low pressure conditions (<0.1 GPa). | / | [23] |
Structure prediction | KN2 | Two stable non-stoichiometric 2D materials, KN2 and KN4 monolayers, are uncovered using a combination of swarm intelligence structural search and ab initio calculation. | Metallic properties | [24] |
KN4 | Superconductivity | |||
K3Cl2 | K3Cl2 is predicted based on a systematic PSO algorithm approach combined with DFT calculations. | Metallic properties | [25] | |
Under ambient conditions | Na2Cl | The direct observation, under ambient conditions, of Na2Cl and Na3Cl as Na–Cl crystals on reduced graphene oxide membranes and on the surfaces of natural graphite powders from salt solutions far below the saturated concentration. | / | [19] |
Na3Cl | / | |||
CaCl | CaCl crystals are obtained by soaking ultrathin reduced graphene oxide membranes (thickness < 10 nm) in CaCl2 solution below the saturated concentration under ambient conditions. | Metallic properties, room-temperature ferromagnetism, heterojunction, and a piezoelectricity-like property | [20] | |
Li2Cl | Li2Cl crystal in ultrathin reduced graphene oxide (rGO) membranes by simply soaking the rGO membrane in unsaturated LiCl solution under ambient conditions. | High areal capacitance of 220 mF cm−2, heterostructure property, and piezoelectricity | [22] | |
K2Cl | K2Cl crystals are obtained by soaking reduced graphene oxide membranes (12 mm diameter) in 0.5 M KCl salt solution for 3 h under ambient conditions. | / | [26] | |
NaCl2 | NaCl2 crystals are prepared under ambient conditions in graphene oxide membranes with controlled positive surface potential (p-GO). | Room-temperature ferromagnetism | [21] |
2. Hydrated Cation−π Interactions on the Graphene-Based Material Surface
3. Fabrication of Freestanding GOM and rGOM
4. Two-Dimensional Na-Cl, K-Cl, and Li-Cl Crystals of Unconventional Stoichiometries on Graphene Surface at Ambient Conditions
4.1. Two-Dimensional Na–Cl Crystals
4.2. Two-Dimensional Li-Cl Crystals
4.3. Two-Dimensional K-Cl Crystals
5. Two-Dimensional Ca-Cl Crystals of Unconventional Stoichiometries on Graphene Surfaces at Ambient Conditions
6. Two-Dimensional Na-Cl Crystals of Unconventional Stoichiometries on Metal Surfaces at Ambient Conditions
7. Conclusions and Perspective
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Wang, Y.; Lv, J.; Ma, Y. Materials discovery at high pressures. Nat. Rev. Mater. 2017, 2, 17005. [Google Scholar] [CrossRef]
- Xu, M.; Li, Y.; Ma, Y. Materials by design at high pressures. Chem. Sci. 2022, 13, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Sun, Y.; Zurek, E.; Lin, H. Chemistry under high pressure. Nat. Rev. Chem. 2020, 4, 508–527. [Google Scholar] [CrossRef]
- Dubrovinsky, L.; Dubrovinskaia, N.; Prakapenka, V.; Abakumov, A. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 2012, 3, 1163. [Google Scholar] [CrossRef] [PubMed]
- Dubrovinskaia, N.; Dubrovinsky, L.; Solopova, N.; Abakumov, A.; Turner, S.; Hanfland, M.; Bykova, E.; Bykov, M.; Prescher, C.; Prakapenka, V.; et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2016, 2, e1600341. [Google Scholar] [CrossRef] [PubMed]
- McMillan, P. Pressing on: The legacy of Percy W. Bridgman. Nat. Mater. 2005, 4, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Gong, X.; Yin, W. Crystal structure prediction by combining graph network and optimization algorithm. Nat. Commun. 2022, 13, 1492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Oganov, A.; Goncharov, A.; Zhu, Q.; Boulfelfel, S.; Lyakhov, A.; Stavrou, E.; Somayazulu, M.; Prakapenka, V.; Konôpková, Z. Unexpected Stable Stoichiometries of Sodium Chlorides. Science 2013, 342, 1502–1505. [Google Scholar] [CrossRef] [PubMed]
- Zurek, E.; Hoffmann, R.; Ashcroft, N.; Oganov, A.; Lyakhov, A. A little bit of lithium does a lot for hydrogen. Proc. Natl. Acad. Sci. USA 2009, 106, 17640–17643. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhang, J.; Yu, H.; Lin, J.; Zhang, S.; Yang, G. Unconventional stable stoichiometry of vanadium peroxide. Phys. Chem. Chem. Phys. 2020, 22, 11460–11466. [Google Scholar] [CrossRef] [PubMed]
- Drozdov, A.; Eremets, M.; Troyan, I.; Ksenofontov, V.; Shylin, S. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhao, Z.; Liu, C.; Zhang, J.; Du, X.; Yang, G.; Ma, Y. IrF8 Molecular Crystal under High Pressure. J. Am. Chem. Soc. 2019, 141, 5409–5414. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Cui, W.; Shi, J.; Hao, J.; Li, Y. Superconducting H7 chain in gallium hydrides at high pressure. Phys. Chem. Chem. Phys. 2023, 25, 7223–7228. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Xiao, X.; Dai, W.; Sun, W.; Ding, K.; Lu, C. Predicted the structural diversity and electronic properties of Pt–N compounds under high pressure. J. Phys. Condens. Mattter 2023, 35, 285501. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.; Geim, A.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Geim, A. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.; Khan, U.; Blau, W.; Gun’ko, Y. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006, 44, 1624–1652. [Google Scholar] [CrossRef]
- Geim, A.; Novoselov, K. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Chen, L.; Yang, Y.; Li, D.; Qian, Z.; Liang, S.; Yan, L.; Li, L.H.; Wu, M.; Fang, H. Two-dimensional Na–Cl crystals of unconventional stoichiometries on graphene surface from dilute solution at ambient conditions. Nat. Chem. 2018, 10, 776–779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shi, G.; Peng, B.; Gao, P.; Chen, L.; Zhong, N.; Mu, L.; Zhang, L.; Zhang, P.; Gou, L.; et al. Novel 2D CaCl crystals with metallicity, room-temperature ferromagnetism, heterojunction, piezoelectricity-like property and monovalent calcium ions. Nat. Sci. Rev. 2021, 8, nwaa274. [Google Scholar] [CrossRef] [PubMed]
- Yi, R.; Jiang, J.; Yang, Y.; Zhang, Y.; Gao, S.; Zhao, Y.; Hu, J.; Su, X.; Xia, X.; Peng, B.; et al. Two-dimensional anion-rich NaCl2 crystal under ambient conditions. Nat. Commun. 2025, 16, 464. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, Y.; Liu, X.; Qiu, Y.; He, Z.; Zhang, S.; Fang, H.; Chen, L.; Zhang, L.; Shi, G. 2D metallic abnormal Li2Cl crystals with unique electronic characteristics applied in capacitor and humidity sensor. Adv. Mater. Interfaces 2023, 10, 11. [Google Scholar] [CrossRef]
- Desgreniers, S.; Tse, J.; Matsuoka, T.; Ohishi, Y.; Tse, J. Mixing unmixables: Unexpected formation of Li–Cs alloys at low pressure. Sci. Adv. 2015, 1, e1500669. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhao, Y.; Jiang, X.; Wang, B.; Zhao, J. Unconventional stoichiometric two-dimensional potassium nitrides with anion-driven metallicity and superconductivity. J. Mater. Chem. C 2024, 12, 103–109. [Google Scholar] [CrossRef]
- Shao, L.; Huo, H.; Tian, S.; Zhao, X.; Chen, D.; Li, Y.; Ma, C.; Ye, H.; Su, C.; Du, Y. A new 2D metallic K3Cl2 nanosheet as a promising candidate of NO2 gas sensor and capturer. Appl. Surf. Sci. 2022, 604, 154554. [Google Scholar] [CrossRef]
- Zhan, J.; Lei, Z.; Liu, X.; Yang, M.; Li, M.; Fang, H.; Zhang, Y.; Wang, Y.; Shi, G. Abnormal-stoichiometric KxCl crystal decoration: A new strategy to improve K-Ion storage performance of graphene paper. Carbon 2020, 192, 93–100. [Google Scholar] [CrossRef]
- Li, D.; Kaner, R. Graphene-Based Materials. Science 2008, 320, 1170–1171. [Google Scholar] [CrossRef] [PubMed]
- Sunner, J.; Nishizawa, K.; Kebarle, P. Ion-solvent molecule interactions in the gas phase. The potassium ion and benzene. J. Phys. Chem. 1981, 85, 1814–1820. [Google Scholar] [CrossRef]
- Mahadevi, A.; Sastry, G. Cation-π interaction: Its role and relevance in chemistry, biology, and material science. Chem Rev. 2013, 113, 2100–2138. [Google Scholar] [CrossRef] [PubMed]
- Daze, K.; Hof, F. The cation-π interaction at protein-protein interaction interfaces: Developing and learning from synthetic mimics of proteins that bind methylated lysines. Acc. Chem. Res. 2013, 46, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Song, B.; Shi, G.; Li, H.; Ji, G.; Hu, J.; Chen, X.; Fang, H. Cation⊗3π: Cooperative Interaction of a Cation and Three Benzenes with an Anomalous Order in Binding Energy. J. Am. Chem. Soc. 2012, 134, 12104–12109. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Yang, J.; Zhao, J.; Fang, H. Intercalation and Diffusion of Lithium Ions in a Carbon Nanotube Bundle by ab initio Molecular Dynamics Simulations. Energy Environ. Sci. 2011, 4, 1379–1384. [Google Scholar] [CrossRef]
- Xiu, X.; Puskar, N.; Shanata, J.; Lester, H.; Dougherty, D. Nicotine binding to brain receptors requires a strong cation–π interaction. Nature 2009, 458, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Torrice, M.; Bower, K.; Lester, H.; Dougherty, D. Probing the Role of the Cation–π Interaction in the Binding Sites of GPCRs using Unnatural Amino Acids. Proc. Natl. Acad. Sci. USA 2009, 106, 11919–11924. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, A. The Cation-π Interaction. Acc. Chem. Res. 2013, 46, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Liu, J.; Wang, C.; Song, B.; Tu, Y.; Hu, J.; Fang, H. Ion enrichment on the hydrophobic carbon-based surface in aqueous salt solutions due to cation-π interactions. Sci. Rep. 2013, 3, 3436. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Yang, Y.; Liu, J.; Du, W.; Chen, J.; Shi, G.; Fang, H. Hydrated cation-π interactions of π-electrons with hydrated Li+, Na+, and K+ cations. Phys. Chem. Chem. Phys. 2021, 23, 14662–14670. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liang, S.; Wu, H.; Shi, G.; Fang, H. Revisit the hydrated cation−π interaction at the interface: A new view of dynamics and statistics. Langmuir 2022, 38, 2401–2408. [Google Scholar] [CrossRef] [PubMed]
- Kovtyukhova, N.; Ollivier, P.; Martin, B.; Mallouk, T.; Chizhik, S.; Buzaneva, E.; Gorchinskiy, A. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999, 11, 771–778. [Google Scholar] [CrossRef]
- Dikin, D.; Stankovich, S.; Zimney, E.; Piner, R.; Dommett, G.; Evmenenko, G.; Nguyen, S.; Ruoff, R. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Zhu, M.; Wang, K.; Zhong, M.; Wei, J.; Wu, D.; Xu, Z.; Zhu, H. Selective ion penetration of graphene oxide membranes. ACS Nano 2013, 7, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Xing, L.; Xiang, J.; Cui, L.; Jiao, J.; Sai, H.; Li, Z.; Li, F. Formation of uniform reduced graphene oxide films on modified PET substrates using drop-casting method. Particuology 2014, 17, 66–73. [Google Scholar] [CrossRef]
- Roessler, D.; Walker, W. Electronic Spectra of Crystalline NaCl and KCl. Phys. Rev. 1968, 166, 599–606. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Huang, Y.; Peng, B.; Wang, T.; Yi, R.; Zhao, Y.; Jiang, J.; Dai, F.; Fan, Y.; Li, P.; et al. High-yield synthesis of sodium chlorides of unconventional stoichiometries. Adv. Mater. 2023, 35, 2303072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, D.; Si, M.; Zhu, Z.; Yang, G.; Shi, Z.; Xue, D. Origin of the unexpected room temperature ferromagnetism: Formation of artificial defects on the surface in NaCl particles. J. Mater. Chem. C 2013, 1, 6216–6222. [Google Scholar] [CrossRef]
- Serr, A.; Netznetz, R. Polarizabilities of hydrated and free ions derived from DFT calculations. Int. J. Quantum Chem. 2006, 106, 2960–2974. [Google Scholar] [CrossRef]
- Prencipe, M.; Zupan, A.; Dovesi, R.; Aprà, E.; Saunders, V. Ab initio study of the structural properties of LiF, NaF, KF, LiCl, NaCl, and KCl. Phys. Rev. B 1995, 51, 3391. [Google Scholar] [CrossRef] [PubMed]
- Manthiram, A.; Goodenough, J. Layered lithium cobalt oxide cathodes. Nat. Energy 2021, 6, 323. [Google Scholar] [CrossRef]
- Whittingham, M. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414. [Google Scholar] [CrossRef] [PubMed]
- Bruce, P.; Freunberger, S.; Hardwick, L.; Tarascon, J. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, A. The birth of the lithium-ion battery. Angew. Chem. Int. Ed. 2012, 51, 5798. [Google Scholar] [CrossRef] [PubMed]
- Assat, G.; Tarascon, J. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373. [Google Scholar] [CrossRef]
- Li, Y.; Yu, L.; Hu, W.; Hu, X. Thermotolerant separators for safe lithium-ion batteries under extreme conditions. J. Mater. Chem. A 2020, 8, 20294. [Google Scholar] [CrossRef]
- Shen, L.; Lv, H.; Chen, S.; Kopold, P.; Aken, P.; Wu, X.; Maier, J.; Yu, Y. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv. Mater. 2017, 29, 1700142. [Google Scholar] [CrossRef] [PubMed]
- Jezowski, P.; Crosnier, O.; Deunf, E.; Poizot, P.; Béguin, F.; Brousse, T. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat. Mater. 2018, 17, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zheng, J.; Zhang, H.; Jin, L.; Yang, D.; Lv, H.; Shen, C.; Shellikeri, A.; Zheng, Y.; Gong, R.; et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 2018, 30, 1705670. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, J.; Bianchini, M.; Seo, D.; Rodriguez-Garcia, J.; Ceder, G. Recent Progress and Perspective in Electrode Materials for K-Ion Batteries. Adv. Energy Mater. 2018, 8, 1702384. [Google Scholar] [CrossRef]
- Share, K.; Cohn, A.; Carter, R.; Rogers, B.; Pint, C. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 2016, 10, 9738–9744. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.; Syu, J.; Zhao, Y.; Lo, C.; Varma, A.; Pol, V. Binder-free N- and O-rich carbon nanofiber anodes for long cycle life K-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 17872–17881. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qin, W.; Xie, J.; Lei, H.; Zhu, Y.; Huang, W.; Xu, X.; Zhao, Z.; Mai, W. Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 2018, 53, 415–424. [Google Scholar] [CrossRef]
- Ruan, J.; Zhao, Y.; Luo, S.; Yuan, T.; Yang, J.; Sun, D.; Zheng, S. Fast and stable potassium-ion storage achieved by in situ molecular self-assembling N/O dual-doped carbon network. Energy Storage Mater. 2019, 23, 46–54. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, Y.; Zhang, Q.; Luo, C.; Li, H.; Wu, Y.; Zhang, H.; Wang, X.; Liu, H.; He, X.; et al. Designing and understanding the superior potassium storage performance of nitrogen/phosphorus Co-doped hollow porous bowl-like carbon anodes. Adv. Funct. Mater. 2020, 31, 2007158. [Google Scholar] [CrossRef]
- Qian, Y.; Li, Y.; Yi, Z.; Zhou, J.; Pan, Z.; Tian, J.; Wang, Y.; Sun, S.; Lin, N.; Qian, Y. Revealing the double-edged behaviors of heteroatom sulfur in carbonaceous materials for balancing K-storage capacity and stability. Adv. Funct. Mater. 2020, 31, 2006875. [Google Scholar] [CrossRef]
- Lu, Y.; Li, D.; Liu, F. Characterizing the Chemical Structure of Ti3C2Tx MXene by Angle-Resolved XPS Combined with Argon Ion Etching. Materials 2022, 15, 307. [Google Scholar] [CrossRef] [PubMed]
- Gawande, M.; Goswami, A.; Felpin, F.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. Cu and Cu-based nanoparticles: Synthesis and applications in review catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Liu, X.; Li, Y.; Yang, H.; Ding, Z.; Luo, Y.; Shi, G. Unexpected iron corrosion by excess sodium in two-dimensional Na-Cl crystals of abnormal stoichiometries at ambient conditions. J. Colloid Interface Sci. 2023, 648, 102–107. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Lei, X.; Fang, H. From Na2Cl to CaCl: Progress in the 2D Crystals of Unconventional Stoichiometries in Ambient Conditions. Solids 2025, 6, 38. https://doi.org/10.3390/solids6030038
Wu M, Lei X, Fang H. From Na2Cl to CaCl: Progress in the 2D Crystals of Unconventional Stoichiometries in Ambient Conditions. Solids. 2025; 6(3):38. https://doi.org/10.3390/solids6030038
Chicago/Turabian StyleWu, Mengjiao, Xiaoling Lei, and Haiping Fang. 2025. "From Na2Cl to CaCl: Progress in the 2D Crystals of Unconventional Stoichiometries in Ambient Conditions" Solids 6, no. 3: 38. https://doi.org/10.3390/solids6030038
APA StyleWu, M., Lei, X., & Fang, H. (2025). From Na2Cl to CaCl: Progress in the 2D Crystals of Unconventional Stoichiometries in Ambient Conditions. Solids, 6(3), 38. https://doi.org/10.3390/solids6030038