Surface Modification, Characterization, and Cytotoxicity of Ti-6Al-4V Alloy Enriched by EDM Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Morphological and Chemical Characterization of Surface
2.3. Roughness Measurement
2.4. Vickers Microhardness
2.5. Contact Angle Test
2.6. In Vitro Test
2.6.1. Cell Culture
2.6.2. Cytotoxicity
3. Results and Discussion
3.1. Morphological Aspects of the Surface
3.2. Optical Microscopy (MO)
3.3. Roughness Measurement
3.4. Vickers Microhardness
3.5. Contact Angle
3.6. Cytotoxicity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fekry, A.M.; El-Sherif, R.M. Electrochemical Corrosion Behavior of Magnesium and Titanium Alloys in Simulated Body Fluid. Electrochim. Acta 2009, 54, 7280–7285. [Google Scholar] [CrossRef]
- Sarao, T.P.S.; Singh, H.; Singh, H. Enhancing Biocompatibility and Corrosion Resistance of Ti-6Al-4V Alloy by Surface Modification Route. J. Therm. Spray Technol. 2018, 27, 1388–1400. [Google Scholar] [CrossRef]
- Guillemot, F.; Porté, M.C.; Labrugère, C.; Baquey, C. Ti4+ to Ti3+ Conversion of TiO2 Uppermost Layer by Low-Temperature Vacuum Annealing: Interest for Titanium Biomedical Applications. J. Colloid Interface Sci. 2002, 255, 75–78. [Google Scholar] [CrossRef]
- Swain, S.; Misra, R.D.K.; You, C.K.; Rautray, T.R. TiO2 Nanotubes Synthesised on Ti-6Al-4V ELI Exhibits Enhanced Osteogenic Activity: A Potential next-Generation Material to Be Used as Medical Implants. Mater. Technol. 2021, 36, 393–399. [Google Scholar] [CrossRef]
- Yaszemski, M.J. Biomaterials in Orthopedics; CRC Press: Boca Raton, FL, USA, 2003; ISBN 9780824756864. [Google Scholar]
- Moayedee, Y.; Nikzad, L.; Majidian, H. Exploration into the Microstructural, Mechanical, and Biological Characteristics of the Functionally Graded 3Y-TZP/Ti6Al4V System as a Potential Material for Dental Implants. J. Mech. Behav. Biomed. Mater. 2024, 151, 106380. [Google Scholar] [CrossRef] [PubMed]
- (Sam) Froes, F.H. Titanium for Medical and Dental Applications—An Introduction. In Titanium in Medical and Dental Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–21. [Google Scholar] [CrossRef]
- Rahul; Mishra, D.K.; Datta, S.; Masanta, M. Effects of Tool Electrode on EDM Performance of Ti-6Al-4V. Silicon 2018, 10, 2263–2277. [Google Scholar] [CrossRef]
- Nicholson, J.W. Titanium Alloys for Dental Implants: A Review. Prosthesis 2020, 2, 100–116. [Google Scholar] [CrossRef]
- Ronoh, K.; Mwema, F.; Dabees, S.; Sobola, D. Advances in Sustainable Grinding of Different Types of the Titanium Biomaterials for Medical Applications: A Review. Biomed. Eng. Adv. 2022, 4, 100047. [Google Scholar] [CrossRef]
- Stich, T.; Alagboso, F.; Křenek, T.; Kovářík, T.; Alt, V.; Docheva, D. Implant-bone-interface: Reviewing the Impact of Titanium Surface Modifications on Osteogenic Processes in Vitro and in Vivo. Bioeng. Transl. Med. 2022, 7, e10239. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.N.; Ramachandran, M.; Senthil Kumar, S.; Krishnan, V.; Sundaram, R. Osseointegration and More—A Review of Literature. Indian J. Dent. 2012, 3, 72–76. [Google Scholar] [CrossRef]
- Sabino, R.M.; Mondini, G.; Kipper, M.J.; Martins, A.F.; Popat, K.C. Tanfloc/Heparin Polyelectrolyte Multilayers Improve Osteogenic Differentiation of Adipose-Derived Stem Cells on Titania Nanotube Surfaces. Carbohydr. Polym. 2021, 251, 117079. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Abdun Nafi, M.; Anjir Karim, M.; Lalvani, S.; James, P.F.; Sommers, A.; Jahan, M.P. Investigating Wettability and Corrosion Resistance of the Titanium Alloy Surface Engineered by the WEDM Process. Manuf. Lett. 2023, 35, 450–459. [Google Scholar] [CrossRef]
- Morra, M.; Cassinelli, C.; Cascardo, G.; Bollati, D.; Rodriguez y Baena, R. Multifunctional Implant Surfaces: Surface Characterization and Bone Response to Acid-etched Ti Implants Surface-modified by Fibrillar Collagen I. J. Biomed. Mater. Res. A 2010, 94A, 271–279. [Google Scholar] [CrossRef]
- Grassi, S.; Piattelli, A.; de Figueiredo, L.C.; Feres, M.; de Melo, L.; Iezzi, G.; Alba, R.C.; Shibli, J.A. Histologic Evaluation of Early Human Bone Response to Different Implant Surfaces. J. Periodontol. 2006, 77, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, E.; Awale, G.; Daneshmandi, L.; Umerah, O.; Lo, K.W.-H. The Roles of Ions on Bone Regeneration. Drug Discov. Today 2018, 23, 879–890. [Google Scholar] [CrossRef] [PubMed]
- American Society of Mechanical Engineers. ASME B46.1—Surface Texture (Surface Roughness, Waviness, and Lay); American Society of Mechanical Engineers: New York, NY, USA, 2019. [Google Scholar]
- Von Recum, A.F.; Van Kooten, T.G. The Influence of Micro-Topography on Cellular Response and the Implications for Silicone Implants. J. Biomater. Sci. Polym. Ed. 1996, 7, 181–198. [Google Scholar] [CrossRef]
- Abd-Elaziem, W.; Darwish, M.A.; Hamada, A.; Daoush, W.M. Titanium-Based Alloys and Composites for Orthopedic Implants Applications: A Comprehensive Review. Mater. Des. 2024, 241, 112850. [Google Scholar] [CrossRef]
- Omarov, S.; Nauryz, N.; Talamona, D.; Perveen, A. Surface Modification Techniques for Metallic Biomedical Alloys: A Concise Review. Metals 2022, 13, 82. [Google Scholar] [CrossRef]
- Kumar, V.; Beri, N.; Kumar, A. Electric Discharge Machining of Titanium and Alloys for Biomedical Implant Applications: A Review. Int. J. Res. Anal. Rev. 2018, 5, 120–128. [Google Scholar]
- Davis, R.; Singh, A.; Debnath, K.; Sabino, R.M.; Popat, K.; Soares, P.; Keshri, A.K.; Borgohain, B. Enhanced Micro-Electric Discharge Machining-Induced Surface Modification on Biomedical Ti-6Al-4V Alloy. J. Manuf. Sci. Eng. 2022, 144, 071002. [Google Scholar] [CrossRef]
- Jain, S.; Parashar, V. Critical Review on the Impact of EDM Process on Biomedical Materials. Mater. Manuf. Process. 2021, 36, 1701–1724. [Google Scholar] [CrossRef]
- Rathod, R.; Kamble, D.; Ambhore, N. Performance Evaluation of Electric Discharge Machining of Titanium Alloy—A Review. J. Eng. Appl. Sci. 2022, 69, 64. [Google Scholar] [CrossRef]
- Farooq, M.U.; Anwar, S.; Bhatti, H.A.; Kumar, M.S.; Ali, M.A.; Ammarullah, M.I. Electric Discharge Machining of Ti6Al4V ELI in Biomedical Industry: Parametric Analysis of Surface Functionalization and Tribological Characterization. Materials 2023, 16, 4458. [Google Scholar] [CrossRef]
- Ekmekci, N.; Efe, Y. The Effect of Nano and Micro Hydroxyapatite Powder Additives on Surface Integrity in Electrical Discharge Machining of Ti6Al4V Alloy. Surf. Coat. Technol. 2022, 445, 128708. [Google Scholar] [CrossRef]
- Hasçalık, A.; Çaydaş, U. Electrical Discharge Machining of Titanium Alloy (Ti–6Al–4V). Appl. Surf. Sci. 2007, 253, 9007–9016. [Google Scholar] [CrossRef]
- Duan, X.; Yang, Y.; Zhang, T.; Zhu, B.; Wei, G.; Li, H. Research Progress of Metal Biomaterials with Potential Applications as Cardiovascular Stents and Their Surface Treatment Methods to Improve Biocompatibility. Heliyon 2024, 10, e25515. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.K.; Jadoun, R.S. Current Advanced Research Development of Electric Discharge Machining (EDM): A Review. Int. J. Res. Advent Technol. 2014, 2, 273–297. [Google Scholar]
- Al-Amin, M.; Abdul Rani, A.M.; Abdu Aliyu, A.A.; Abdul Razak, M.A.; Hastuty, S.; Bryant, M.G. Powder Mixed-EDM for Potential Biomedical Applications: A Critical Review. Mater. Manuf. Process. 2020, 35, 1789–1811. [Google Scholar] [CrossRef]
- Kumar, S.S.; Varol, T.; Canakci, A.; Kumaran, S.T.; Uthayakumar, M. A Review on the Performance of the Materials by Surface Modification through EDM. Int. J. Lightweight Mater. Manuf. 2021, 4, 127–144. [Google Scholar] [CrossRef]
- Kossymbayev, A.; Ali, S.; Talamona, D.; Perveen, A. Powder-Mixed Micro Electrical Discharge Machining-Assisted Surface Modification of Ti-35Nb-7Zr-5Ta Alloy in Biomedical Applications. In Proceedings of the 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering, Yunlin, Taiwan, 15–17 November 2024; MDPI: Basel, Switzerland, 2025; p. 71. [Google Scholar]
- Singh, A.K.; Malik, A.; Mali, H.S. Modification of Ti6Al4V Alloy Surfaces Using Hydroxyapatite-Mixed Electric Discharge-Assisted Centerless Turning for Application of Bone-Anchored Limb Prosthesis Fixtures. J. Mater. Eng. Perform. 2025, 34, 8020–8036. [Google Scholar] [CrossRef]
- Nauryz, N.; Omarov, S.; Kenessova, A.; Pham, T.T.; Talamona, D.; Perveen, A. Powder-Mixed Micro-Electro-Discharge Machining-Induced Surface Modification of Titanium Alloy for Antibacterial Properties. J. Manuf. Mater. Process. 2023, 7, 214. [Google Scholar] [CrossRef]
- Taqi, S.; Shather, S. Investigation the Effect of Negative Polarity of Surface Roughness and Metal Removal Rate During EDM Process. Eng. Technol. J. 2020, 38, 1852–1861. [Google Scholar] [CrossRef]
- Cortizo, M.C.; de Mele, M.F.L. Cytotoxicity of Copper Ions Released from Metal: Variation with the Exposure Period and Concentration Gradients. Biol. Trace Elem. Res. 2004, 102, 129–142. [Google Scholar] [CrossRef]
- Smart, S.K.; Cassady, A.I.; Lu, G.Q.; Martin, D.J. The Biocompatibility of Carbon Nanotubes. Carbon 2006, 44, 1034–1047. [Google Scholar] [CrossRef]
- Bokros, J.C. Carbon Biomedical Devices. Carbon 1977, 15, 353–371. [Google Scholar] [CrossRef]
- Zhao, W.S.; Meng, Q.G.; Wang, Z.L. The Application of Research on Powder Mixed EDM in Rough Machining. J. Mater. Process. Technol. 2002, 129, 30–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Shen, Y.; Ji, R.; Cai, B.; Li, H.; Wang, F. A Review of the Current Understanding and Technology of Powder Mixed Electrical Discharge Machining (PMEDM). In Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation, New York, NY, USA, 5 August 2012; IEEE: New York, NY, USA, 2012; pp. 2240–2247. [Google Scholar]
- Santos, R. Nitretação Por EDM Do Aço AISI 4140; Universidade Federal de Uberlândia: Uberlândia, Brazil, 2013. [Google Scholar]
- Chen, S.L.; Yan, B.H.; Huang, F.Y. Influence of Kerosene and Distilled Water as Dielectrics on the Electric Discharge Machining Characteristics of Ti–6A1–4V. J. Mater. Process. Technol. 1999, 87, 107–111. [Google Scholar] [CrossRef]
- Ding, Y.; Kong, L.; Lei, W.; He, Y.; Zhang, L.; Han, J.; Li, Q. Study on the Effect of Different Electrode Forms on the Surface Modification of Ti–6Al–4V Alloy by near-Dry Electrical Discharge Machining. Mater. Chem. Phys. 2024, 314, 128801. [Google Scholar] [CrossRef]
- Mathan Kumar, P.; Sivakumar, K.; Selvarajan, L. EDM Machining Effectiveness for Ti–6Al–4V Alloy Using Cu–TiB2 Ceramic Composite Electrode: A Parametric Evaluation. Ceram. Int. 2024, 50, 20118–20132. [Google Scholar] [CrossRef]
- Karmiris-Obratański, P.; Papazoglou, E.L.; Leszczyńska-Madej, B.; Zagórski, K.; Markopoulos, A.P. A Comprehensive Study on Processing Ti–6Al–4V ELI with High Power EDM. Materials 2021, 14, 303. [Google Scholar] [CrossRef]
- Mughal, M.P.; Farooq, M.U.; Mumtaz, J.; Mia, M.; Shareef, M.; Javed, M.; Jamil, M.; Pruncu, C.I. Surface Modification for Osseointegration of Ti6Al4V ELI Using Powder Mixed Sinking EDM. J. Mech. Behav. Biomed. Mater. 2021, 113, 104145. [Google Scholar] [CrossRef]
- Oliveira, L.F.B. Ativação da Superfície da Liga Ti-6Al-4V Através de Eletroerosão; Centro Federal de Educação Tecnológica de Minas Gerais: Belo Horizonte, Brazil, 2019. [Google Scholar]
- Rosa, J.B.D. Enriquecimento Superficial Da Liga Ti-6Al-4V Com Cálcio e Fósforo Pelo Processo de Usinagem Por Descargas Elétricas; CEFET-MG: Belo Horizonte, Brazil, 2018. [Google Scholar]
- UNS R56401; ASTM International ASTM F136—Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications. ASTM: West Conshohocken, PA, USA, 2013.
- ISO 5832-3:2016; Implants for Surgery—Metallic Materials—Part 3: Wrought Titanium 6-Aluminium 4-Vanadium Alloy. International Organization for Standardization: Geneva, Switzerland, 2016.
- Pesode, P.; Barve, S. A Review—Metastable β Titanium Alloy for Biomedical Applications. J. Eng. Appl. Sci. 2023, 70, 25. [Google Scholar] [CrossRef]
- Oliveira, L.F.B.; Dos Santos, B.A.B.; dos Santos, R.F.; de Souza Costa, H. ATIVAÇÃO DA SUPERFÍCIE DA LIGA TI-6AL-4V ATRAVÉS DO PROCESSO EDM. Rev. Eletrônica Perspect. Ciência Tecnol. 2020, 12. [Google Scholar] [CrossRef]
- ISO 3274:1996; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Nominal Characteristics of Contact (Stylus) Instruments. International Organization for Standardization: Geneva, Switzerland, 1996.
- ISO 10993-5:2009; Biological Evaluation of Medical Devices. Part 5: Tests for in Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Mahajan, A.; Sidhu, S.S. Enhancing Biocompatibility of Co-Cr Alloy Implants via Electrical Discharge Process. Mater. Technol. 2018, 33, 524–531. [Google Scholar] [CrossRef]
- Lee, W.-F.; Yang, T.-S.; Wu, Y.-C.; Peng, P.-W. Nanoporous Biocompatible Layer on Ti–6Al–4V Alloys Enhanced Osteoblast-like Cell Response. J. Exp. Clin. Med. 2013, 5, 92–96. [Google Scholar] [CrossRef]
- Govindan, P.; Joshi, S.S. Analysis of Micro-Cracks on Machined Surfaces in Dry Electrical Discharge Machining. J. Manuf. Process. 2012, 14, 277–288. [Google Scholar] [CrossRef]
- Das, S.; Paul, S.; Doloi, B. A Gap-Active Electrical Discharge Machining (GA-EDM) to Rectify the Textural Defects of the Processed Surface. J. Manuf. Process. 2021, 64, 594–605. [Google Scholar] [CrossRef]
- Prakash, V.; Shubham; Kumar, P.; Singh, P.K.; Das, A.K.; Chattopadhyaya, S.; Mandal, A.; Dixit, A.R. Surface Alloying of Miniature Components by Micro-Electrical Discharge Process. Mater. Manuf. Process. 2018, 33, 1051–1061. [Google Scholar] [CrossRef]
- Nafi, M.A.; Jahan, M.P. Functional Surface Generation by EDM—A Review. Micromachines 2022, 14, 115. [Google Scholar] [CrossRef]
- Khoshaim, A.B.; Muthuramalingam, T.; Moustafa, E.B.; Elsheikh, A. Influences of Tool Electrodes on Machinability of Titanium α-β Alloy with ISO Energy Pulse Generator in EDM Process. Alex. Eng. J. 2023, 63, 465–474. [Google Scholar] [CrossRef]
- Han, X.; Ma, J.; Tian, A.; Wang, Y.; Li, Y.; Dong, B.; Tong, X.; Ma, X. Surface Modification Techniques of Titanium and Titanium Alloys for Biomedical Orthopaedics Applications: A Review. Colloids Surf. B Biointerfaces 2023, 227, 113339. [Google Scholar] [CrossRef]
- Cyril Pilligrin, J.; Asokan, P.; Jerald, J.; Kanagaraj, G.; Mukund Nilakantan, J.; Nielsen, I. Tool Speed and Polarity Effects in Micro-EDM Drilling of 316L Stainless Steel. Prod. Manuf. Res. 2017, 5, 99–117. [Google Scholar] [CrossRef]
- Baroi, B.K.; Debnath, T.; Jagadish; Patowari, P.K. Machinability Assessment of Titanium Grade 2 Alloy Using Deionized Water in EDM. Mater. Today Proc. 2020, 26, 2221–2225. [Google Scholar] [CrossRef]
- Ahmed, N.; Ishfaq, K.; Moiduddin, K.; Ali, R.; Al-Shammary, N. Machinability of Titanium Alloy through Electric Discharge Machining. Mater. Manuf. Process. 2019, 34, 93–102. [Google Scholar] [CrossRef]
- Prakash, C.; Kansal, H.K.; Pabla, B.; Puri, S.; Aggarwal, A. Electric Discharge Machining—A Potential Choice for Surface Modification of Metallic Implants for Orthopedic Applications: A Review. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2015, 230, 331–353. [Google Scholar] [CrossRef]
- Zareidoost, A.; Yousefpour, M.; Ghaseme, B.; Amanzadeh, A. The Relationship of Surface Roughness and Cell Response of Chemical Surface Modification of Titanium. J. Mater. Sci. Mater. Med. 2012, 23, 1479–1488. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Dummer, P.M.H. Properties and Applications of Calcium Hydroxide in Endodontics and Dental Traumatology. Int. Endod. J. 2011, 44, 697–730. [Google Scholar] [CrossRef] [PubMed]
- Wieser, E.; Tsyganov, I.; Matz, W.; Reuther, H.; Oswald, S.; Pham, T.; Richter, E. Modification of Titanium by Ion Implantation of Calcium and/or Phosphorus. Surf. Coat. Technol. 1999, 111, 103–109. [Google Scholar] [CrossRef]
- Holsten, M.; Koshy, P.; Klink, A.; Schwedt, A. Anomalous Influence of Polarity in Sink EDM of Titanium Alloys. CIRP Annals 2018, 67, 221–224. [Google Scholar] [CrossRef]
- Ou, S.-F.; Wang, C.-Y. Effects of Bioceramic Particles in Dielectric of Powder-Mixed Electrical Discharge Machining on Machining and Surface Characteristics of Titanium Alloys. J. Mater. Process. Technol. 2017, 245, 70–79. [Google Scholar] [CrossRef]
- Ahuir-Torres, J.I.; Kotadia, H.R.; Öpöz, T.T. Effect of the Electrical Discharge Machining on Ti6Al4V Corrosion Behaviour in Simulated Body Fluid. Surf. Coat. Technol. 2023, 470, 129830. [Google Scholar] [CrossRef]
- Asif, N.; Saleem, M.Q.; Farooq, M.U. Performance Evaluation of Surfactant Mixed Dielectric and Process Optimization for Electrical Discharge Machining of Titanium Alloy Ti6Al4V. CIRP J. Manuf. Sci. Technol. 2023, 43, 42–56. [Google Scholar] [CrossRef]
- Freitas Filho, A.; Silva, G.C.; Rodrigues, S.C.S.; Santos, A.J. Evaluation of the Effect of Surface Modification of Ti64 and 316L by Addition of Calcium Phosphate through Electrical Discharge Machining Process. Tribol. Int. 2023, 180, 108245. [Google Scholar] [CrossRef]
- Xiang, H.; Chen, X.; Huang, Y.; Wu, C.; Mou, G.; Zheng, K. Decomposition Behavior and Strengthening Mechanism of Ti-TiO2 Material in Selective Laser Melting Process. J. Mater. Eng. Perform. 2025, 1–16. [Google Scholar] [CrossRef]
- Unune, D.R.; Brown, G.R.; Reilly, G.C. Thermal Based Surface Modification Techniques for Enhancing the Corrosion and Wear Resistance of Metallic Implants: A Review. Vacuum 2022, 203, 111298. [Google Scholar] [CrossRef]
- Menzies, K.L.; Jones, L. The Impact of Contact Angle on the Biocompatibility of Biomaterials. Optom. Vis. Sci. 2010, 87, 387–399. [Google Scholar] [CrossRef]
- Tahmasbi Rad, A.; Solati-Hashjin, M.; Osman, N.A.A.; Faghihi, S. Improved Bio-Physical Performance of Hydroxyapatite Coatings Obtained by Electrophoretic Deposition at Dynamic Voltage. Ceram. Int. 2014, 40, 12681–12691. [Google Scholar] [CrossRef]
- Gittens, R.A.; Scheideler, L.; Rupp, F.; Hyzy, S.L.; Geis-Gerstorfer, J.; Schwartz, Z.; Boyan, B.D. A Review on the Wettability of Dental Implant Surfaces II: Biological and Clinical Aspects. Acta Biomater. 2014, 10, 2907–2918. [Google Scholar] [CrossRef]
- Komarova, E.G.; Chebodaeva, V.; Sharkeev, Y.P.; Sedelnikova, M. Effect of Surface Topography and Chemical Composition on Wettability of Calcium Phosphate Coatings Formed on Ti-40Nb Alloy. Key Eng. Mater. 2016, 683, 370–376. [Google Scholar] [CrossRef]
- Kitajima, H.; Hirota, M.; Osawa, K.; Iwai, T.; Saruta, J.; Mitsudo, K.; Ogawa, T. Optimization of Blood and Protein Flow around Superhydrophilic Implant Surfaces by Promoting Contact Hemodynamics. J. Prosthodont. Res. 2022, 67, 568–582. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Ma, M.; Wang, Q.; Yan, T.; Zhao, B.; Guo, S.; Tong, S. Advances in the Superhydrophilicity-Modified Titanium Surfaces with Antibacterial and pro-Osteogenesis Properties: A Review. Front. Bioeng. Biotechnol. 2022, 10, 1000401. [Google Scholar] [CrossRef]
- Bauhammer, I.; Sacha, M.; Haltner, E. Validation and Stability Analysis of a Modified Lactate Dehydrogenase (LDH) Test Method to Be Employed for an in Vitro Viable Skin Model. Heliyon 2019, 5, e01618. [Google Scholar] [CrossRef]
- Luo, J.; Guo, S.; Lu, Y.; Xu, X.; Zhao, C.; Wu, S.; Lin, J. Cytocompatibility of Cu-Bearing Ti6Al4V Alloys Manufactured by Selective Laser Melting. Mater. Charact. 2018, 143, 127–136. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, D.; Geng, S.; Fan, Y.; Liu, M.; Wang, Q.; Wang, F. Mechanical Properties, Corrosion Behavior and Cytotoxicity of Ti-6Al-4V Alloy Fabricated by Laser Metal Deposition. Mater. Charact. 2021, 179, 111302. [Google Scholar] [CrossRef]
- Dias Corpa Tardelli, J.; Duarte Firmino, A.C.; Ferreira, I.; Cândido dos Reis, A. Influence of the Roughness of Dental Implants Obtained by Additive Manufacturing on Osteoblastic Adhesion and Proliferation: A Systematic Review. Heliyon 2022, 8, e12505. [Google Scholar] [CrossRef]
- Pandey, C.; Rokaya, D.; Bhattarai, B.P. Contemporary Concepts in Osseointegration of Dental Implants: A Review. Biomed. Res. Int. 2022, 2022, 6170452. [Google Scholar] [CrossRef]
- Gu, K.; Wang, J.; Zhou, Y. Effect of Cryogenic Treatment on Wear Resistance of Ti–6Al–4V Alloy for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2014, 30, 131–139. [Google Scholar] [CrossRef]
- Tsujita, H.; Nishizaki, H.; Miyake, A.; Takao, S.; Komasa, S. Effect of Plasma Treatment on Titanium Surface on the Tissue Surrounding Implant Material. Int. J. Mol. Sci. 2021, 22, 6931. [Google Scholar] [CrossRef] [PubMed]
Element | Weight (%) |
---|---|
Al | 5.44 |
V | 3.59 |
Fe | 0.16 |
Cr | 0.01 |
Nb | 0.05 |
Ni | 0.02 |
W | 0.02 |
Cu | <0.005 |
Mn | <0.005 |
Ti | BAL |
Sample | Tool Polarity | Dielectric Fluid | pH of Fluid |
---|---|---|---|
DF1-F(−) | Negative | 1.5 | |
DF1-F(+) | Positive | 1.5 | |
DF2-Ca(−) | Negative | 3.5 | |
DF2-Ca(+) | Positive | 3.5 |
Parameters | Positive Polarity | Negative Polarity |
---|---|---|
Circuit potential | 75 V | 75 V |
Peak current | 37.5 A | 37.5 A |
Pulse time (Ton) | 100 µs | 100 µs |
Ratio between pulse and full time (Toff) | 2 * | 2 * |
Gap | 2 * | 2 * |
Sensitivity | 2 * | 2 * |
Erosion time | 3 * | 2 * |
Periodic removal of the tool electrode | 3 * | 3 * |
Interval between erosion and removal | 0 s | 0 s |
Machining time | 900 s | 900 s |
Roughness | DF1-F(+) | DF1-F(−) | DF2-Ca(+) | DF2-Ca(−) | Reference Sample |
---|---|---|---|---|---|
Ra (µm) | 5.86 ± 1.37 | 17.37 ± 2.94 | 12.09 ± 1.47 | 15.44 ± 3.64 | 4.30 ± 0.48 |
Rz (µm) | 36.16 ± 8.72 | 89.43 ± 12.12 | 58.69 ± 9.07 | 71.65 ± 16.44 | 22.10 ± 3.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, B.A.B.; Corrêa, E.C.S.; Lopes, W.; Madruga, L.Y.C.; Popat, K.C.; Sabino, R.M.; de Souza Costa, H. Surface Modification, Characterization, and Cytotoxicity of Ti-6Al-4V Alloy Enriched by EDM Process. Appl. Sci. 2025, 15, 8443. https://doi.org/10.3390/app15158443
dos Santos BAB, Corrêa ECS, Lopes W, Madruga LYC, Popat KC, Sabino RM, de Souza Costa H. Surface Modification, Characterization, and Cytotoxicity of Ti-6Al-4V Alloy Enriched by EDM Process. Applied Sciences. 2025; 15(15):8443. https://doi.org/10.3390/app15158443
Chicago/Turabian Styledos Santos, Bárbara A. B., Elaine C. S. Corrêa, Wellington Lopes, Liszt Y. C. Madruga, Ketul C. Popat, Roberta M. Sabino, and Hermes de Souza Costa. 2025. "Surface Modification, Characterization, and Cytotoxicity of Ti-6Al-4V Alloy Enriched by EDM Process" Applied Sciences 15, no. 15: 8443. https://doi.org/10.3390/app15158443
APA Styledos Santos, B. A. B., Corrêa, E. C. S., Lopes, W., Madruga, L. Y. C., Popat, K. C., Sabino, R. M., & de Souza Costa, H. (2025). Surface Modification, Characterization, and Cytotoxicity of Ti-6Al-4V Alloy Enriched by EDM Process. Applied Sciences, 15(15), 8443. https://doi.org/10.3390/app15158443