sensors-logo

Journal Browser

Journal Browser

The Advanced Flexible Electronic Devices: 2nd Edition

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Nanosensors".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 1067

Special Issue Editor

Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Interests: MEMS; micro/nano sensors; flexible sensor and actuator
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Recent advances in materials and device technologies have enabled the fabrication of flexible sensors and actuators for applications in health assessment, medical diagnosis, intelligent robotics, human–machine interface, etc.

Following the success of our previous Special Issue "The Advanced Flexible Electronic Devices”, we would like to invite our colleagues once again to contribute their expertise, insights, and findings in the form of original research articles and reviews for the current new Special Issue.

The objective of this Special Issue is to provide wide coverage of research on the latest advances in flexible sensing and actuating technologies. The scope of this Special Issue includes, but is not limited to:

  • Flexible hybrid electronic devices;
  • Implantable electronic devices;
  • Paper-based electronic devices;
  • Flexible actuators for soft robotics;
  • Flexible sensors/actuators for human–machine interface.

Dr. Min Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • flexible
  • implantable
  • sensors
  • actuators
  • human–machine interface

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 4849 KiB  
Article
p-CuO/n-ZnO Heterojunction Pyro-Phototronic Photodetector Controlled by CuO Preparation Parameters
by Zhen Zhang, Fangpei Li, Wenbo Peng, Quanzhe Zhu and Yongning He
Sensors 2024, 24(24), 8197; https://doi.org/10.3390/s24248197 - 22 Dec 2024
Viewed by 782
Abstract
The combination of ZnO with narrow bandgap materials such as CuO is now a common method to synthesize high-performance optoelectronic devices. This study focuses on optimizing the performance of p-CuO/n-ZnO heterojunction pyroelectric photodetectors, fabricated through magnetron sputtering, by leveraging the pyro-phototronic effect. The [...] Read more.
The combination of ZnO with narrow bandgap materials such as CuO is now a common method to synthesize high-performance optoelectronic devices. This study focuses on optimizing the performance of p-CuO/n-ZnO heterojunction pyroelectric photodetectors, fabricated through magnetron sputtering, by leveraging the pyro-phototronic effect. The devices’ photoresponse to UV (365 nm) and visible (405 nm) lasers is thoroughly examined. The results show that when the device performance is regulated by adjusting the three parameters—sputtering power, sputtering time, and sputtering oxygen–argon ratio—the optimal sputtering parameters should be as follows: sputtering power of 120 W, sputtering time of 15 min, and sputtering oxygen–argon ratio of 1:3. With the optimal sputtering parameters, the maximum responsivity of the pyroelectric effect and the traditional photovoltaic effect Rpyro+photo of the detector is 4.7 times that under the basic parameters, and the maximum responsivity of the traditional photovoltaic effect Rphoto is also 5.9 times that under the basic parameters. This study not only showcases the extensive potential of the pyro-phototronic effect in enhancing heterojunction photodetectors for high-performance photodetection but also provides some ideas for fabricating high-performance photodetectors. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices: 2nd Edition)
Show Figures

Figure 1

Back to TopTop