Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (192)

Search Parameters:
Keywords = olive mill wastes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1936 KiB  
Article
Transcriptomic and Metabolomic Profiling of Pleurotus eryngii Cultivated on Olive Mill Solid Waste-Enriched Substrates
by Nirit Ezov, Adir Amiram, Soliman Khatib, Ofer Danay, Dan Levanon and Idan Pereman
Agronomy 2025, 15(8), 1811; https://doi.org/10.3390/agronomy15081811 - 26 Jul 2025
Viewed by 335
Abstract
Olive Mill Solid Waste (OMSW) presents an environmental challenge due to its toxicity and difficulties in its recycling. Prior studies suggest its potential as a substrate ingredient for cultivating edible mushrooms. Here, we investigate how varying OMSW concentrations in the substrate affect the [...] Read more.
Olive Mill Solid Waste (OMSW) presents an environmental challenge due to its toxicity and difficulties in its recycling. Prior studies suggest its potential as a substrate ingredient for cultivating edible mushrooms. Here, we investigate how varying OMSW concentrations in the substrate affect the synthesis pathways of α-glucan and β-glucan polysaccharides, alongside transcriptional and metabolic changes in Pleurotus eryngii. We also assessed the mushroom’s protein and nitrogen content. Our results highlight the critical role of substrate composition, demonstrating that the OMSW concentration significantly influences mushroom growth, yield, protein content, gene expression, and metabolite profiles. These findings establish OMSW not only as a viable recycling resource but also as a modulator of health-promoting compound synthesis in P. eryngii. Full article
Show Figures

Figure 1

26 pages, 4820 KiB  
Article
Olive Oil Wastewater Revalorization into a High-Added Value Product: A Biofertilizer Assessment Combining LCA and MCI
by Roberto Petrucci, Gabriele Menegaldo, Lucia Rocchi, Luisa Paolotti, Antonio Boggia and Debora Puglia
Sustainability 2025, 17(15), 6779; https://doi.org/10.3390/su17156779 - 25 Jul 2025
Viewed by 317
Abstract
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs [...] Read more.
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs for various applications. This study introduces a novel value chain for olive wastes, focused on extracting lignin from olive pomace by ionic liquids and polyphenols from olive mill wastewater, which are then incorporated as hybrid nanoparticles in the formulation of an innovative starch-based biofertilizer. This biofertilizer, obtained by using residual wastewater as a source of soluble nitrogen, acting at the same time as a plasticizer for the biopolymer, was demonstrated to surpass traditional NPK biofertilizers’ efficiency, allowing for root growth and foliage in drought conditions. In order to recognize the environmental impact due to its production and align it with the technical output, the circularity and environmental performance of the proposed system were innovatively evaluated through a combination of Life Cycle Assessment (LCA) and the Material Circularity Indicator (MCI). LCA results indicated that the initial upcycling process was potentially characterized by significant hot spots, primarily related to energy consumption (>0.70 kWh/kg of water) during the early processing stages. As a result, the LCA score of this preliminary version of the biofertilizer may be higher than that of conventional commercial products, due to reliance on thermal processes for water removal and the substantial contribution (56%) of lignin/polyphenol precursors to the total LCA score. Replacing energy-intensive thermal treatments with more efficient alternatives represents a critical area for improvement. The MCI value of 0.84 indicates limited potential for further enhancement. Full article
Show Figures

Figure 1

21 pages, 1206 KiB  
Article
Evaluation of Olive Mill Waste Compost as a Sustainable Alternative to Conventional Fertilizers in Wheat Cultivation
by Ana García-Rández, Silvia Sánchez Méndez, Luciano Orden, Francisco Javier Andreu-Rodríguez, Miguel Ángel Mira-Urios, José A. Sáez-Tovar, Encarnación Martínez-Sabater, María Ángeles Bustamante, María Dolores Pérez-Murcia and Raúl Moral
Agriculture 2025, 15(14), 1543; https://doi.org/10.3390/agriculture15141543 - 17 Jul 2025
Viewed by 357
Abstract
This study evaluates the agronomic and environmental performance of pelletized compost derived from olive mill waste as a sustainable alternative to mineral fertilizers for cultivating wheat (Triticum turgidum L.) under conventional tillage methods. A field experiment was conducted in semi-arid Spain, employing [...] Read more.
This study evaluates the agronomic and environmental performance of pelletized compost derived from olive mill waste as a sustainable alternative to mineral fertilizers for cultivating wheat (Triticum turgidum L.) under conventional tillage methods. A field experiment was conducted in semi-arid Spain, employing three fertilization strategies: inorganic (MAP + Urea), sewage sludge (SS), and organic compost pellets (OCP), each providing 150 kg N ha−1. The parameters analyzed included wheat yield, grain quality, soil properties, and greenhouse gas (GHG) emissions. Inorganic fertilization yielded the highest productivity and nutrient uptake. However, the OCP treatment reduced grain yield by only 15%, while improving soil microbial activity and enzymatic responses. The SS and OCP treatments showed increased CO2 and N2O emissions compared to the control and inorganic plots. However, the OCP treatment also acted as a CH4 sink. Nutrient use efficiency was greatest under mineral fertilization, though the OCP treatment outperformed the SS treatment. These results highlight the potential of OCP as a circular bio-based fertilizer that can enhance soil function and partially replace mineral inputs. Optimizing application timing is critical to aligning nutrient release with crop demand. Further long-term trials are necessary to evaluate their impact on the soil and improve environmental outcomes. Full article
Show Figures

Figure 1

20 pages, 1759 KiB  
Article
Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation
by Malak Hamieh, Sireen Al Khawand, Nabil Tabaja, Khaled Chawraba, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh and Joumana Toufaily
AppliedChem 2025, 5(3), 15; https://doi.org/10.3390/appliedchem5030015 - 11 Jul 2025
Viewed by 292
Abstract
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were [...] Read more.
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were characterized using XRD, SEM, EDX, DRS, BET, and FTIR techniques. The FeCr/AC composite was applied as a heterogeneous photo-Fenton catalyst for the degradation of methylene blue (MB) dye in an aqueous solution under 25 W visible-light LED irradiation. Critical operational factors, such as FeCr/AC dosage, pH, MB concentration, and H2O2 levels, were optimized. Under optimal conditions, 97.56% of MB was removed within 120 min of visible-light exposure, following pseudo-first-order kinetics. The composite also exhibited high efficiency in degrading methyl orange dye (95%) and tetracycline antibiotic (88%) within 180 min, with corresponding first-order rate constants of 0.0225 min−1 and 0.0115 min−1, respectively. This study highlights the potential of FeCr/AC for treating water contaminated with dyes and pharmaceuticals, in line with the Sustainable Development Goals (SDGs) for water purification. Full article
Show Figures

Graphical abstract

21 pages, 1434 KiB  
Article
Integrated Analysis of Olive Mill Wastewaters: Physicochemical Profiling, Antifungal Activity, and Biocontrol Potential Against Botryosphaeriaceae
by Elena Petrović, Karolina Vrandečić, Alen Albreht, Igor Gruntar, Nikola Major, Jasenka Ćosić, Zoran Užila, Smiljana Goreta Ban and Sara Godena
Horticulturae 2025, 11(7), 819; https://doi.org/10.3390/horticulturae11070819 - 10 Jul 2025
Viewed by 349
Abstract
The disposal of olive mill wastewater (OMWW) poses significant environmental challenges due to its high content of phytotoxic and pollutant compounds. This study aims to explore the chemical composition of OMWW derived from various olive varieties (Buža, Buža puntoža, Istarska bjelica, Leccino, and [...] Read more.
The disposal of olive mill wastewater (OMWW) poses significant environmental challenges due to its high content of phytotoxic and pollutant compounds. This study aims to explore the chemical composition of OMWW derived from various olive varieties (Buža, Buža puntoža, Istarska bjelica, Leccino, and Rosinjola) and assess its antifungal potential against phytopathogenic fungi from the Botryosphaeriaceae family. OMWW samples were analyzed for their physicochemical properties, phenolic composition via LC-MS/MS, and antifungal activity against Botryosphaeria dothidea (Moug. ex Fr.) Ces. & De Not., Diplodia mutila (Fr.) Fr., D. seriata De Not., Dothiorella iberica A.J.L. Phillips, J. Luque & A. Alves, Do. sarmentorum (Fr.) A.J.L. Phillips, Alves & Luque, and Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips. Antifungal efficacy was tested at varying concentrations, alongside the phenolic compounds hydroxytyrosol and vanillic acid. Antifungal activity varied across fungal species and OMWW concentrations. Lower OMWW concentrations inhibited mycelial growth in some pathogens, while higher concentrations often had a stimulatory effect. Among the OMWW treatments, Leccino and Buža showed the most significant antifungal activity against species from the Botryosphaeriaceae family. The results demonstrated significant variability in OMWW composition, with Istarska bjelica exhibiting the highest concentrations of phenolic compounds, sugars, dry matter, and carbon and nitrogen content. The results also highlight the impact of acidification on the phenolic profile of OMWW. Treatment with HCl significantly altered the concentration of individual phenolic compounds, either enhancing their release or contributing to their degradation. Among the two compounds, vanillic acid showed greater efficacy than hydroxytyrosol. In addition, microorganisms isolated from OMWW, including Bacillus velezensis Ruiz-Garcia et al., Rhodotorula mucilaginosa (A. Jörg.) F.C. Harrison, Nakazawaea molendiniolei (N. Cadez, B. Turchetti & G. Peter) C. P. Kurtzman & C. J. Robnett, and Penicillium crustosum Thom, demonstrated antagonistic potential against fungal pathogens, with B. velezensis showing the strongest inhibitory effect. The greatest antagonistic effect against fungi was observed with the species Do. Iberica. The findings highlight the potential of OMWW as a sustainable alternative to chemical fungicides, simultaneously contributing to the management of waste and protection of plants through circular economy principles. Full article
(This article belongs to the Special Issue Driving Sustainable Agriculture Through Scientific Innovation)
Show Figures

Figure 1

24 pages, 886 KiB  
Review
Cosmeceutical and Dermatological Potential of Olive Mill Wastewater: A Sustainable and Eco-Friendly Source of Natural Ingredients
by Adriana Albini, Paola Corradino, Danilo Morelli, Francesca Albini and Douglas Noonan
Cosmetics 2025, 12(4), 142; https://doi.org/10.3390/cosmetics12040142 - 3 Jul 2025
Viewed by 1788
Abstract
Olive oil and its derivatives, particularly polyphenol-rich extracts, are valued for their antioxidant, anti-inflammatory, and regenerative properties. Olive mill wastewater (OMWW), a byproduct of olive oil production, traditionally seen as an environmental pollutant, has emerged as a promising source of high-value dermatological ingredients. [...] Read more.
Olive oil and its derivatives, particularly polyphenol-rich extracts, are valued for their antioxidant, anti-inflammatory, and regenerative properties. Olive mill wastewater (OMWW), a byproduct of olive oil production, traditionally seen as an environmental pollutant, has emerged as a promising source of high-value dermatological ingredients. Key polyphenols such as hydroxytyrosol, oleuropein, and tyrosol exhibit potent antioxidant, anti-inflammatory, antimicrobial, and photoprotective effects. These compounds mitigate oxidative stress, prevent collagen degradation, modulate NF-κB and MAPK signaling, and promote cellular repair and regeneration. Skin health is increasingly recognized as crucial to overall well-being, driving interest in cosmeceuticals that combine cosmetic benefits with dermatological activity. This review examines the cosmeceutical and dermatological potential of OMWW, highlighting its incorporation into innovative topical formulations like oil-in-water nanoemulsions, liposomes, and microneedles that enhance skin penetration and bioavailability. Additionally, OMWW fractions have shown selective antiproliferative effects on melanoma cells, suggesting potential for skin cancer prevention. Valorization of OMWW through biorefinery processes aligns with circular-economy principles, converting agro-industrial waste into sustainable cosmeceutical ingredients. This approach not only meets consumer demand for natural, effective products, but also reduces the ecological footprint of olive oil production, offering a scalable, eco-friendly strategy for next-generation dermatological applications. Full article
Show Figures

Figure 1

25 pages, 2127 KiB  
Article
Isolation, Preliminary Structural Insights, Characterization, and Antioxidant Potential of a New High-Molecular Weight Complex Phenolic Polymer Developed from Olive Mill Wastewater
by Antonio Lama-Muñoz, Alejandra Bermúdez-Oria, Fátima Rubio-Senent, Guillermo Rodríguez-Gutiérrez, África Fernández-Prior and Juan Fernández-Bolaños
Antioxidants 2025, 14(7), 791; https://doi.org/10.3390/antiox14070791 - 27 Jun 2025
Viewed by 507
Abstract
Olive mill wastewater (OMW), a byproduct of the olive oil industry, is a potential source of natural bioactive phenolic polymers. In this work, a column chromatography technique was used for the isolation of a new complex polymer (named OMW-2000XAD) from OMW via fractionation [...] Read more.
Olive mill wastewater (OMW), a byproduct of the olive oil industry, is a potential source of natural bioactive phenolic polymers. In this work, a column chromatography technique was used for the isolation of a new complex polymer (named OMW-2000XAD) from OMW via fractionation on Amberlite® XAD16 resin. The developed procedure was simple and proved to be reproducible using OMW from two different sources. OMW-2000XAD was further characterized by elemental, glycosidic, and amino acid composition analysis, as well as spectroscopic techniques. The polymer’s molecular size, which was estimated via gel filtration chromatography, was 1960 kDa, which is significantly larger than other high-molecular weight fractions previously isolated from OMW or other agro-industrial wastes. OMW-2000XAD was mainly composed of phenolic compounds (89.8%). It also contained polysaccharides (16.1%) and proteins (10.3%), with glucose (12.25%) and cysteine (1.71%) being the most abundant sugar and amino acid, respectively, as well as metals (1.29%, primarily potassium). However, due to its low solubility, complexity, and heterogeneous composition, it was not possible to identify all phenolic compounds or elucidate a definitive structure via MS, FTIR, and NMR. OMW-2000XAD exhibited strong radical scavenging antioxidant capacity (ABTS•+, DPPH and peroxyl radicals), with results up to 7415 µmol Trolox equivalent/mol (ORAC method), but showed no antiproliferative effects, highlighting the need for further research. Full article
Show Figures

Figure 1

25 pages, 757 KiB  
Review
Valorization of Olive Mill Wastewater via Yarrowia lipolytica: Sustainable Production of High-Value Metabolites and Biocompounds—A Review
by Amina Laribi, Bartłomiej Zieniuk, Doria Naila Bouchedja, Kahina Hafid, Lamia Elmechta and Samira Becila
Fermentation 2025, 11(6), 326; https://doi.org/10.3390/fermentation11060326 - 6 Jun 2025
Viewed by 963
Abstract
Olive oil production generates vast quantities of by-products, with olive mill wastewater (OMW) being a particularly challenging effluent. Characterized by its dark color, high acidity, and rich composition of organic matter, phenolic compounds, and residual oils, OMW resists conventional degradation methods and poses [...] Read more.
Olive oil production generates vast quantities of by-products, with olive mill wastewater (OMW) being a particularly challenging effluent. Characterized by its dark color, high acidity, and rich composition of organic matter, phenolic compounds, and residual oils, OMW resists conventional degradation methods and poses significant environmental risks due to its phytotoxicity and microbial inhibition. Addressing this issue requires sustainable solutions that align with circular economy principles. A promising strategy involves the biotechnological valorization of OMW using the non-conventional yeast Yarrowia lipolytica, which thrives on organic-rich substrates and converts them into high-value metabolites. This review provides a comprehensive analysis of recent advances in Y. lipolytica applications for OMW valorization, emphasizing its role in developing eco-friendly industrial processes. It begins by outlining the physicochemical challenges of OMW and the metabolic versatility of Y. lipolytica, including its ability to adapt to acidic, phenolic-rich environments. Subsequent sections critically evaluate the yeast’s capacity to synthesize commercially valuable products such as lipases (used in the food and biofuel industries), citric acid (a food and pharmaceutical additive), and polyols like mannitol and erythritol (low-calorie sweeteners). Strategies to optimize microbial productivity, such as substrate pre-treatment, nutrient supplementation, and process engineering, are also discussed. By synthesizing current research, the review highlights how Y. lipolytica-driven OMW valorization can mitigate environmental harm while creating economic opportunities, bridging the gap between waste management and green chemistry. Full article
Show Figures

Figure 1

21 pages, 5182 KiB  
Article
Harnessing Phosphocompost Extracts to Mitigate Meloidogyne javanica Impacts on Tomato
by El Mehdi Bouchtaoui, Ayoub Haouas, Mouna Fahr, Aouatif Benali, Abdelfattah A. Dababat, Ayoob Obaid Alfalahi, Khalid Khfif, Abdelmjid Zouahri, Driss Iraqi, Khalid Azim, Abdelaziz Smouni and Fouad Mokrini
Agriculture 2025, 15(11), 1184; https://doi.org/10.3390/agriculture15111184 - 30 May 2025
Viewed by 909
Abstract
This study evaluated the chemical properties of phosphocompost extracts and their effectiveness in inducing tomato seedlings resistance to Meloidogyne javanica. Phosphocomposts: Sugar beet phosphocompost (PC-SB: CP2), green waste phosphocompost (PC-GW: CP3), and olive mill waste phosphocompost (PC-OMW: CP4), were utilized to produce [...] Read more.
This study evaluated the chemical properties of phosphocompost extracts and their effectiveness in inducing tomato seedlings resistance to Meloidogyne javanica. Phosphocomposts: Sugar beet phosphocompost (PC-SB: CP2), green waste phosphocompost (PC-GW: CP3), and olive mill waste phosphocompost (PC-OMW: CP4), were utilized to produce compost water extracts at concentrations of 1:5, 1:10, 1:20, and 1:100 g:mL and then applied as soil drenches for tomato seedlings one-week post-inoculation. The CP2 extract applied at a 1:5 dilution led to marked improvements in growth parameters, with plant height increasing by over 52.2%, shoot fresh biomass rising by approximately 52.44%, and shoot dry biomass showing a gain of 62.21%. Root biomass also rose by 33%. Chlorophyll a increased with CP4 at 1:5 and 1:100 (41.05% and 37.32%), chlorophyll b increased with CP3 at 1:5 and 1:10 (22.34% and 7.59%), while carotenes showed no variation. Polyphenols rose by 86.45–91.01% with CP2 from 1:5 to 1:20, and flavonoids increased by 64.90% with CP4 at 1:10. CP2 diminished the ultimate M. javanica population and reproduction factor by 171.43%, while CP4 at 1:20 decreased egg masses by 151.94%. The root gall index showed no variation. The chemical composition of phosphocomposts revealed that the strategic incorporation of diverse organic improvers (10%) in phosphocomposts yielded distinct nutrient signatures, with sugar beet waste enhancing PO43− (12.91 mg/L) and secondary macronutrients, green waste optimizing NO3 (69.91 mg/L) and SO42− (62.70 mg/L) availability, and olive mill waste producing superior micronutrient concentrations alongside dominant Ca (24.21 mg/L), K (392.50 mg/L), and P (9.17 mg/L) levels. Overall, the results underscore the potential of phosphocompost extracts as a viable, low-cost, and eco-friendly alternative to synthetic nematicides, offering a sustainable and resilient approach to M. javanica control while enhancing tomato plant growth. Full article
(This article belongs to the Special Issue Approaches for Plant-Parasitic Nematode Control)
Show Figures

Figure 1

19 pages, 1012 KiB  
Article
Anaerobic Digestion as an Alternative to Improve the Industrial Production of MnP Economically and Environmentally Using Olive Mill Solid Waste as the Substrate
by Michael Araneda, Fernanda Pinto-Ibieta, Bernabé Alonso-Fariñas, Fernando G. Fermoso and Gustavo Ciudad
Foods 2025, 14(11), 1918; https://doi.org/10.3390/foods14111918 - 28 May 2025
Viewed by 405
Abstract
Manganese peroxidase (MnP) is widely studied for its potential in bioremediation, although its production typically relies on costly synthetic culture media (SCM). This study evaluates olive mill solid waste (OMSW) as a sustainable substrate for MnP production. Three alternatives were evaluated: (1) using [...] Read more.
Manganese peroxidase (MnP) is widely studied for its potential in bioremediation, although its production typically relies on costly synthetic culture media (SCM). This study evaluates olive mill solid waste (OMSW) as a sustainable substrate for MnP production. Three alternatives were evaluated: (1) using SCM; (2) using OMSW; and (3) using OMSW, followed by anaerobic digestion (AD). The alternatives were evaluated by both an economic and life cycle assessment (LCA). The economic analysis considered indicators such as net present value (NPV), internal rate of return (IRR), and payback period. The LCA methodology was conducted according to ISO 14040/44 standards, with a cradle-to-gate system boundary, using SimaPro v9.4 software. Replacing SCM with OMSW improved economic performance, though environmental impacts showed no significant improvement and, in some cases, worsened. In contrast, combining OMSW with anaerobic digestion enhanced both dimensions: Alternative 3 reached the highest NPV (USD 984,464), a 20.9% IRR, and a 4.1-year payback, while reducing impacts by 275% (Stratospheric ozone depletion), 89% (terrestrial ecotoxicity), 78% (freshwater ecotoxicity), and 50% (marine eutrophication) compared to Alternative 1. Finally, the use of OMSW combined with AD reduces economic costs and environmental impact, contributing to the field of sustainable enzyme production Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

21 pages, 1959 KiB  
Article
Green Chemistry Meets Olive Mill Wastewater: Bioinspired Oxidation of Phenols and Polyphenols Using Selenium Catalysts
by Cecilia Scimmi, Izabela Szymanek, Diana Rogacz, Sebastiano Passeri, Giulia Patanella, Cezary Kozłowski, Małgorzata Deska, Piotr Rychter, Jozef Drabowicz and Claudio Santi
Int. J. Mol. Sci. 2025, 26(11), 5192; https://doi.org/10.3390/ijms26115192 - 28 May 2025
Viewed by 1141
Abstract
Olive mill wastewater (OMW) represents a toxic waste generated during olive oil production (30 million m3/year). Its phytotoxicity and resistance to biodegradation are mainly due to the presence of polyphenols. Methodologies able to remove these organic compounds from this waste to [...] Read more.
Olive mill wastewater (OMW) represents a toxic waste generated during olive oil production (30 million m3/year). Its phytotoxicity and resistance to biodegradation are mainly due to the presence of polyphenols. Methodologies able to remove these organic compounds from this waste to allow the safe dispose of OMW have been developed, and among them, the most effective are oxidation procedures. In this context, we propose an alternative chemical treatment based on the oxidation of OMW using diluted hydrogen peroxide and seleno-organic compounds (diphenyl diselenide and diseleno-bis-benzoic acid) selected as eco-friendly bioinspired catalysts. The effectiveness of the protocol was monitored by Folin–Ciocalteu (F-C) quantification and NMR quantification. The results demonstrated that the greatest reduction in the total phenols content—up to 96%—was achieved using the highest concentrations of catalyst (0.6% w/w) and oxidant (10% v/v). Moreover, a toxicological evaluation was carried out using the marine bacteria Aliivibrio fischeri, revealing a significant decrease in toxicity. The EC50 value increased from 0.089 mg/L in the untreated OMW to 18.740 mg/L in the treated sample after removal of the residual catalyst and peroxides. Full article
Show Figures

Figure 1

18 pages, 805 KiB  
Article
Formulation and Evaluation of Liposome-Encapsulated Phenolic Compounds from Olive Mill Waste: Insights into Encapsulation Efficiency, Antioxidant, and Cytotoxic Activities
by David Camilleri, Karen Attard and Frederick Lia
Molecules 2025, 30(11), 2351; https://doi.org/10.3390/molecules30112351 - 28 May 2025
Viewed by 1418
Abstract
Phenolic extracts obtained from the solid by-products of olive oil production (collectively referred to as “olive mill waste”) were encapsulated in phosphatidylcholine/cholesterol liposomes using the thin-film hydration method. This study examines how lipid composition, cholesterol content, and two different approaches to introducing phenolics [...] Read more.
Phenolic extracts obtained from the solid by-products of olive oil production (collectively referred to as “olive mill waste”) were encapsulated in phosphatidylcholine/cholesterol liposomes using the thin-film hydration method. This study examines how lipid composition, cholesterol content, and two different approaches to introducing phenolics affect the efficiency with which these bioactive compounds are encapsulated. ‘Bidni’ and ‘Bajda’ cultivars are two main olive cultivars found in Malta. ‘Bajda’ is an example of a variety exhibiting leucocarpa. Unlike typical olives, leucocarpa drupes remain white during ripening due to silenced anthocyanin-producing genes. These two extracts were tested for encapsulation efficiency and then evaluated for in vitro cytotoxicity against human leukemia cells. Our results show that increasing the amount of cholesterol in the liposomes generally improved the retention of phenolic compounds, whereas the encapsulation route (i.e., inclusion with the lipids versus hydration medium) had differential effects on specific phenolics. Additionally, liposomal encapsulation provided more potent cytotoxic activity over 48 h compared to the free extract, suggesting that liposomes can enhance and prolong the delivery of bioactive compounds from this agri-food waste. Full article
Show Figures

Figure 1

21 pages, 280 KiB  
Article
Environmental Benefits of Olive By-Products in Energy, Soil, and Sustainable Management
by Abdulaziz Alharbi and Mohamed Ghonimy
Sustainability 2025, 17(10), 4722; https://doi.org/10.3390/su17104722 - 21 May 2025
Cited by 1 | Viewed by 667
Abstract
This study aimed to evaluate the environmental benefits of utilizing by-products from olive farms and olive oil mills within the framework of sustainable resource management and the reduction in agricultural waste, through an integrated circular approach that involves composting and bioenergy recovery. A [...] Read more.
This study aimed to evaluate the environmental benefits of utilizing by-products from olive farms and olive oil mills within the framework of sustainable resource management and the reduction in agricultural waste, through an integrated circular approach that involves composting and bioenergy recovery. A total of 10.7–11.2 t/ha of biomass, including pruning residues and olive pomace, was generated, with a utilization efficiency of 63.5–67.5%. The energy potential of olive biomass was highlighted through assessments that revealed a theoretical generation potential of approximately 96 GJ/ha (25–28 MW·h/ha), primarily from repurposed woody biomass and pomace. The environmental analysis showed a 50–60% reduction in greenhouse gas emissions compared to conventional disposal, due to avoided open burning, carbon stabilization via compost, and the displacement of fossil fuels. Economically, the circular strategy yielded a net benefit of ~70 $/ha, with revenues from bioenergy and compost exceeding processing costs. Soil organic matter increased from 1.3% to 1.5% after compost application, improving fertility and water retention. The waste reduction percentage reached ~65%, significantly decreasing the volume of unutilized biomass. These outcomes, confirmed through statistical and correlation analyses, demonstrate a robust model for circular agriculture that enhances energy self-sufficiency, mitigates the environmental impact, and supports economic and agronomic sustainability. The findings offer a replicable framework for transforming olive farming waste into valuable bioresources. Full article
22 pages, 2813 KiB  
Article
Removal of Total Phenolic Compounds and Heavy Metal Ions from Olive Mill Wastewater Using Sodium-Activated Jordanian Kaolinite
by Ethar M. Al-Essa, Khansaa Al-Essa, Neda Halalsheh, Abdelmajeed Adam Lagum, Alaa M. Al-Ma’abreh, Hussein Saraireh and Khaldoun Shatnawi
Sustainability 2025, 17(10), 4627; https://doi.org/10.3390/su17104627 - 18 May 2025
Cited by 1 | Viewed by 714
Abstract
Olive mill wastewater (OMW) is deemed a substantial environmental pollutant, particularly in Mediterranean regions. Lower and middle-income countries, including Jordan, suffer from water scarcity and increasing demand for water, especially for drinking and irrigation purposes. Subsequently, the management and treatment of OMW represents [...] Read more.
Olive mill wastewater (OMW) is deemed a substantial environmental pollutant, particularly in Mediterranean regions. Lower and middle-income countries, including Jordan, suffer from water scarcity and increasing demand for water, especially for drinking and irrigation purposes. Subsequently, the management and treatment of OMW represents a major concern. This study investigates the feasibility of utilizing Jordanian kaolinite as a simple, readily available, green, and sustainable adsorbent to mitigate the environmental impact of untreated or partially treated OMW. In this work, purified kaolinite (PK) was activated with sodium ions at room temperature. The characterization of PK and sodium-activated kaolinite (PK-NaCl) was accomplished using FTIR, XRD, TGA, and BET surface area analyses. The adsorption performance of both PK and PK-NaCl for OMW treatment were evaluated through batch and column experiments. The key physiochemical parameters of OMW were systematically analyzed in all influent and effluent samples to evaluate the treatment efficiency. In all cases, sodium-activated kaolinite significantly enhances treatment efficiency. The adsorption of total phenolic compounds (TPCs) onto both PK and PK-NaCl adsorbents was studied with respect to initial concentration, adsorbent dosage, and temperature. The maximum adsorption capacity was 8.88 mg/g for PK-NaCl, which was higher than that of PK, at an adsorbent dose of 1.0 g and a temperature of 323 K. The Langmuir and Freundlich isotherm models to describe the adsorption equilibrium were implemented, and both displayed good fit with the experimental data. Additionally, the removal efficiencies of heavy metal (i.e., Zn, Fe and Mn) ions were also evaluated. The findings demonstrated that the PK-NaCl completely removed all tested heavy metal ions, regardless of their initial concentrations. Therefore, the cost-effective and easily prepared PK-NaCl significantly improved the adsorption capacity and presents a promising treatment solution for OMW. This approach could be highly beneficial for olive mills across the Mediterranean regions to mitigate the environmental impact of OM waste. Full article
(This article belongs to the Special Issue Development and Optimization of Sustainable Metal Recovery Processes)
Show Figures

Figure 1

21 pages, 7002 KiB  
Article
The Effect of Nano-Biochar Derived from Olive Waste on the Thermal and Mechanical Properties of Epoxy Composites
by Muhammed İhsan Özgün, Vildan Erci, Emrah Madenci and Fatih Erci
Polymers 2025, 17(10), 1337; https://doi.org/10.3390/polym17101337 - 14 May 2025
Viewed by 584
Abstract
The increasing demand for the development of environmentally friendly alternatives to petroleum-derived materials has increased research efforts on sustainable polymer composites. This study systematically examined the effect of nano-biochar derived from agricultural wastes such as olive pulp on the mechanical and thermal properties [...] Read more.
The increasing demand for the development of environmentally friendly alternatives to petroleum-derived materials has increased research efforts on sustainable polymer composites. This study systematically examined the effect of nano-biochar derived from agricultural wastes such as olive pulp on the mechanical and thermal properties of epoxy-resin-based composites. First, the biochar from olive pulp was produced by pyrolysis at 450 °C and turned to nano-biochar using ball milling. Composite samples containing nano-biochar at different rates between 0 and 10% were prepared. The nano-biochar and composite samples were characterized by using different techniques such as SEM-EDS, BET, FTIR, XRD, Raman, TGA, and DMA analyses. Also, the tensile strength, elastic modulus, Shore D hardness, thermal stability, and static toughness of the composite samples were evaluated. The best performance was observed in the sample containing 6% nano-biochar; the ultimate tensile strength increased from 17.37 MPa to 23.46 MPa compared to pure epoxy, and the elastic modulus and hardness increased. However, a decrease in brittleness and toughness was observed at higher additive rates. FTIR and DMA analyses indicated that the nano-biochar interacted strongly with the epoxy matrix and increased its thermal stability. The results showed that the olive-pulp-derived nano-biochar could be used to improve the structural and thermal properties of the epoxy composites as an inexpensive and environmentally friendly filler. As a result, this study contributes to the production of new polymer-based materials that will encourage the production of environmentally friendly composites with nano-scale biochar obtained from olive waste, which is an easily accessible, renewable by-product. Full article
Show Figures

Figure 1

Back to TopTop