Harnessing Phosphocompost Extracts to Mitigate Meloidogyne javanica Impacts on Tomato
Abstract
1. Introduction
2. Material and Methods
2.1. Phosphocompost Source
2.2. Phosphocompost Chemical Composition
2.3. Preparation of M. javanica Inoculum
2.4. Preparation of Phosphocompost Extracts
2.5. Preparation of Tomato Plants
2.6. Greenhouse Experiment and Design
2.7. Growth of Tomato Plants Infected with M. javanica Under Phosphocompost Extract Treatments
2.8. Final Population and Reproduction of M. javanica Under Phosphocompost Extract Treatments
2.9. Photosynthetic Pigments
2.10. Secondary Metabolites
2.11. Statistical Analysis
3. Results
3.1. Compost Chemical Composition
3.2. Comparison of Phosphocompost Extracts’ Effect on Plant Development and Pathogen Control in Tomato
3.2.1. Effect of Phosphocompost Extracts on the Morphological Development of Tomato Plants Under M. javanica Infection
3.2.2. Effect of Phosphocompost Extracts on Photosynthetic Activity of Tomato Plants Under M. javanica Infection
3.2.3. Effect of Phosphocompost Extracts on Secondary Metabolites Synthesis of Tomato Plants Under M. javanica Infection
3.2.4. Effect of Phosphocompost Extracts on the Development and Reproduction of M. javanica
3.3. Principal Component Analysis (PCA) of Phosphocompost Extract Effects on Tomato Growth Parameters and M. javanica Reproduction Metrics
4. Discussion
4.1. Nutrient Profiling of Phosphocomposts
4.2. Effects of Phosphocompost Extracts on Tomato Morphological Growth
4.3. Effect of Phosphocompost Extracts on Physiological Development of Tomato
4.4. Effect of Phosphocompost Extracts on M. javanica Reproduction
4.5. Principal Component Analysis (PCA) of Phosphocompost Extract Effects on Tomato Growth Parameters and M. javanica Reproduction Metrics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Sun, X.Y.; Tian, Y.; Gong, X.Q. Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Sci. Hortic. 2014, 176, 70–78. [Google Scholar] [CrossRef]
- Henwood, W.D. Toward a strategy for the conservation and protection of the world’s temperate grasslands. Great Plains Res. 2010, 20, 121–134. [Google Scholar]
- Ren, H.; Hu, J.; Hu, Y.; Yang, G.; Zhang, Y. Divergence of compost extract and bio-organic manure effects on lucerne plant and soil. PeerJ 2017, 5, e3775. [Google Scholar] [CrossRef]
- Haouas, A.; El Modafar, C.; Douira, A.; Ibnsouda-Koraichi, S.; Filali-Maltouf, A.; Moukhli, A.; Amir, S. Evaluation of the nutrients cycle, humification process, and agronomic efficiency of organic wastes composting enriched with phosphate sludge. J. Clean. Prod. 2021, 302, 127051. [Google Scholar] [CrossRef]
- González-Hernández, A.I.; Gómez-Sánchez, M.Á.; Pérez-Sánchez, R.; Morales-Corts, M.R. Garden waste compost tea: A horticultural alternative to promote plant growth and root traits in tomato (Solanum lycopersicum L.) plants. Horticulturae 2023, 9, 1127. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Faostat: Agriculture Data. 2021. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 20 October 2024).
- STATISTA. Production of tomatoes in Morocco from 2010 to 2021. 2024. Available online: https://www.statista.com/statistics/1302586/production-of-tomatoes-in-morocco/ (accessed on 13 October 2024).
- FAOSTAT. Food and Agriculture Data. 2024. Available online: https://www.fao.org/faostat/en/#home (accessed on 13 October 2024).
- El Aimani, A.; Houari, A.; Laasli, S.E.; Mentag, R.; Iraqi, D.; Diria, G.; Khayi, S.; Lahlali, R.; Dababat, A.A.; Mokrini, F. Antagonistic potential of Moroccan entomopathogenic nematodes against root-knot nematodes, Meloidogyne javanica on tomato under greenhouse conditions. Sci. Rep. 2022, 12, 2915. [Google Scholar] [CrossRef] [PubMed]
- Krif, G.; Mokrini, F.; Aissami, A.E.; Laasli, S.E.; Imren, M.; Özer, G.; Paulitz, T.; Lahlali, R.; Dababat, A.A. Diversity and management strategies of plant parasitic nematodes in Moroccan organic farming and their relationship with soil physico-chemical properties. Agriculture 2020, 10, 447. [Google Scholar] [CrossRef]
- Krif, G.; Lahlali, R.; El Aissami, A.; Laasli, S.E.; Mimouni, A.; Serderidis, S.; Picaud, T.; Moens, A.; Dababat, A.A.; Fahad, K.; et al. Efficacy of authentic bio-nematicides against the root-knot nematode, Meloidogyne javanica infecting tomato under greenhouse conditions. Physiol. Mol. Plant Pathol. 2022, 118, 101803. [Google Scholar] [CrossRef]
- Krif, G.; Lahlali, R.; El Aissami, A.; Laasli, S.E.; Mimouni, A.; Dababat, A.A.; Zoubi, B.; Mokrini, F. Potential effects of nematophagous fungi against Meloidogyne javanica infection of tomato plants under in vitro and in vivo conditions. J. Crop Health 2024, 76, 829–839. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, M.; Jiang, L.; Chen, X.; Griffiths, B.S.; Li, H.; Hu, F. Vermicompost increases defense against root-knot nematode (Meloidogyne incognita) in tomato plants. Appl. Soil Ecol. 2016, 105, 177–186. [Google Scholar] [CrossRef]
- Abad, P.; Favery, B.; Rosso, M.N.; Castagnone-Sereno, P. Root-knot nematode parasitism and host response: Molecular basis of a sophisticated interaction. Mol. Plant Pathol. 2003, 4, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Caillaud, M.C.; Dubreuil, G.; Quentin, M.; Perfus-Barbeoch, L.; Lecomte, P.; de Almeida Engler, J.; Abad, P.; Rosso, M.-N.; Favery, B. Root-knot nematodes manipulate plant cell functions during a compatible interaction. J. Plant Physiol. 2008, 165, 104–113. [Google Scholar] [CrossRef]
- Rostami, M.; Karegar, A.; Taghavi, S.M.; Ghasemi-Fasaei, R.; Ghorbani, A. Effective combination of arugula vermicompost, chitin and inhibitory bacteria for suppression of the root-knot nematode Meloidogyne javanica and explanation of their beneficial properties based on microbial analysis. PLoS ONE 2023, 18, e0289935. [Google Scholar] [CrossRef]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Thami Alami, I. Composting parameters and compost quality: A literature review. Org. Agric. 2018, 8, 141–158. [Google Scholar] [CrossRef]
- Ferronato, N.; Torretta, V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef]
- Mu, D.; Horowitz, N.; Casey, M.; Jones, K. Environmental and economic analysis of an in-vessel food waste composting system at Kean University in the U.S. Waste Manag. 2017, 59, 476–486. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Adamcová, D.; Winkler, J.; Koda, E.; Petrželová, L.; Maxianová, A. Alternative method of composting on a reclaimed municipal waste landfill in accordance with the circular economy: Benefits and risks. Sci. Total Environ. 2020, 723, 137971. [Google Scholar] [CrossRef]
- Bouchtaoui, E.M.; Haouas, A.; Dababat, A.A.; Lahlali, R.; Benali, A.; Fahr, M.; Smouni, A.; Azim, K.; Liu, Z.; Li, J.; et al. Exploring mechanisms of compost-mediated suppression of plant pathogens: A critical review. Appl. Soil Ecol. 2024, 203, 105644. [Google Scholar] [CrossRef]
- Bakker, C.; Popescu, I.; Schott, H.; Smith, M.L.; Avis, T.J. Compost teas provide reduction of grey mould (Botrytis cinerea Pers.) on tomato plants. Eur. J. Plant. Pathol. 2024, 169, 643–656. [Google Scholar] [CrossRef]
- Mohamed, O.Z.; Yassine, B.; Hilali Rania, E.; El Hassan, A.; Abdellatif, H.; Rachid, B. Evaluation of compost quality and bioprotection potential against Fusarium wilt of date palm. Waste Manag. 2020, 113, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Mohsenzadeh, S.; Karmidarenjani, M.; Mirahmadinejad, E.A.; Robati, R. The effect of green compost processed organic fertilizer and Chlorella microalgae solution on chlorophyll a, chlorophyll b, carotenoid and proline content of tropaeolum majus under drought stress. Annu. Res. Rev. Biol. 2023, 38, 17–27. [Google Scholar] [CrossRef]
- De Corato, U.; Salimbeni, R.; De Pretis, A.; Patruno, L.; Avella, N.; Lacolla, G.; Cucci, G. Microbiota from ‘next-generation green compost’ improves suppressiveness of composted municipal-solid-waste to soil-borne plant pathogens. Biol. Control 2018, 124, 1–17. [Google Scholar] [CrossRef]
- Mehta, C.M.; Palni, U.; Franke-Whittle, I.H.; Sharma, A.K. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag. 2014, 34, 607–622. [Google Scholar] [CrossRef]
- Gumiere, T.; Rousseau, A.N.; da Costa, D.P.; Cassetari, A.; Cotta, S.R.; Andreote, F.D.; Gumiere, S.J.; Pavinato, P.S. Phosphorus source driving the soil microbial interactions and improving sugarcane development. Sci. Rep. 2019, 9, 4400. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, X.; Chen, T.; Yang, J.; Yang, J.; Liu, J.; Shi, X. Passivation of lead and cadmium and increase of the nutrient content during sewage sludge composting by phosphate amendments. Environ. Res. 2020, 185, 109431. [Google Scholar] [CrossRef]
- Sarr, P.S.; Tibiri, E.B.; Fukuda, M.; Zongo, A.N.; Compaore, E.; Nakamura, S. Phosphate-solubilizing fungi and alkaline phosphatase trigger the p solubilization during the co-composting of sorghum straw residues with Burkina Faso phosphate rock. Front. Environ. Sci. 2020, 8, 559195. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, Y.; Shi, M.; Cao, Z.; Lu, Q.; Yang, T.; Fan, Y.; Wei, Z. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresour. Technol. 2018, 247, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zuo, H.; Li, J.; Ding, G.; Zhan, Y.; Zhang, L.; Wu, W.; Su, L.; Wei, Y. Insight into the mechanisms of insoluble phosphate transformation driven by the interactions of compound microbes during composting. Environ. Sci. Pollut. Res. 2021, 28, 32844–32855. [Google Scholar] [CrossRef]
- Li, H.; Zhang, T.; Tsang, D.C.W.; Li, G. Effects of external additives: Biochar, bentonite, phosphate, on co-composting for swine manure and corn straw. Chemosphere 2020, 248, 125927. [Google Scholar] [CrossRef]
- Mussarat, M.; Ali, H.; Muhammad, D.; Mian, I.A.; Khan, S.; Adnan, M.; Fahad, S.; Wahid, F.; Dawar, K.; Ali, S.; et al. Comparing the phosphorus use efficiency of pre-treated (organically) rock phosphate with soluble P fertilizers in maize under calcareous soils. PeerJ 2021, 9, e11452. [Google Scholar] [CrossRef] [PubMed]
- Giménez, A.; Fernández, J.A.; Pascual, J.A.; Ros, M.; Egea-Gilabert, C. Application of directly brewed compost extract improves yield and quality in baby leaf lettuce grown hydroponically. Agronomy 2020, 10, 370. [Google Scholar] [CrossRef]
- Spaccini, R.; Cozzolino, V.; Di Meo, V.; Savy, D.; Drosos, M.; Piccolo, A. Bioactivity of humic substances and water extracts from compost made by ligno-cellulose wastes from biorefinery. Sci. Total Environ. 2019, 646, 792–800. [Google Scholar] [CrossRef]
- El Rasafi, T.; Haouas, A.; Tallou, A.; Chakouri, M.; Aallam, Y.; El Moukhtari, A.; Hamamouch, N.; Hamdali, H.; Oukarroum, A.; Farissi, M.; et al. Recent progress on emerging technologies for trace elements-contaminated soil remediation. Chemosphere 2023, 341, 140121. [Google Scholar] [CrossRef]
- Hussey, R.S.; Barker, K.R. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis. Rep. 1973, 57, 1025–1028. [Google Scholar]
- Taylor, A.L. Introduction to Research on Plant Nematology. An FAO Guide to the Study and Control of Plant-Parasitic Nematodes; Food and Agricultural Organization of the United Nations: Rome, Italy, 1967; p. 133. [Google Scholar]
- Machado, R.M.A.; Alves-Pereira, I.; Lourenço, D.; Ferreira, R.M.A. Effect of organic compost and inorganic nitrogen fertigation on spinach growth, phytochemical accumulation and antioxidant activity. Heliyon 2020, 6, e05085. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 1987, 1, F4. 3.1–F4. 3.8. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. Available online: https://www.sciencedirect.com/science/article/pii/S0076687999990171 (accessed on 20 September 2024).
- Santas, J.; Carbó, R.; Gordon, M.H.; Almajano, M.P. Comparison of the antioxidant activity of two Spanish onion varieties. Food Chem. 2008, 107, 1210–1216. [Google Scholar] [CrossRef]
- Alves de Oliveira, R.; Schneider, R.; Hoss Lunelli, B.; Vaz Rossell, C.E.; Maciel Filho, R.; Venus, J. A Simple Biorefinery Concept to Produce 2G-Lactic Acid from Sugar Beet Pulp (SBP): A High-Value Target Approach to Valorize a Waste Stream. Molecules 2020, 25, 2113. [Google Scholar] [CrossRef]
- Micard, V.; Renard, C.M.G.C.; Thibault, J.F. Enzymatic saccharification of sugar-beet pulp. Enzym. Microb. Technol. 1996, 19, 162–170. [Google Scholar] [CrossRef]
- Pérez, C.; Boily, J.F.; Skoglund, N.; Jansson, S.; Fick, J. Phosphorus release from hydrothermally carbonized digested sewage sludge using organic acids. Waste Manag. 2022, 151, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Bouhia, Y.; Hafidi, M.; Ouhdouch, Y.; Lyamlouli, K. Olive mill waste sludge: From permanent pollution to a highly beneficial organic biofertilizer: A critical review and future perspectives. Ecotoxicol. Environ. Saf. 2023, 259, 114997. [Google Scholar] [CrossRef] [PubMed]
- Sciubba, F.; Chronopoulou, L.; Pizzichini, D.; Lionetti, V.; Fontana, C.; Aromolo, R.; Socciarelli, S.; Gambelli, L.; Bartolacci, B.; Finotti, E.; et al. Olive mill wastes: A source of bioactive molecules for plant growth and protection against pathogens. Biology 2020, 9, 450. [Google Scholar] [CrossRef]
- Shabir, S.; Ilyas, N.; Saeed, M.; Bibi, F.; Sayyed, R.Z.; Almalki, W.H. Treatment technologies for olive mill wastewater with impacts on plants. Environ. Res. 2023, 216, 114399. [Google Scholar] [CrossRef] [PubMed]
- Tikoria, R.; Kaur, A.; Ohri, P. Potential of vermicompost extract in enhancing the biomass and bioactive components along with mitigation of Meloidogyne incognita-induced stress in tomato. Environ. Sci. Pollut. Res. 2022, 29, 56023–56036. [Google Scholar] [CrossRef]
- Xu, D.; Raza, W.; Yu, G.; Zhao, Q.; Shen, Q.; Huang, Q. Phytotoxicity analysis of extracts from compost and their ability to inhibit soil-borne pathogenic fungi and reduce root-knot nematodes. World J. Microbiol. Biotechnol. 2012, 28, 1193–1201. [Google Scholar] [CrossRef]
- Rodríguez, R.; Vassilev, N.; Azcón, R. Increases in growth and nutrient uptake of alfalfa grown in soil amended with microbially-treated sugar beet waste. Appl. Soil Ecol. 1999, 11, 9–15. [Google Scholar] [CrossRef]
- Medina, A.; Vassileva, M.; Barea, J.M.; Azcón, R. The growth-enhancement of clover by Aspergillus-treated sugar beet waste and Glomus mosseae inoculation in Zn contaminated soil. Appl. Soil Ecol. 2006, 33, 87–98. [Google Scholar] [CrossRef]
- Lu, P.; Davis, R.F.; Kemerait, R.C.; van Iersel, M.W.; Scherm, H. Physiological effects of Meloidogyne incognita infection on cotton genotypes with differing levels of resistance in the greenhouse. J. Nematol. 2014, 46, 352–359. [Google Scholar]
- Sikandar, A.; Wu, F.; He, H.; Ullah, R.M.K.; Wu, H. Growth, physiological, and biochemical variations in tomatoes after infection with different density levels of Meloidogyne enterolobii. Plants 2024, 13, 293. [Google Scholar] [CrossRef]
- Tikoria, R.; Kaur, A.; Ohri, P. Modulation of various phytoconstituents in tomato seedling growth and Meloidogyne incognita–induced stress alleviation by vermicompost application. Front. Environ. Sci. 2022, 10, 891195. [Google Scholar] [CrossRef]
- Liang, C.; Li, A.; Yu, H.; Li, W.; Liang, C.; Guo, S.; Zhang, R.; Chu, C. Melatonin regulates root architecture by modulating auxin response in rice. Front. Plant. Sci. 2017, 8, 134. [Google Scholar] [CrossRef] [PubMed]
- Faraloni, C.; Giordano, C.; Arcidiaco, L.; Benelli, C.; Di Lonardo, S.; Anichini, M.; Stefani, F.; Petruccelli, R. Effective microorganisms and olive mill wastewater used as biostimulants to improve the performance of Tanacetum balsamita L., a medicinal plant. Appl. Sci. 2023, 13, 722. [Google Scholar] [CrossRef]
- Parrotta, L.; Campani, T.; Casini, S.; Romi, M.; Cai, G. Impact of raw and bioaugmented olive-mill wastewater and olive-mill solid waste on the content of photosynthetic molecules in tobacco plants. J. Agric. Food. Chem. 2016, 64, 5971–5984. [Google Scholar] [CrossRef]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormesis: A Compelling platform for sophisticated plant science. Trends Plant Sci. 2019, 24, 318–327. [Google Scholar] [CrossRef]
- Jalal, A.; de Oliveira Junior, J.C.; Ribeiro, J.S.; Fernandes, G.C.; Mariano, G.G.; Trindade, V.D.R.; dos Reis, A.R. Hormesis in plants: Physiological and biochemical responses. Ecotoxicol. Environ. Saf. 2021, 207, 111225. [Google Scholar] [CrossRef]
- Vargas-Hernandez, M.; Macias-Bobadilla, I.; Guevara-Gonzalez, R.G.; Romero-Gomez, S.D.J.; Rico-Garcia, E.; Ocampo-Velazquez, R.V.; Alvarez-Arquieta, L.D.L.; Torres-Pacheco, I. Plant hormesis management with biostimulants of biotic origin in agriculture. Front. Plant. Sci. 2017, 8, 1762. [Google Scholar] [CrossRef]
- Baryga, A.; Ziobro, R.; Gumul, D.; Rosicka-Kaczmarek, J.; Miśkiewicz, K. Physicochemical properties and evaluation of antioxidant potential of sugar beet pulp—Preliminary analysis for further use (future prospects). Agriculture 2023, 13, 1039. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Mihaylova, D.; Marangon, C.M.; Grigoletto, L.; Lante, A. Impact of sample pretreatment and extraction methods on the bioactive compounds of sugar beet (Beta vulgaris L.) leaves. Molecules 2022, 27, 8110. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Millner, P.D.; Meyer, S.L.F.; Roig, A. Potential of olive mill waste and compost as biobased pesticides against weeds, fungi, and nematodes. Sci. Total Environ. 2008, 399, 11–18. [Google Scholar] [CrossRef]
- Omar, N.F.; Hassan, S.A.; Yusoff, U.K.; Abdullah, N.A.P.; Wahab, P.E.M.; Sinniah, U.R. Phenolics, flavonoids, antioxidant activity and cyanogenic glycosides of organic and mineral-base fertilized cassava tubers. Molecules 2012, 17, 2378–2387. [Google Scholar] [CrossRef]
- Yusof, Z.; Ramasamy, S.; Mahmood, N.Z.; Yaacob, J.S. Vermicompost supplementation improves the stability of bioactive anthocyanin and phenolic compounds in Clinacanthus nutans lindau. Molecules 2018, 23, 1345. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Alam, M.M. Utilization of waste materials in nematode control: A review. Bioresour. Technol. 1993, 45, 1–7. [Google Scholar] [CrossRef]
- Nico, A.I.; Jiménez-Díaz, R.M.; Castillo, P. Control of root-knot nematodes by composted agro-industrial wastes in potting mixtures. Crop Prot. 2004, 23, 581–587. [Google Scholar] [CrossRef]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef]
- Ye, X.; Chen, X.F.; Deng, C.L.; Yang, L.T.; Lai, N.W.; Guo, J.X.; Chen, L.S. Magnesium-deficiency effects on pigments, photosynthesis and photosynthetic electron transport of leaves, and nutrients of leaf blades and veins in citrus sinensis seedlings. Plants 2019, 8, 389. [Google Scholar] [CrossRef]
- Künstler, A.; Gullner, G.; Ádám, A.L.; Kolozsváriné Nagy, J.; Király, L. The versatile roles of sulfur-containing biomolecules in plant defense—A road to disease resistance. Plants 2020, 9, 1705. [Google Scholar] [CrossRef]
- Wu, G.Q.; Feng, R.J.; Liang, N.; Yuan, H.J.; Sun, W.B. Sodium chloride stimulates growth and alleviates sorbitol-induced osmotic stress in sugar beet seedlings. Plant Growth Regul. 2015, 75, 307–316. [Google Scholar] [CrossRef]
- Li, J.; Meng, Z.; Li, N.; Dong, B.; Ji, X.; Zhang, S.; Qiao, K. Evaluating a new non-fumigant nematicide fluopimomide for management of southern root-knot nematodes in tomato. Crop Prot. 2020, 129, 105040. [Google Scholar] [CrossRef]
Macronutrients (mg/L) | CP2 | CP3 | CP4 |
---|---|---|---|
Calcium (Ca) | 13.99 | 15.38 | 24.21 |
Magnesium (Mg) | 7.04 | 5.43 | 4.77 |
Potassium (K) | 270.90 | 115.40 | 392.50 |
Phosphorus (P) | 6.96 | 2.87 | 9.17 |
Sulfur (S) | 34.72 | 18.99 | 10.91 |
Sodium (Na) | 128.20 | 46.64 | 69.19 |
Micronutrients (mg/L) | CP2 | CP3 | CP4 |
---|---|---|---|
Iron (Fe) | 1.27 | 0.62 | 2.44 |
Manganese (Mn) | 0.07 | 0.04 | 0.06 |
Boron (B) | 0.36 | 0.22 | 0.60 |
Zinc (Zn) | 0.05 | 0.04 | 0.15 |
Copper (Cu) | 0.11 | 0.04 | 0.12 |
Molybdenum (Mo) | <0.01 | 0.06 | 0.02 |
Nickel (Ni) | 0.03 | 0.06 | 0.09 |
Trace Elements (mg/L) | CP2 | CP3 | CP4 |
---|---|---|---|
Aluminum (Al) | 0.95 | 0.83 | 0.93 |
Arsenic (As) | <0.01 | <0.01 | 0.02 |
Beryllium (Be) | <0.01 | <0.01 | <0.01 |
Bismuth (Bi) | <0.01 | <0.01 | <0.01 |
Cadmium (Cd) | <0.01 | <0.01 | <0.01 |
Cobalt (Co) | <0.01 | <0.01 | <0.01 |
Chromium (Cr) | 0.02 | 0.07 | 0.09 |
Lanthanum (La) | <0.01 | <0.01 | <0.01 |
Lithium (Li) | <0.01 | <0.01 | <0.01 |
Lead (Pb) | <0.01 | <0.01 | <0.01 |
Rubidium (Rb) | 0.11 | 0.03 | 0.13 |
Antimony (Sb) | <0.01 | <0.01 | <0.01 |
Selenium (Se) | <0.01 | <0.01 | <0.01 |
Silicon (Si) | 3.40 | 2.60 | 4.39 |
Strontium (Sr) | 0.03 | 0.04 | 0.05 |
Titanium (Ti) | 0.05 | 0.04 | 0.07 |
Thallium (Tl) | <0.01 | <0.01 | 0.01 |
Vanadium (V) | 0.09 | 0.25 | 0.39 |
Anions (mg/L) | CP2 | CP3 | CP4 |
---|---|---|---|
Fluoride (F−) | <0.02 | 1.08 | 2.02 |
Chloride (Cl−) | 187.64 | 77.84 | 55.61 |
Nitrite (NO2−) | <0.1 | <0.1 | <0.1 |
Bromide (Br−) | 0.66 | 0.15 | 0.09 |
Nitrate (NO3−) | <1.0 | 69.91 | 2.23 |
Phosphate (PO43−) | 12.91 | 2.20 | 6.79 |
Sulfate (SO42−) | 11.95 | 62.70 | 12.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouchtaoui, E.M.; Haouas, A.; Fahr, M.; Benali, A.; Dababat, A.A.; Alfalahi, A.O.; Khfif, K.; Zouahri, A.; Iraqi, D.; Azim, K.; et al. Harnessing Phosphocompost Extracts to Mitigate Meloidogyne javanica Impacts on Tomato. Agriculture 2025, 15, 1184. https://doi.org/10.3390/agriculture15111184
Bouchtaoui EM, Haouas A, Fahr M, Benali A, Dababat AA, Alfalahi AO, Khfif K, Zouahri A, Iraqi D, Azim K, et al. Harnessing Phosphocompost Extracts to Mitigate Meloidogyne javanica Impacts on Tomato. Agriculture. 2025; 15(11):1184. https://doi.org/10.3390/agriculture15111184
Chicago/Turabian StyleBouchtaoui, El Mehdi, Ayoub Haouas, Mouna Fahr, Aouatif Benali, Abdelfattah A. Dababat, Ayoob Obaid Alfalahi, Khalid Khfif, Abdelmjid Zouahri, Driss Iraqi, Khalid Azim, and et al. 2025. "Harnessing Phosphocompost Extracts to Mitigate Meloidogyne javanica Impacts on Tomato" Agriculture 15, no. 11: 1184. https://doi.org/10.3390/agriculture15111184
APA StyleBouchtaoui, E. M., Haouas, A., Fahr, M., Benali, A., Dababat, A. A., Alfalahi, A. O., Khfif, K., Zouahri, A., Iraqi, D., Azim, K., Smouni, A., & Mokrini, F. (2025). Harnessing Phosphocompost Extracts to Mitigate Meloidogyne javanica Impacts on Tomato. Agriculture, 15(11), 1184. https://doi.org/10.3390/agriculture15111184