Environmental Benefits of Olive By-Products in Energy, Soil, and Sustainable Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Olive Orchard Characteristics
2.2. Collection and Characterization of Olive Farm By-Products
2.2.1. Dry Leaves
2.2.2. Pruning Residues
2.2.3. Harvesting Residues
2.3. Pomace Collection from Olive Oil Mills
2.4. Performance Indicators and Analytical Methods
2.4.1. Utilization Efficiency (UE)
2.4.2. Energy Generation Potential (EGP)
2.4.3. Environmental Impact Reduction (EIR)
- (1)
- Baseline Scenario: Conventional disposal (burning/dumping) of ~10–11 t/ha, with over 80% of the olive fruit’s weight lost as waste, leading to significant CO2, methane, and pollutant emissions.
- (2)
- Integrated Scenario: Conversion of by-products into compost and bioenergy, which avoids open burning, stabilizes carbon (via compost/biochar), and offsets fossil fuel use.
2.4.4. Economic Feasibility
- (1)
- Bioenergy Production: This includes the conversion of woody biomass (pruning and harvesting residues) into energy (via heat, electricity, or the sale of biomass fuel).
- (2)
- Compost Utilization: This pertains to the generation of additional value through the conversion of olive pomace into compost, which can either be marketed as an organic soil amendment or used on-farm to reduce fertilizer expenses.
2.4.5. Soil Improvement Through Composting
2.4.6. Waste Reduction Percentage (WRP)
2.5. Data Analysis
2.6. Evaluation of Sustainable Management Practices
2.6.1. Composting
2.6.2. Bioenergy Production
2.6.3. Organic Soil Amendments
3. Results
3.1. Utilization Efficiency (UE)
3.2. Energy Generation Potential (EGP)
3.3. Environmental Impact Reduction (EIR)
3.4. Economic Feasibility (EF)
3.5. Soil Improvement Through Composting (SIC)
3.6. Waste Reduction Percentage (WRP)
3.7. Overall Contribution to a Circular Economy Model
3.8. Correlation Matrix Analysis
3.9. Evaluation of Sustainable Management Practices
3.9.1. Composting
3.9.2. Bioenergy Production
3.9.3. Organic Soil Amendments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gharira, A.; Siddiqui, K. Commercialisation of Agriculture: Olive Farming in Al Jouf Province, Saudi Arabia. Development 2022, 6, 1–14. [Google Scholar] [CrossRef]
- Abdelbaki, A.M.; Alzahrani, A.S. Gradually optimization of cropping pattern in Saudi Arabia for sustainable agricultural development until 2030. Ain Shams Eng. J. 2024, 15, 102624. [Google Scholar] [CrossRef]
- Eslamipoor, R. Contractual Mechanisms for Coordinating a Sustainable Supply Chain with Carbon Emission Reduction. Bus. Strategy Environ. 2025. [Google Scholar] [CrossRef]
- Michalopoulos, G.; Kasapi, K.A.; Koubouris, G.; Psarras, G.; Arampatzis, G.; Hatzigiannakis, E.; Kavvadias, V.; Xiloyannis, C.; Montanaro, G.; Malliaraki, S.; et al. Adaptation of Mediterranean olive groves to climate change through sustainable cultivation practices. Climate 2020, 8, 54. [Google Scholar] [CrossRef]
- Razmjoo, A.; Ghazanfari, A.; Østergaard, P.A.; Jahangiri, M.; Sumper, A.; Ahmadzadeh, S.; Eslamipoor, R. Moving Toward the Expansion of Energy Storage Systems in Renewable Energy Systems—A Techno-Institutional Investigation with Artificial Intelligence Consideration. Sustainability 2024, 16, 9926. [Google Scholar] [CrossRef]
- Bouhia, Y.; Hafidi, M.; Ouhdouch, Y.; Lyamlouli, K. Olive mill waste sludge: From permanent pollution to a highly beneficial organic biofertilizer: A critical review and future perspectives. Ecotoxicol. Environ. Saf. 2023, 259, 114997. [Google Scholar] [CrossRef]
- Enaime, G.; Dababat, S.; Wichern, M.; Lübken, M. Olive mill wastes: From wastes to resources. Environ. Sci. Pollut. Res. 2024, 31, 20853–20880. [Google Scholar] [CrossRef]
- Calvano, C.D.; Tamborrino, A. Valorization of olive by-products: Innovative strategies for their production, treatment and characterization. Foods 2022, 11, 768. [Google Scholar] [CrossRef]
- El-Bassi, L.; Azzaz, A.A.; Jellali, S.; Akrout, H.; Marks, E.A.; Ghimbeu, C.M.; Jeguirim, M. Application of olive mill waste-based biochars in agriculture: Impact on soil properties, enzymatic activities and tomato growth. Sci. Total Environ. 2021, 755, 142531. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Gonzálvez, J.; Garcıa, D.; Cegarra, J. Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour. Technol. 2004, 91, 195–200. [Google Scholar] [CrossRef]
- Elqadhi, M.E.R.; Škrbić, S.; Mohamoud, O.A.; Ašonja, A. Energy integration of corn cob in the process of drying the corn seeds. Therm. Sci. 2024, 28, 3325–3336. [Google Scholar] [CrossRef]
- Ghonimy, M.; Younis, S.; Ghoniem, E. Development of Olive Harvesting Machine by Shaking. Turk. J. Agric. Eng. Res. 2022, 3, 86–102. [Google Scholar] [CrossRef]
- Mekersi, N.; Kadi, K.; Casini, S.; Addad, D.; Amari, A.; Lekmine, S. Evaluation of the effects of short-term amendment with olive mill pomace on some soil properties. Soil Sci. Annu. 2022, 73, 1–6. [Google Scholar] [CrossRef]
- Restuccia, D.; Prencipe, S.A.; Ruggeri, M.; Spizzirri, U.G. Sustainability assessment of different extra virgin olive oil extraction methods through a life cycle thinking approach: Challenges and opportunities in the Elaio-technical sector. Sustainability 2022, 14, 15674. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Rodríguez Romero, T.E.; Cabello Eras, J.J.; Sagastume Gutierrez, A.; Mendoza Fandiño, J.M.; Rueda Bayona, J.G. The Energy Potential of Agricultural Biomass Residues for Household Use in Rural Areas in the Department La Guajira (Colombia). Sustainability 2025, 17, 974. [Google Scholar] [CrossRef]
- Cherubini, F.; Strømman, A.H. Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresour. Technol. 2011, 102, 437–451. [Google Scholar] [CrossRef]
- Tisdall, J.M.; OADES, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Saha, M.; Tamang, A.; Mitran, T.; Ghosh, K.; Mallick, J.A.; Som, D.; Tarafder, H.K.; Tamang, S. Soil Organic Carbon. In Fundamentals of Soil Sciences and Recent Advances; Cornous Publications LLP: Puducherry, India, 2024; pp. 94–107. [Google Scholar]
- Leonard, B. Solid Waste Management and Greenhouse Gases: A Life-Cycle Assessment of Emissions and Sinks; DIANE Publishing: Darby, PA, USA, 2003. [Google Scholar]
- Marquina, J.; Colinet, M.J.; Pablo-Romero, M.D.P. The economic value of olive sector biomass for thermal and electrical uses in Andalusia (Spain). Renew. Sustain. Energy Rev. 2021, 148, 111278. [Google Scholar] [CrossRef]
- Schipfer, F. Sustainable and optimal use of biomass for energy in the EU beyond 2020. In Roles of Bioenergy in Energy System Pathways Towards a “Well-Below-2-Degrees-Celsius (WB2)” World; IEA: Paris, France, 2020; pp. 99–102. [Google Scholar]
- Ozturk, M.U.; Ayol, A.; Tezer, O. Life cycle assessment of olive pomace gasification for an up-draft fixed bed gasifier system. Int. J. Hydrogen Energy 2023, 48, 23339–23347. [Google Scholar] [CrossRef]
- Sala, G.; Caruso, T.; Marra, F.P.; Zafonte, F.; Amico Roxas, A.; Schiavo, B.; Galia, A.; Brunori, A.; Dini, F.; Regni, L.; et al. Study of energetic properties of different tree organs in six Olea europaea L. cultivars. Sci. Rep. 2021, 11, 17047. [Google Scholar] [CrossRef]
- Lopez, F.J.; Pinzi, S.; Ruiz, J.J.; Lopez, A.; Dorado, M.P. Economic viability of the use of olive tree pruning as fuel for heating systems in public institutions in South Spain. Fuel 2010, 89, 1386–1391. [Google Scholar] [CrossRef]
- Rapa, M.; Ciano, S. A review on life cycle assessment of the olive oil production. Sustainability 2022, 14, 654. [Google Scholar] [CrossRef]
- Regni, L.; Nasini, L.; Ilarioni, L.; Brunori, A.; Massaccesi, L.; Agnelli, A.; Proietti, P. Long term amendment with fresh and composted solid olive mill waste on olive grove affects carbon sequestration by prunings, fruits, and soil. Front. Plant Sci. 2017, 7, 2042. [Google Scholar] [CrossRef]
- Abbattista, R.; Ventura, G.; Calvano, C.D.; Cataldi, T.R.; Losito, I. Bioactive compounds in waste by-products from olive oil production: Applications and structural characterization by mass spectrometry techniques. Foods 2021, 10, 1236. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, S.E.; Lee, D.W. Current status and future prospects of biological routes to bio-based products using raw materials, wastes, and residues as renewable resources. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2453–2509. [Google Scholar] [CrossRef]
- Angeloni, G.; Spadi, A.; Corti, F.; Calcaprina, M.; Carpi, G.; Maioli, F.; Parenti, A.; Masella, P. Advancing Circular Economy in Olive Oil Production: Comparing Maturation Systems for Vermicompost Creation from Olive Pomace. Biomass 2024, 4, 1178–1190. [Google Scholar] [CrossRef]
- Stempfle, S.; Carlucci, D.; de Gennaro, B.C.; Roselli, L.; Giannoccaro, G. Available pathways for operationalizing circular economy into the olive oil supply chain: Mapping evidence from a scoping literature review. Sustainability 2021, 13, 9789. [Google Scholar] [CrossRef]
- Zanzotti, R.; Bertoldi, D.; Baldantoni, D.; Morelli, R. Soil fertility and agronomic performance of green manure in vineyard. In Proceedings of the IV Convegno AISSA# Under 40, Fisciano, Italy, 12–13 July 2023; p. 142. Available online: https://hdl.handle.net/10449/81618 (accessed on 23 December 2024).
- Zeng, Y.; Tang, J.; Lian, S.; Tong, D.; Hu, C. Study on the conversion of cyanobacteria of Taihu Lake water blooms to biofuels. Biomass Bioenergy 2015, 73, 95–101. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 811–922. [Google Scholar]
- Achten, W. Sustainability Evaluation of Biodiesel from Jatropha curcas L. A Life Cycle Oriented Study. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2010. [Google Scholar]
- Durczak, K.; Ekielski, A.; Kozłowski, R.; Żelaziński, T.; Pilarski, K. A computer system supporting agricultural machinery and farm tractor purchase decisions. Heliyon 2020, 6, e05039. [Google Scholar] [CrossRef]
Component | Arbosana | Arbequina |
---|---|---|
Moisture, % | 50 | 52 |
Residual Oil, % | 2 | 2 |
Protein, % | 5 | 4 |
Sugars, % | 8 | 10 |
Fiber, % | 28 | 26 |
Ash (Minerals), % | 7 | 6 |
Total, % | 100 | 100 |
By-Product Type | Total Biomass, kg/ha | Utilized Biomass, kg/ha | Utilization Efficiency, % |
---|---|---|---|
Pruning residues | 5810 ± 100.0 | 3777 ± 22.8 | 65 |
Harvesting residues | 365 ± 16.1 | 256 ± 20.4 | 70 |
Total plant residues | 6175 ± 103.2 | 4033 ± 43.2 | 65.3 |
Olive pomace | 4500–5000 | 2925–3250 | 65 |
Grand total | 10,675–11,175 | 6958–7283 | 63.5–67.5 |
By-Product Source | Utilized Mass, kg/ha | Calorific Value, MJ/kg | Energy Potential, GJ/ha |
---|---|---|---|
Pruning+ harvest residues (dry) | 4033 | ~18 | ~72.6 |
Olive pomace (fresh, 50% MC) | ~3000 | ~8 (wet basis) | ~24.0 |
Total EGP | ~7033 | – | ~96.6 |
Item | * Value, $/ha |
---|---|
Gross value from bioenergy (fuel/energy) | 250 |
Gross value from compost (fertilizer) | 100 |
Total additional revenue/savings | 350 |
Cost of collection & processing | 280 |
Net benefit | +70 |
Parameter | Before (SOMinitial) | After (SOMafter) |
---|---|---|
Soil Organic Matter, % | 1.3 ± 0.1 b | 1.5 ± 0.1 a |
Metric | Amount, kg/ha |
---|---|
Total by-products generated | ~11,000 |
Utilized by-products (repurposed) | ~7100 |
Residual waste (not utilized) | ~3900 |
Waste Reduction Percentage (WRP) | ~65% |
Indicator | UE | EGP | EIR | EF | SIC | WRP | CE |
---|---|---|---|---|---|---|---|
UE | 1.00 | 0.70 | 0.75 | 0.65 | 0.68 | 0.72 | 0.77 |
EGP | 0.70 | 1.00 | 0.89 | 0.67 | 0.58 | 0.63 | 0.81 |
EIR | 0.75 | 0.89 | 1.00 | 0.52 | 0.66 | 0.71 | 0.88 |
EF | 0.65 | 0.67 | 0.52 | 1.00 | 0.61 | 0.60 | 0.69 |
SIC | 0.68 | 0.58 | 0.66 | 0.61 | 1.00 | 0.76 | 0.85 |
WRP | 0.72 | 0.63 | 0.71 | 0.60 | 0.76 | 1.00 | 0.87 |
CE | 0.77 | 0.81 | 0.88 | 0.69 | 0.85 | 0.87 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, A.; Ghonimy, M. Environmental Benefits of Olive By-Products in Energy, Soil, and Sustainable Management. Sustainability 2025, 17, 4722. https://doi.org/10.3390/su17104722
Alharbi A, Ghonimy M. Environmental Benefits of Olive By-Products in Energy, Soil, and Sustainable Management. Sustainability. 2025; 17(10):4722. https://doi.org/10.3390/su17104722
Chicago/Turabian StyleAlharbi, Abdulaziz, and Mohamed Ghonimy. 2025. "Environmental Benefits of Olive By-Products in Energy, Soil, and Sustainable Management" Sustainability 17, no. 10: 4722. https://doi.org/10.3390/su17104722
APA StyleAlharbi, A., & Ghonimy, M. (2025). Environmental Benefits of Olive By-Products in Energy, Soil, and Sustainable Management. Sustainability, 17(10), 4722. https://doi.org/10.3390/su17104722