Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Activated Carbon Support
2.3. Preparation of Composite Mixture (FeCr/AC)
2.4. Characterization Techniques
2.5. Process for the Photo-Fenton Degradation Experiment
3. Results
3.1. X-Ray Diffraction
3.2. Textural Properties
3.3. Fourier Transform Infrared (FT-IR)
3.4. Scanning Electron Microscope (SEM)
3.5. UV-Vis Spectroscopy
3.6. Photo-Fenton Catalytic Activity of FeCr/AC
3.7. Impact of Catalyst Amount on MB Degradation
3.8. Impact of Initial MB Concentration
3.9. Impact of Initial pH
3.10. Impact of Oxidant Dosage on MB Degradation
3.11. Kinetic Study of MB
3.12. FeCr/AC Recyclability and Leaching Test
3.13. Possible Mechanism for MB Degradation by FeCr/AC
3.14. Degradation of MO and TCH
3.15. Comparison with the Literature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Economic Forum. 5 Lessons for the Future of Water. 2020. Available online: https://www.weforum.org/agenda/2020/04/covid-19-water-what-can-we-learn/ (accessed on 17 September 2024).
- Zulfiqar, M.; Samsudin, M.F.R.; Sufian, S. Modelling and optimization of photocatalytic degradation of phenol via TiO2 nanoparticles: An insight into response surface methodology and artificial neural network. J. Photochem. Photobiol. A Chem. 2019, 384, 112039. [Google Scholar] [CrossRef]
- Pavithra, K.G.; Kumar, P.S.; Jaikumar, V.; Rajan, P.S. Removal of colorants from wastewater: A review on sources and treatment strategies. J. Ind. Eng. Chem. 2019, 75, 1–19. [Google Scholar] [CrossRef]
- Vanhulle, S.; Trovaslet, M.; Enaud, E.; Lucas, M.; Taghavi, S.; Van der Lelie, D.; Van Aken, B.; Foret, M.; Onderwater, R.C.A.; Wesenberg, D.; et al. Genotoxicity Reduction During a Combined Ozonation/Fungal Treatment of Dye-Contaminated Wastewater. Environ. Sci. Technol. 2008, 42, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Das, T.R.; Patra, S.; Madhuri, R.; Sharma, P.K. Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes. J. Colloid Interface Sci. 2018, 509, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Hafiz, M.; Hassanein, A.; Talhami, M.; Al-Ejji, M.; Hassan, M.K.; Hawari, A.H. Magnetic nanoparticles draw solution for forward osmosis: Current status and future challenges in wastewater treatment. J. Environ. Chem. Eng. 2022, 10, 108955. [Google Scholar] [CrossRef]
- Aslan, S.; Şirazi, M. Adsorption of Sulfonamide Antibiotic onto Activated Carbon Prepared from an Agro-industrial By-Product as Low-Cost Adsorbent: Equilibrium, Thermodynamic, and Kinetic Studies. Water Air Soil Pollut. 2020, 231, 222. [Google Scholar] [CrossRef]
- Omri, A.; Wali, A.; Benzina, M. Adsorption of bentazon on activated carbon prepared from Lawsonia inermis wood: Equilibrium, kinetic and thermodynamic studies. Arab. J. Chem. 2016, 9, S1729–S1739. [Google Scholar] [CrossRef]
- Rosal, R.; Rodríguez, A.; Perdigón-Melón, J.A.; Petre, A.; García-Calvo, E.; Gómez, M.J.; Agüera, A.; Fernández-Alba, A.R. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res. 2010, 44, 578–588. [Google Scholar] [CrossRef]
- Ali, T.; Tripathi, P.; Azam, A.; Raza, W.; Ahmed, A.S.; Ahmed, A.; Muneer, M. Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Mater. Res. Express 2017, 4, 15022. [Google Scholar] [CrossRef]
- Karthik, C.; Swathi, N.; Pandi Prabha, S.; Caroline, D.G. Green synthesized rGO-AgNP hybrid nanocomposite—An effective antibacterial adsorbent for photocatalytic removal of DB-14 dye from aqueous solution. J. Environ. Chem. Eng. 2020, 8, 103577. [Google Scholar] [CrossRef]
- McMullan, G.; Meehan, C.; Conneely, A.; Kirby, N.; Robinson, T.; Nigam, P.; Banat, I.M.; Marchant, R.; Smyth, W.F. Microbial decolourisation and degradation of textile dyes. Appl. Microbiol. Biotechnol. 2001, 56, 81–87. [Google Scholar] [CrossRef]
- Emamjomeh, M.M.; Sivakumar, M. Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J. Environ. Manag. 2009, 90, 1663–1679. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chem. Rev. 2015, 115, 13362–13407. [Google Scholar] [CrossRef] [PubMed]
- Momina; Ahmad, K. Feasibility of the adsorption as a process for its large scale adoption across industries for the treatment of wastewater: Research gaps and economic assessment. J. Clean. Prod. 2023, 388, 136014. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, D.-S.; Moradi, H.; Chang, Y.-Y.; Yang, J.-K. Highly porous biobased graphene-like carbon adsorbent for dye removal: Preparation, adsorption mechanisms and optimization. J. Environ. Chem. Eng. 2023, 11, 109278. [Google Scholar] [CrossRef]
- Dhamorikar, R.S.; Lade, V.G.; Kewalramani, P.V.; Bindwal, A.B. Review on integrated advanced oxidation processes for water and wastewater treatment. J. Ind. Eng. Chem. 2024, 138, 104–122. [Google Scholar] [CrossRef]
- Sirés, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res. 2014, 21, 8336–8367. [Google Scholar] [CrossRef]
- Ahmed, S.; Rasul, M.G.; Brown, R.; Hashib, M.A. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review. J. Environ. Manag. 2011, 92, 311–330. [Google Scholar] [CrossRef]
- Sun, B.; Li, H.; Li, X.; Liu, X.; Zhang, C.; Xu, H.; Zhao, X.S. Degradation of Organic Dyes over Fenton-Like Cu2O-Cu/C Catalysts. Ind. Eng. Chem. Res. 2018, 57, 14011–14021. [Google Scholar] [CrossRef]
- Susanti, Y.D.; Saleh, R. Efficient photo-, sono-, and sonophoto-fenton-like degradation of the organic pollutant methylene blue using a BiFeO3/graphene composite. IOP Conf. Ser. Mater. Sci. Eng. 2020, 763, 012064. [Google Scholar] [CrossRef]
- Vaishnave, P.; Ameta, G.; Kumara, A.; Sharma, S.; Ameta, S.C. Sono-photo-Fenton and photo-Fenton degradation of methylene blue: A comparative study. J. Indian Chem. Soc. 2011, 88, 397–403. [Google Scholar] [CrossRef]
- Halfadji, A.; Naous, M.; Kharroubi, K.N.; Belmehdi, F.E.Z.; Aoudia, H. Facile prepared Fe3O4 nanoparticles as a nano-catalyst on photo-fenton process to remediation of methylene blue dye from water: Characterization and optimization. Glob. NEST J. 2024, 26, 1–6. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, R.; Yan, L.; Fu, H.; Xi, Y.; Zhou, H.; Zhu, G.; Zhu, J.; He, H. Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite. Appl. Catal. B Environ. 2018, 239, 280–289. [Google Scholar] [CrossRef]
- Jiang, J.; Gao, J.; Li, T.; Chen, Y.; Wu, Q.; Xie, T.; Lin, Y.; Dong, S. Visible-light-driven photo-Fenton reaction with α-Fe2O3/BiOI at near neutral pH: Boosted photogenerated charge separation, optimum operating parameters and mechanism insight. J. Colloid Interface Sci. 2019, 554, 531–543. [Google Scholar] [CrossRef]
- Ahmed, Y.; Yaakob, Z.; Akhtar, P. Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal. Sci. Technol. 2016, 6, 1222–1232. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, C.; Yuan, Y.; Jin, Y.; Liu, Y.; Jiang, Z.; Li, X.; Dai, J.; Zhang, Y.; Siyal, A.A.; et al. Catalytic degradation of crystal violet and methyl orange in heterogeneous Fenton-like processes. Chemosphere 2023, 344, 140406. [Google Scholar] [CrossRef] [PubMed]
- Tryba, B.; Piszcz, M.; Grzmil, B.; Pattek-Janczyk, A.; Morawski, A.W. Photodecomposition of dyes on Fe-C-TiO2 photocatalysts under UV radiation supported by photo-Fenton process. J. Hazard. Mater. 2009, 162, 111–119. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Feng, L.-R.; Xu, N.; Chen, Z.-G.; Wang, X.-M. Magnetic nickel ferrite as a heterogeneous photo-Fenton catalyst for the degradation of rhodamine B in the presence of oxalic acid. Chem. Eng. J. 2012, 203, 432–439. [Google Scholar] [CrossRef]
- Diao, Y.; Yan, Z.; Guo, M.; Wang, X. Magnetic multi-metal co-doped magnesium ferrite nanoparticles: An efficient visible light-assisted heterogeneous Fenton-like catalyst synthesized from saprolite laterite ore. J. Hazard. Mater. 2018, 344, 829–838. [Google Scholar]
- Anchieta, C.G.; Severo, E.C.; Rigo, C.; Mazutti, M.A.; Kuhn, R.C.; Muller, E.I.; Flores, E.M.M.; Moreira, R.F.P.M.; Foletto, E.L. Rapid and facile preparation of zinc ferrite (ZnFe2O4) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction. Mater. Chem. Phys. 2015, 160, 141–147. [Google Scholar] [CrossRef]
- Firouzeh, N.; Paseban, A.; Ghorbanian, M.; Asadzadeh, S.N.; Amani, A. Recyclable Nano-Magnetic CoFe2O4: A Photo-Fenton Catalyst for Efficient Degradation of Reactive Blue 19. Bionanoscience 2024, 14, 4481–4492. [Google Scholar] [CrossRef]
- Fahad Almojil, S.; Ning, J.; Ibrahim Almohana, A. Photo-Fenton process for degradation of methylene blue using copper ferrite@sepiolite clay. Inorg. Chem. Commun. 2024, 166, 12623. [Google Scholar] [CrossRef]
- Qin, L.; Wang, Z.; Fu, Y.; Lai, C.; Liu, X.; Li, B.; Liu, S.; Yi, H.; Li, L.; Zhang, M.; et al. Gold nanoparticles-modified MnFe2O4 with synergistic catalysis for photo-Fenton degradation of tetracycline under neutral pH. J. Hazard. Mater. 2021, 414, 125448. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, S.A.; Somvanshi, S.B.; Khedkar, M.V.; Patade, S.R.; Jadhav, K.M. Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: Visible light-enabled active photodegradation of rhodamine B. J. Mater. Sci. Mater. Electron. 2020, 31, 11352–11365. [Google Scholar] [CrossRef]
- Mendonça, M.H.; Godinho, M.I.; Catarino, M.A.; da Silva Pereira, M.I.; Costa, F.M. Preparation and characterization of spinel oxide ferrites suitable for oxygen evolution anodes. Solid State Sci. 2002, 4, 175–182. [Google Scholar] [CrossRef]
- Valente, F.; Astolfi, L.; Simoni, E.; Danti, S.; Franceschini, V.; Chicca, M.; Martini, A. Nanoparticle drug delivery systems for inner ear therapy: An overview. J. Drug Deliv. Sci. Technol. 2017, 39, 28–35. [Google Scholar] [CrossRef]
- Casbeer, E.; Sharma, V.K.; Li, X. Z Synthesis and photocatalytic activity of ferrites under visible light: A review. Sep. Purif. Technol. 2012, 87, 1–14. [Google Scholar] [CrossRef]
- Zhou, L.; Ji, L.; Ma, P.-C.; Shao, Y.; Zhang, H.; Gao, W.; Li, Y. Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb(II). J. Hazard. Mater. 2014, 265, 104–114. [Google Scholar] [CrossRef]
- Rooygar, A.A.; Mallah, M.H.; Abolghasemi, H.; Safdari, J. New ‘magmolecular’ process for the separation of antimony(III) from aqueous solution. J. Chem. Eng. Data 2014, 59, 3545–3554. [Google Scholar] [CrossRef]
- Goswami, M.; Phukan, P. Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. J. Environ. Chem. Eng. 2017, 5, 3508–3517. [Google Scholar] [CrossRef]
- Zabihi, M.; Khorasheh, F.; Shayegan, J. Supported copper and cobalt oxides on activated carbon for simultaneous oxidation of toluene and cyclohexane in air. RSC Adv. 2015, 5, 5107–5122. [Google Scholar] [CrossRef]
- Bouriche, R.; Tazibet, S.; Boutillara, Y.; Melouki, R.; Benaliouche, F.; Boucheffa, Y. Characterization of Titanium (IV) Oxide Nanoparticles Loaded onto Activated Carbon for the Adsorption of Nitrogen Oxides Produced from the Degradation of Nitrocellulose. Anal. Lett. 2021, 54, 1929–1942. [Google Scholar] [CrossRef]
- Qadri, S.; Ganoe, A.; Haik, Y. Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. J. Hazard. Mater. 2009, 169, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Antil, B.; Olhan, S.; Vander Wal, R.L. Production of Graphitic Carbon from Renewable Lignocellulosic Biomass Source. Minerals 2025, 15, 262. [Google Scholar] [CrossRef]
- Vasileiadou, A.; Zoras, S.; Iordanidis, A. Bioenergy production from olive oil mill solid wastes and their blends with lignite: Thermal characterization, kinetics, thermodynamic analysis, and several scenarios for sustainable practices. Biomass Convers. Biorefinery 2023, 13, 5325–5338. [Google Scholar] [CrossRef]
- Andriantsiferana, C.; Mohamed, E.F.; Delmas, H. Photocatalytic degradation of an azo-dye on TiO2/activated carbon composite material. Environ. Technol. 2014, 35, 355–363. [Google Scholar] [CrossRef]
- Yuan, R.; Guan, R.; Shen, W.; Zheng, J. Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers. J. Colloid Interface Sci. 2005, 282, 87–91. [Google Scholar] [CrossRef]
- Bukhari, S.N.U.S.; Shah, A.A.; Liu, W.; Channa, I.A.; Chandio, A.D.; Chandio, I.A.; Ibupoto, Z.H. Activated carbon based TiO2 nanocomposites (TiO2@AC) used simultaneous adsorption and photocatalytic oxidation for the efficient removal of Rhodamine-B (Rh–B). Ceram. Int. 2024, 50, 41285–41298. [Google Scholar] [CrossRef]
- Thirumoolan, D.; Ragupathy, S.; Renukadevi, S.; Rajkumar, P.; Rai, R.S.; Saravana Kumar, R.M.; Hasan, I.; Durai, M.; Ahn, Y.-H. Influence of nickel doping and cotton stalk activated carbon loading on structural, optical, and photocatalytic properties of zinc oxide nanoparticles. J. Photochem. Photobiol. A Chem. 2024, 448, 115300. [Google Scholar] [CrossRef]
- Hamieh, M.; Tabaja, N.; Chawraba, K.; Hamie, Z.; Hammoud, M.; Tlais, S.; Hamieh, T.; Toufaily, J. Visible Light Photo-Fenton with Hybrid Activated Carbon and Metal Ferrites for Efficient Treatment of Methyl Orange (Azo Dye). Molecules 2025, 30, 1770. [Google Scholar] [CrossRef]
- Imraish, A.; Abu Thiab, T.; Al-Awaida, W.; Al-Ameer, H.J.; Bustanji, Y.; Hammad, H.; Alsharif, M.; ad Al-Hunaiti, A. In vitro anti-inflammatory and antioxidant activities of ZnFe2O4 and CrFe2O4 nanoparticles synthesized using Boswellia carteri resin. J. Food Biochem. 2021, 45, e13730. [Google Scholar] [CrossRef]
- Liu, Q.-X.; Zhou, Y.-R.; Wang, M.; Zhang, Q.; Ji, T.; Chen, T.-Y.; Yu, D.-C. Adsorption of methylene blue from aqueous solution onto viscose-based activated carbon fiber felts: Kinetics and equilibrium studies. Adsorpt. Sci. Technol. 2019, 37, 312–332. [Google Scholar] [CrossRef]
- Liu, P.; Huang, Y.; Zhang, X. Enhanced electromagnetic absorption properties of reduced graphene oxide-polypyrrole with NiFe2O4 particles prepared with simple hydrothermal method. Mater. Lett. 2014, 120, 143–146. [Google Scholar] [CrossRef]
- Parishani, M.; Nadafan, M.; Dehghani, Z.; Malekfar, R.; Khorrami, G.H.H. Optical and dielectric properties of NiFe2O4 nanoparticles under different synthesized temperature. Results Phys. 2017, 7, 3619–3623. [Google Scholar] [CrossRef]
- da Silva, M.T.P.; Pereira, L.C.J.; Silva, F.T.; Rocha, R.P.; Guerreiro, M.C.; Silva, A.M. Textural and photocatalytic characteristics of iron-cobalt based nanocomposites supported on SBA-15: Synergistic effect between Fe2+ and Fe0 on photoactivity. Microporous Mesoporous Mater. 2021, 310, 110582. [Google Scholar] [CrossRef]
- Luadthong, C.; Itthibenchapong, V.; Viriya-Empikul, N.; Faungnawakij, K.; Pavasant, P.; Tanthapanichakoon, W. Synthesis, structural characterization, and magnetic property of nanostructured ferrite spinel oxides (AFe2O4, A = Co, Ni and Zn). Mater. Chem. Phys. 2013, 143, 203–208. [Google Scholar] [CrossRef]
- Doğan, M.; Sabaz, P.; Bicil, Z.; Koçer Kizilduman, B.; Turhan, Y. Activated carbon synthesis from tangerine peel and its use in hydrogen storage. J. Energy Inst. 2020, 93, 2176–2185. [Google Scholar] [CrossRef]
- Baikousi, M.; Dimos, K.; Bourlinos, A.B.; Zbořil, R.; Papadas, I.; Deligiannakis, Y.; Karakassides, M.A. Surface decoration of carbon nanosheets with amino-functionalized organosilica nanoparticles. Appl. Surf. Sci. 2012, 258, 3703–3709. [Google Scholar] [CrossRef]
- Shendrik, R.; Kaneva, E.; Radomskaya, T.; Sharygin, I.; Marfin, A. Relationships between the structural, vibrational, and optical properties of microporous cancrinite. Crystals 2021, 11, 280. [Google Scholar] [CrossRef]
- Makofane, A.; Motaung, D.E.; Hintsho-Mbita, N.C. Photocatalytic degradation of methylene blue and sulfisoxazole from water using biosynthesized zinc ferrite nanoparticles. Ceram. Int. 2021, 47, 22615–22626. [Google Scholar] [CrossRef]
- Yousif, M.; Ibrahim, A.H.; Al-Rawi, S.S.; Majeed, A.; Iqbal, M.A.; Kashif, M.; Abidin, Z.U.; Arbaz, M.; Ali, S.; Hussain, S.A.; et al. Visible light assisted photooxidative facile degradation of azo dyes in water using a green method. RSC Adv. 2024, 14, 16138–16149. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.; Singh, J.; Yashpal, M.; Gupta, D.K.; Mishra, R.K.; Tripathi, S.; Ojha, A.K. Synthesis of superparamagnetic bare Fe3O4 nanostructures and core/shell (Fe3O4/alginate) nanocomposites. Carbohydr. Polym. 2012, 89, 821–829. [Google Scholar] [CrossRef]
- Sriramulu, M.; Shukla, D.; Sumathi, S. Aegle marmelos leaves extract mediated synthesis of zinc ferrite: Antibacterial activity and drug delivery. Mater. Res. Express 2018, 5, 115404. [Google Scholar] [CrossRef]
- Bharathi, K.K.; Noor-A-Alam, M.; Vemuri, R.S.; Ramana, C.V. Correlation between microstructure, electrical and optical properties of nanocrystalline NiFe1.925Dy0.075O4 thin films. RSC Adv. 2012, 2, 941–948. [Google Scholar] [CrossRef]
- Tabaja, N.; Brouri, D.; Casale, S.; Zein, S.; Jaafar, M.; Selmane, M.; Toufaily, J.; Davidson, A.; Hamieh, T. Use of SBA-15 silica grains for engineering mixtures of oxides CoFe and NiFe for Advanced Oxidation Reactions under visible and NIR. Appl. Catal. B Environ. 2019, 253, 369–378. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos. Part B Eng. 2019, 174, 106930. [Google Scholar] [CrossRef]
- Saleh, T.S.; Badawi, A.K.; Salama, R.S.; Mostafa, M.M.M. Design and Development of Novel Composites Containing Nickel Ferrites Supported on Activated Carbon Derived from Agricultural Wastes and Its Application in Water Remediation. Materials 2023, 16, 2170. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, S.; Zhang, X.; Lu, C.; He, Y. Hydrothermal synthesis and photo-Fenton degradation of magnetic MnFe2O4/rGO nanocomposites. J. Mater. Sci. Mater. Electron. 2020, 31, 5176–5186. [Google Scholar] [CrossRef]
- Varghese, D.; Joe Raja Ruban, M.; Joselene Suzan Jennifer, P.; AnnieCanisius, D.; Chakko, S.; Muthupandi, S.; Madhavan, J.; Victor Antony Raj, M. Comprehensive analysis of NiFe2O4/MWCNTs nanocomposite to degrade a healthcare waste—Tetracycline. RSC Adv. 2023, 13, 28339–28361. [Google Scholar] [CrossRef]
- Aladdin Jasim, N.; Esmail Ebrahim, S.; Ammar, S.H. Fabrication of ZnxMn1-xFe2O4 metal ferrites for boosted photocatalytic degradation of Rhodamine-B dye. Results Opt. 2023, 13, 100508. [Google Scholar] [CrossRef]
- Toor, A.T.; Verma, A.; Jotshi, C.K.; Bajpai, P.K.; Singh, V. Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor. Dye. Pigment. 2006, 68, 53–60. [Google Scholar] [CrossRef]
- Panda, N.; Sahoo, H.; Mohapatra, S. Decolourization of Methyl Orange using Fenton-like mesoporous Fe2O3-SiO2 composite. J. Hazard. Mater. 2011, 185, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Liu, R.; Xu, K.; Lin, H.; Yang, M. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton’s reagent and lime. Water Res. 2016, 95, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, D.L. Factors Affecting the Yield of Oxidants from the Reaction of Nanoparticulate Zero-Valent Iron and Oxygen. Environ. Sci. Technol. 2008, 42, 1262–1267. [Google Scholar] [CrossRef]
- Yu, L.; Chen, J.; Liang, Z.; Xu, W.; Chen, L.; Ye, D. Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst. Sep. Purif. Technol. 2016, 171, 80–87. [Google Scholar] [CrossRef]
- Chen, C.; Liang, Y.; Zhang, W. ZnFe2O4/MWCNTs composite with enhanced photocatalytic activity under visible-light irradiation. J. Alloys Compd. 2010, 501, 168–172. [Google Scholar] [CrossRef]
- Gaikwad, P.V.; Kamble, R.J.; Mane-Gavade, S.J.; Sabale, S.R.; Kamble, P.D. Magneto-structural properties and photocatalytic performance of sol-gel synthesized cobalt substituted NiCu ferrites for degradation of methylene blue under sunlight. Phys. B Condens. Matter 2019, 554, 79–85. [Google Scholar] [CrossRef]
- Sun, J.; Lin, X.; Xie, J.; Zhang, Y.; Wang, Q.; Ying, Z. Facile synthesis of novel ternary g-C3N4/ferrite/biochar hybrid photocatalyst for efficient degradation of methylene blue under visible-light irradiation. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 606, 125556. [Google Scholar] [CrossRef]
- Giri, A.; Kumar, H.; Verma, M. Comprehensive study on the photocatalytic degradation of methylene blue dye using undoped and Mg-doped cobalt spinel ferrite nanoparticles with emphasis on Mg0.5Co0.5Fe2O4. Transit. Met. Chem. 2025. [Google Scholar] [CrossRef]
- Quiton, K.G.N.; Lu, M.-C.; Huang, Y.-H. Synergistic degradation of Methylene Blue by novel Fe-Co bimetallic catalyst supported on waste silica in photo-Fenton-like system. Sustain. Environ. Res. 2022, 32, 21. [Google Scholar] [CrossRef]
- Vadivel, S.; Maruthamani, D.; Habibi-Yangjeh, A.; Paul, B.; Dhar, S.S.; Selvam, K. Facile synthesis of novel CaFe2O4/g-C3N4 nanocomposites for degradation of methylene blue under visible-light irradiation. J. Colloid Interface Sci. 2016, 480, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.E.C.; Soletti, L.d.S.; Bernardino, E.G.; Quesada, H.B.; Gasparotto, F.; Bergamasco, R.; Yamaguchi, N.U. Synergistic Mechanism of Photocatalysis and Photo-Fenton by Manganese Ferrite and Graphene Nanocomposite Supported on Wood Ash with Real Sunlight Irradiation. Catalysts 2022, 12, 745. [Google Scholar] [CrossRef]
Sample | SBET (m2 g−1) | Vp (cm3 g−1) | Dpore (nm) | Vµp (cm3 g−1) |
---|---|---|---|---|
Pure AC | 1148 | 0.6 | 3.2 | 0.055 |
FeCr/AC | 222 | 0.32 | 9.7 | 0.025 |
Ferrite Catalysts | Band Gap (eV) | Ref. |
---|---|---|
NiFe2O4/SBA-15 | 2.09 | [66] |
CoFe2O4@SiO2@Dy2Ce2O7 | 3.25 | [67] |
NiFe2O4/AC (10NFAC) | 2.01 | [68] |
MnFe2O4/rGO | 2.13 | [69] |
CrFe2O4/SBA-15 | 2.7 | [51] |
NiFe2O4/MWCNTs | 2.32 | [70] |
CrFe2O4/AC | 1.9 | This study |
Concentrations (ppm) | k (min−1) | R2 | t1/2 (min) |
---|---|---|---|
10 | 0.0297 | 0.9785 | 23.33 |
20 | 0.0258 | 0.9739 | 26.9 |
100 | 0.0077 | 0.9873 | 89.78 |
Pollutant | First-Order Kinetic | ||
---|---|---|---|
k (min−1) | R2 | t1/2 (min) | |
MO | 0.0115 | 0.9988 | 60.27 |
TCH | 0.0225 | 0.9731 | 30.8 |
Photocatalyst | Catalyst Concentration (g L−1) | [MB]0 (ppm) | pH | Light Source | MB Degradation (%) | Time (min) | Ref. |
---|---|---|---|---|---|---|---|
NiFe2O4/MWCNTs | 1 | 10 | - | Metal halide (400 W) | 99 | 360 | [77] |
Ni0.3Co0.2Cu0.5Fe2O4 | 1 | 10 | - | Visible (125 W) | 75 | 120 | [78] |
Ni0.1Co0.9Fe2O4/g-C3N4/biochar | 0.5 | 20 | - | Xenon lamp (500 W) | 96.7 | 120 | [79] |
Mg0.5Co0.5Fe2O4 | 2 | 25 | 10.5 | UV lamp (40 W) | 95.76 | 120 | [80] |
FeCo/SiO2 | 1 | 20 | 3 | UV lamp (λ = 365 nm, 36 W) | 100 | 60 | [81] |
CaFe2O4/g-C3N4 | 2 | 10 | Tungsten halogen lamp (150 W) | 94 | 120 | [82] | |
MnFe2O4-G@WA | 0.25 | 10 | 7 | Sunlight (90–140 W/m2) | 94 | 120 | [83] |
FeCr/AC | 0.25 | 20 | 6.47 | LED (25 W) | 97.56 | 120 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamieh, M.; Al Khawand, S.; Tabaja, N.; Chawraba, K.; Hammoud, M.; Tlais, S.; Hamieh, T.; Toufaily, J. Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation. AppliedChem 2025, 5, 15. https://doi.org/10.3390/appliedchem5030015
Hamieh M, Al Khawand S, Tabaja N, Chawraba K, Hammoud M, Tlais S, Hamieh T, Toufaily J. Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation. AppliedChem. 2025; 5(3):15. https://doi.org/10.3390/appliedchem5030015
Chicago/Turabian StyleHamieh, Malak, Sireen Al Khawand, Nabil Tabaja, Khaled Chawraba, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh, and Joumana Toufaily. 2025. "Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation" AppliedChem 5, no. 3: 15. https://doi.org/10.3390/appliedchem5030015
APA StyleHamieh, M., Al Khawand, S., Tabaja, N., Chawraba, K., Hammoud, M., Tlais, S., Hamieh, T., & Toufaily, J. (2025). Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation. AppliedChem, 5(3), 15. https://doi.org/10.3390/appliedchem5030015