Valorization of Olive Mill Wastewater via Yarrowia lipolytica: Sustainable Production of High-Value Metabolites and Biocompounds—A Review
Abstract
1. Introduction
2. Olive Mill Wastewater
3. Yarrowia lipolytica
4. Metabolites Produced in the Valorization of Olive Mill Wastewater by Y. lipolytica
4.1. Lipases
4.2. Citric Acid
4.3. Polyols
5. Biotechnology Applications of Y. lipolytica
6. Bottlenecks and Solutions in the Bioprocessing of Olive Mill Wastewater Valorization
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OMW | Olive Mill Wastewater |
TOC | Total Organic Carbon |
TN | Total Nitrogen |
COD | Chemical Oxygen Demand |
BOD5 | Biochemical Oxygen Demand |
OME | Olive Mill Effluent |
GRAS | Generally Recognized As Safe |
U.S. FDA | United States Food and Drug Administration |
Phen | Phenolic Compound |
Cit or Citmax | Citric Acid |
Glc0 | Initial Glucose Concentration |
Manmax | Maximum Mannitol Concentration |
Erymax | Maximum Erythritol Concentration (g/L) |
Ph0 | Initial Concentration of Phenolic Compounds |
References
- Shabir, S.; Ilyas, N.; Saeed, M.; Bibi, F.; Sayyed, R.Z.; Almalki, W.H. Treatment Technologies for Olive Mill Wastewater with Impacts on Plants. Environ. Res. 2023, 216, 114399. [Google Scholar] [CrossRef] [PubMed]
- Sygouni, V.; Pantziaros, A.G.; Iakovides, I.C.; Sfetsa, E.; Bogdou, P.I.; Christoforou, E.A.; Paraskeva, C.A. Treatment of Two-Phase Olive Mill Wastewater and Recovery of Phenolic Compounds Using Membrane Technology. Membranes 2019, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Alaoui, S.B.; Lamy, E.; Achak, M. Assessment of the Impact of Diluted and Pretreated Olive Mill Wastewater on the Treatment Efficiency by Infiltration-Percolation Using Natural Bio-Adsorbents. Environ. Sci. Pollut. Res. 2023, 30, 16305–16320. [Google Scholar] [CrossRef]
- Gullón, P.; Gullón, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Valorization of By-Products from Olive Oil Industry and Added-Value Applications for Innovative Functional Foods. Food Res. Int. 2020, 137, 109683. [Google Scholar] [CrossRef]
- Hamimed, S.; Landoulsi, A.; Chatti, A. The Bright Side of Olive Mill Wastewater: Valuables Bioproducts after Bioremediation. Int. J. Environ. Sci. Technol. 2021, 18, 4053–4074. [Google Scholar] [CrossRef]
- Blanco, I.; De Bellis, L.; Luvisi, A. Bibliometric Mapping of Research on Life Cycle Assessment of Olive Oil Supply Chain. Sustainability 2022, 14, 3747. [Google Scholar] [CrossRef]
- Achak, M.; Hafidi, A.; Ouazzani, N.; Sayadi, S.; Mandi, L. Low Cost Biosorbent “Banana Peel” for the Removal of Phenolic Compounds from Olive Mill Wastewater: Kinetic and Equilibrium Studies. J. Hazard. Mater. 2009, 166, 117–125. [Google Scholar] [CrossRef]
- Aktas, E.S.; Imre, S.; Ersoy, L. Characterization and Lime Treatment of Olive Mill Wastewater. Water Res. 2001, 35, 2336–2340. [Google Scholar] [CrossRef]
- Laconi, S.; Molle, G.; Cabiddu, A.; Pompei, R. Bioremediation of Olive Oil Mill Wastewater and Production of Microbial Biomass. Biodegradation 2007, 18, 559–566. [Google Scholar] [CrossRef]
- Fleyfel, L.M.; Leitner, N.K.V.; Deborde, M.; Matta, J.; El Najjar, N.H. Olive Oil Liquid Wastes–Characteristics and Treatments: A Literature Review. Process Saf. Environ. Prot. 2022, 168, 1031–1048. [Google Scholar] [CrossRef]
- El Hassani, F.Z.; El Karkouri, A.; Errachidi, F.; Merzouki, M.; Benlemlih, M. The Impact of Olive Mill Wastewater Spreading on Soil and Plant in Arid and Semi-Arid Areas. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100798. [Google Scholar] [CrossRef]
- Mekki, A.; Dhouib, A.; Sayadi, S. Polyphenols Dynamics and Phytotoxicity in a Soil Amended by Olive Mill Wastewaters. J. Environ. Manag. 2007, 84, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Alami, A.E.; Fattah, A. Olive Mill Wastewater Causing Pollution in the Oum Er Rbia River and Potential Environmental Effects and Impact on the Eurasian Otter. J. Anal. Sci. Appl. Biotechnol. 2020, 2, 115. [Google Scholar] [CrossRef]
- Doula, M.K.; Papadopoulos, A.; Kolovos, C.; Lamnatou, O.; Zorpas, A.A. Evaluation of the influence of olive mill waste on soils: The case study of disposal areas in Crete, Greece. Comptes Rendus Chim. 2020, 23, 705–720. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Al-Zoubi, H.; Hudaib, B.; Omar, W.; Soleimani, M.; Abu-Romman, S.; Frontistis, Z. Sustainable vs. Conventional Approach for Olive Oil Wastewater Management: A Review of the State of the Art. Water 2022, 14, 1695. [Google Scholar] [CrossRef]
- Ayoub, S.; Al-Absi, K.; Al-Shdiefat, S.; Al-Majali, D.; Hijazean, D. Effect of Olive Mill Wastewater Land-Spreading on Soil Properties, Olive Tree Performance and Oil Quality. Sci. Hortic. 2014, 175, 160–166. [Google Scholar] [CrossRef]
- Lakhtar, H.; Kharbouch, B.; Askarne, L.; Ait Hamza, M.; El Mousadik, A. Effect of Thermophilic Composting Duration on Vermiconversion of Olive Mill Wastewater Using Eisenia Andrei. Bioresour. Technol. Rep. 2023, 23, 101560. [Google Scholar] [CrossRef]
- Crognale, S.; D’Annibale, A.; Federici, F.; Fenice, M.; Quaratino, D.; Petruccioli, M. Olive Oil Mill Wastewater Valorisation by Fungi. J. Chem. Technol. Biotechnol. 2006, 81, 1547–1555. [Google Scholar] [CrossRef]
- Sarris, D.; Stoforos, N.G.; Mallouchos, A.; Kookos, I.K.; Koutinas, A.A.; Aggelis, G.; Papanikolaou, S. Production of Added-value Metabolites by Yarrowia lipolytica Growing in Olive Mill Wastewater-based Media under Aseptic and Non-aseptic Conditions. Eng. Life Sci. 2017, 17, 695–709. [Google Scholar] [CrossRef]
- Lopes, M.; Miranda, S.M.; Costa, A.R.; Pereira, A.S.; Belo, I. Yarrowia lipolytica as a Biorefinery Platform for Effluents and Solid Wastes Valorization—Challenges and Opportunities. Crit. Rev. Biotechnol. 2022, 42, 163–183. [Google Scholar] [CrossRef]
- Gueboudji, Z.; Kadi, K.; Nagaz, K.; Addad, D.; Secrafi, M.; Yahya, L.B.; Lachehib, B. Phenolic Compounds and Biological Activities of Phenolic Extract of Olive Oil Mill Wastewater Issue from the Cold Extraction of Olive Oil from Khenchela (Algeria). Res. Sq. 2021. [Google Scholar] [CrossRef]
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, M.A. The Use of Elemental Sulphur as Organic Alternative to Control pH during Composting of Olive Mill Wastes. Chemosphere 2004, 57, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Morillo-Pérez, J.A.; Antizar-Ladislao, B.; Monteoliva-Sánchez, M.; Ramos-Cormenzana, A.; Russell, N. Bioremediation and Biovalorisation of Olive-Mill Wastes. Appl. Microbiol. Biotechnol. 2009, 82, 25–39. [Google Scholar] [CrossRef]
- Gueboudji, Z.; Kadi, K.; Nagaz, K. Extraction and Quantification of Polyphenols of Olive Oil Mill Wastewater from the Cold Extraction of Olive Oil in the Region of Khenchela-Algeria. Genet. Biodivers. J. 2021, 5, 116–122. [Google Scholar] [CrossRef]
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive Mill Wastes: Biochemical Characterizations and Valorization Strategies. Process Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- Prambudy, H.; Supriyatin, T.; Setiawan, F. The Testing of Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) of River Water in Cipager Cirebon. J. Phys. Conf. Ser. 2019, 1360, 012010. [Google Scholar] [CrossRef]
- Feki, M.; Allouche, N.; Bouaziz, M.; Gargoubi, A.; Sayadi, S. Effect of Storage of Olive Mill Wastewaters on Hydroxytyrosol Concentration. Eur. J. Lipid Sci. Technol. 2006, 108, 1021–1027. [Google Scholar] [CrossRef]
- Romeo, R.; De Bruno, A.; Imeneo, V.; Piscopo, A.; Poiana, M. Impact of Stability of Enriched Oil with Phenolic Extract from Olive Mill Wastewaters. Foods 2020, 9, 856. [Google Scholar] [CrossRef]
- Leouifoudi, I.; Zyad, A.; Amechrouq, A.; Oukerrou, M.A.; Mouse, H.A.; Mbarki, M. Identification and Characterisation of Phenolic Compounds Extracted from Moroccan Olive Mill Wastewater. Food Sci. Technol. 2014, 34, 249–257. [Google Scholar] [CrossRef]
- Keskin, A.; Ünlü, A.E.; Takaç, S. Utilization of Olive Mill Wastewater for Selective Production of Lipids and Carotenoids by Rhodotorula Glutinis. Appl. Microbiol. Biotechnol. 2023, 107, 4973–4985. [Google Scholar] [CrossRef]
- Aly, A.A.; Alashgar, K.N.S.; Al-Farraj, A.S.; Ibrahim, H.M. Contaminants and Salinity Removal of Olive Mill Wastewater Using Zeolite Nanoparticles. Sep. Sci. Technol. 2018, 53, 1638–1653. [Google Scholar] [CrossRef]
- Sahbeni, G.; Ngabire, M.; Musyimi, P.K.; Székely, B. Challenges and Opportunities in Remote Sensing for Soil Salinization Mapping and Monitoring: A Review. Remote Sens. 2023, 15, 2540. [Google Scholar] [CrossRef]
- Fanari, F.; Carboni, G.; Grosso, M.; Desogus, F. Thermogravimetric Analysis of Different Semolina Doughs: Effect of Mixing Time and Gluten Content. Chem. Eng. Trans. 2019, 75, 343–348. [Google Scholar] [CrossRef]
- Kavvadias, V.; Doula, M.; Papadopoulou, M.; Theocharopoulos, S. Long-Term Application of Olive-Mill Wastewater Affects Soil Chemical and Microbial Properties. Soil Res. 2015, 53, 461–473. [Google Scholar] [CrossRef]
- El Hassani, F.Z.; Zinedine, A.; Amraoui, M.B.; Errachidi, F.; Alaoui, S.M.; Aissam, H.; Merzouki, M.; Benlemlih, M. Characterization of the Harmful Effect of Olive Mill Wastewater on Spearmint. J. Hazard. Mater. 2009, 170, 779–785. [Google Scholar] [CrossRef]
- Zieniuk, B.; Fabiszewska, A. Yarrowia lipolytica: A Beneficious Yeast in Biotechnology as a Rare Opportunistic Fungal Pathogen: A Minireview. World J. Microbiol. Biotechnol. 2018, 35, 10. [Google Scholar] [CrossRef]
- Georgiadis, I.; Tsiligkaki, C.; Patavou, V.; Orfanidou, M.; Tsoureki, A.; Andreadelli, A.; Theodosiou, E.; Makris, A.M. Identification and Construction of Strong Promoters in Yarrowia lipolytica Suitable for Glycerol-Based Bioprocesses. Microorganisms 2023, 11, 1152. [Google Scholar] [CrossRef]
- Gamraoui, A.; Hamimed, S.; Landoulsi, A.; Chatti, A. Musico-Bioremediation of Seafood Canning Wastewater by Yarrowia lipolytica. World J. Microbiol. Biotechnol. 2023, 39, 303. [Google Scholar] [CrossRef]
- Liu, H.; Song, Y.; Fan, X.; Wang, C.; Lu, X.; Tian, Y. Yarrowia lipolytica as an Oleaginous Platform for the Production of Value-Added Fatty Acid-Based Bioproducts. Front. Microbiol. 2021, 11, 608662. [Google Scholar] [CrossRef]
- Vastaroucha, E.-S.; Stoforos, N.G.; Aggelis, G.; Papanikolaou, S. Studies of Polyol Production by the Yeast Yarrowia lipolytica Growing on Crude Glycerol under Stressful Conditions. Carbon Resour. Convers. 2024, 7, 100210. [Google Scholar] [CrossRef]
- Lazar, Z.; Walczak, E.; Robak, M. Simultaneous Production of Citric Acid and Invertase by Yarrowia lipolytica SUC+ Transformants. Bioresour. Technol. 2011, 102, 6982–6989. [Google Scholar] [CrossRef] [PubMed]
- Brígida, A.I.S.; Amaral, P.F.F.; Coelho, M.A.Z.; Gonçalves, L.R.B. Lipase from Yarrowia lipolytica: Production, Characterization and Application as an Industrial Biocatalyst. J. Mol. Catal. B Enzym. 2014, 101, 148–158. [Google Scholar] [CrossRef]
- Darvishi Harzevili, F. Yarrowia lipolytica in Biotechnological Applications. In Biotechnological Applications of the Yeast Yarrowia lipolytica; Darvishi Harzevili, F., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 17–74. [Google Scholar] [CrossRef]
- Wierzchowska, K.; Zieniuk, B.; Fabiszewska, A. Use of Non-Conventional Yeast Yarrowia lipolytica in Treatment or Upgradation of Hydrophobic Industry Wastes. Waste Biomass Valorization 2022, 13, 757–779. [Google Scholar] [CrossRef]
- Gamraoui, A.; Vasilakis, G.; Ouaer, M.E.; Karayannis, D.; Papanikolaou, S.; Landoulsi, A.; Chatti, A. Innovative Combined Method for Tuna Wastewater Treatment Using Yarrowia lipolytica, TiO2 Nanoparticles and Sounds. Waste Biomass Valorization 2025, 16, 1687–1699. [Google Scholar] [CrossRef]
- Colacicco, M.; Ciliberti, C.; Biundo, A.; Agrimi, G.; Pisano, I. Study of Lipase Production by Yarrowia lipolytica Grown in High Concentration of Hydrophobic Carbon Sources. Chem. Eng. Trans. 2022, 93, 247–252. [Google Scholar] [CrossRef]
- al Mualad, W.; Bouchedja, N.; Selmania, A.; Maadadi, R.; Ikhlef, A.; Kabouche, Z.; Elmechta, L.; Boudjellal, A. Recycling Pollutants and Used Oils as Substrates for Producing Useful Lipids in the Form of Single-Cell Oil by the Aerobic Yeast Yarrowia lipolytica. Int. J. Environ. Res. 2022, 16, 97. [Google Scholar] [CrossRef]
- Groenewald, M.; Boekhout, T.; Neuveglise, C.; Gaillardin, C.; Van Dijck, P.W.M.; Wyss, M. Yarrowia lipolytica: Safety Assessment of an Oleaginous Yeast with a Great Industrial Potential. Crit. Rev. Microbiol. 2014, 40, 187–206. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.-I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of Yarrowia lipolytica Yeast Biomass as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2019, 17, e05594. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Esteban, M.Á.; Angulo, C. Yarrowia lipolytica, Health Benefits for Animals. Appl. Microbiol. Biotechnol. 2021, 105, 7577–7592. [Google Scholar] [CrossRef]
- da Silva, R.M.; da Silva, C.N.; de Faria-Júnior, C.S.; Buarque, F.S.; Ribeiro, B.D.; Lemes, A.C.; Coelho, M.A.Z. Extraction and Characterization of High-Value Compounds from Yarrowia lipolytica W29 Using Sequential Hydrolysis. Processes 2025, 13, 615. [Google Scholar] [CrossRef]
- Dunoyer, A.T.; Cuello, R.E.G.; Salinas, R.P. Biodegradation of Dairy Wastes Using Crude Enzymatic Extract of Yarrowia lipolytica ATCC 9773. Rev. Ambiente Água 2020, 15, e2448. [Google Scholar] [CrossRef]
- Lanciotti, R. Use of Yarrowia lipolytica Strains for the Treatment of Olive Mill Wastewater. Bioresour. Technol. 2005, 96, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Sarris, D.; Rapti, A.; Papafotis, N.; Koutinas, A.A.; Papanikolaou, S. Production of Added-Value Chemical Compounds through Bioconversions of Olive-Mill Wastewaters Blended with Crude Glycerol by a Yarrowia lipolytica Strain. Molecules 2019, 24, 222. [Google Scholar] [CrossRef] [PubMed]
- Tzirita, M.; Kremmyda, M.; Sarris, D.; Koutinas, A.A.; Papanikolaou, S. Effect of Salt Addition upon the Production of Metabolic Compounds by Yarrowia lipolytica Cultivated on Biodiesel-Derived Glycerol Diluted with Olive-Mill Wastewaters. Energies 2019, 12, 3649. [Google Scholar] [CrossRef]
- Sarris, D.; Galiotou-Panayotou, M.; Koutinas, A.A.; Komaitis, M.; Papanikolaou, S. Citric Acid, Biomass and Cellular Lipid Production by Yarrowia lipolytica Strains Cultivated on Olive Mill Wastewater-based Media. J. Chem. Technol. Biotechnol. 2011, 86, 1439–1448. [Google Scholar] [CrossRef]
- Carvalho, A.S.S.; Sales, J.C.S.; do Nascimento, F.V.; Ribeiro, B.D.; Souza, C.E.C.D.; Lemes, A.C.; Coelho, M.A.Z. Lipase Production by Yarrowia lipolytica in Solid-State Fermentation Using Amazon Fruit By-Products and Soybean Meal as Substrate. Catalysts 2023, 13, 289. [Google Scholar] [CrossRef]
- Colacicco, M.; Ciliberti, C.; Agrimi, G.; Biundo, A.; Pisano, I. Towards the Physiological Understanding of Yarrowia lipolytica Growth and Lipase Production Using Waste Cooking Oils. Energies 2022, 15, 5217. [Google Scholar] [CrossRef]
- Moujehed, E.; Zarai, Z.; Khemir, H.; Miled, N.; Bchir, M.S.; Gablin, C.; Bessueille, F.; Bonhommé, A.; Leonard, D.; Carrière, F.; et al. Cleaner Degreasing of Sheepskins by the Yarrowia lipolytica LIP2 Lipase as a Chemical-Free Alternative in the Leather Industry. Colloids Surf. B Biointerfaces 2022, 211, 112292. [Google Scholar] [CrossRef]
- da Silva, J.L.; Sales, M.B.; de Castro Bizerra, V.; Nobre, M.M.R.; de Sousa Braz, A.K.; da Silva Sousa, P.; Cavalcante, A.L.G.; Melo, R.L.F.; Gonçalves De Sousa Junior, P.; Neto, F.S.; et al. Lipase from Yarrowia lipolytica: Prospects as an Industrial Biocatalyst for Biotechnological Applications. Fermentation 2023, 9, 581. [Google Scholar] [CrossRef]
- Zieniuk, B.; Jasińska, K.; Wierzchowska, K.; Uğur, Ş.; Fabiszewska, A. Yarrowia lipolytica Yeast: A Treasure Trove of Enzymes for Biocatalytic Applications—A Review. Fermentation 2024, 10, 263. [Google Scholar] [CrossRef]
- do Nascimento, F.V.; Lemes, A.C.; de Castro, A.M.; Secchi, A.R.; Zarur Coelho, M.A. A Temporal Evolution Perspective of Lipase Production by Yarrowia lipolytica in Solid-State Fermentation. Processes 2022, 10, 381. [Google Scholar] [CrossRef]
- Gonçalves, C.; Oliveira, F.; Pereira, C.; Belo, I. Fed-Batch Fermentation of Olive Mill Wastewaters for Lipase Production. J. Chem. Technol. Biotechnol. 2012, 87, 1215–1218. [Google Scholar] [CrossRef]
- Scioli, C.; Vollaro, L. The Use of Yarrowia lipolytica to Reduce Pollution in Olive Mill Wastewaters. Water Res. 1997, 31, 2520–2524. [Google Scholar] [CrossRef]
- Moftah, O.A.S.; Grbavcic, S.Z.; Moftah, W.A.; Luković, N.D.; Prodanović, O.; Jakovetic, S.M.; Knezevic-Jugović, Z.D. Lipase Production by Yarrowia lipolytica Using Olive Oil Processing Wastes as Substrates. J. Serbian Chem. Soc. 2013, 78, 781–794. [Google Scholar] [CrossRef]
- Lopes, M.; Araújo, C.; Aguedo, M.; Gomes, N.; Gonçalves, C.; Teixeira, J.A.; Belo, I. The Use of Olive Mill Wastewater by Wild Type Yarrowia lipolytica Strains: Medium Supplementation and Surfactant Presence Effect. J. Chem. Technol. Biotechnol. 2009, 84, 533–537. [Google Scholar] [CrossRef]
- Barros, F.; Awika, J.M.; Rooney, L.W. Interaction of Tannins and Other Sorghum Phenolic Compounds with Starch and Effects on in Vitro Starch Digestibility. J. Agric. Food Chem. 2012, 60, 11609–11617. [Google Scholar] [CrossRef]
- Kamzolova, S.V. A Review on Citric Acid Production by Yarrowia lipolytica Yeast: Past and Present Challenges and Developments. Processes 2023, 11, 3435. [Google Scholar] [CrossRef]
- Dourou, M.; Kancelista, A.; Juszczyk, P.; Sarris, D.; Bellou, S.; Triantaphyllidou, I.-E.; Rywinska, A.; Papanikolaou, S.; Aggelis, G. Bioconversion of Olive Mill Wastewater into High-Added Value Products. J. Clean. Prod. 2016, 139, 957–969. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Galiotou-Panayotou, M.; Fakas, S.; Komaitis, M.; Aggelis, G. Citric Acid Production by Yarrowia lipolytica Cultivated on Olive-Mill Wastewater-Based Media. Bioresour. Technol. 2008, 99, 2419–2428. [Google Scholar] [CrossRef]
- Sarris, D.; Tsouko, E.; Photiades, A.; Tchakouteu, S.S.; Diamantopoulou, P.; Papanikolaou, S. Growth Response of Non-Conventional Yeasts on Sugar-Rich Media: Part 2: Citric Acid Production and Circular-Oriented Valorization of Glucose-Enriched Olive Mill Wastewaters Using Novel Yarrowia lipolytica Strains. Microorganisms 2023, 11, 2243. [Google Scholar] [CrossRef]
- Carsanba, E.; Papanikolaou, S.; Fickers, P.; Agirman, B.; Erten, H. Citric Acid Production by Yarrowia lipolytica. In Non-Conventional Yeasts: From Basic Research to Application; Sibirny, A., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 91–117. [Google Scholar] [CrossRef]
- Sarris, D.; Tsouko, E.; Kothri, M.; Anagnostou, M.; Karageorgiou, E.; Papanikolaou, S. Upgrading Major Waste Streams Derived from the Biodiesel Industry and Olive Mills via Microbial Bioprocessing with Non-Conventional Yarrowia lipolytica Strains. Fermentation 2023, 9, 251. [Google Scholar] [CrossRef]
- Bilal, M.; Xu, S.; Iqbal, H.M.N.; Cheng, H. Yarrowia lipolytica as an Emerging Biotechnological Chassis for Functional Sugars Biosynthesis. Crit. Rev. Food Sci. Nutr. 2021, 61, 535–552. [Google Scholar] [CrossRef] [PubMed]
- Rice, T.; Zannini, E.; Arendt, E.K.; Coffey, A. A Review of Polyols—Biotechnological Production, Food Applications, Regulation, Labeling and Health Effects. Crit. Rev. Food Sci. Nutr. 2020, 60, 2034–2051. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, Y.-W.; Chen, X.-Y.; Wang, Y.-T.; Ye, C.; Shi, T.-Q. Application of Adaptive Laboratory Evolution for Yarrowia lipolytica: A Comprehensive Review. Bioresour. Technol. 2024, 391, 129893. [Google Scholar] [CrossRef]
- Hamé, A.K.K.; Aboubacar, K.; Ousmane, Z.M.; Bondaba, M. Connaissances paysannes sur la conservation du sorgho et du mil dans le département d’Aguié au Niger. J. Des Sci. De L’ Environ. 2013, 2, 10–18. [Google Scholar]
- Barbosa, S.; Coelho, D.; Silveira, E.; Tambourgi, E.; Souza, R. Biosurfactant Production by Pseudomonas Aeruginosa and Yarrowia lipolytica and Its Use for Detergent Formulations. J. Chem. Chem. Eng. 2013, 7, 1934–7375. [Google Scholar]
- Fickers, P.; Benetti, P.; Wache, Y.; Marty, A.; Mauersberger, S.; Smit, M.; Nicaud, J. Hydrophobic Substrate Utilisation by the Yeast, and Its Potential Applications. FEMS Yeast Res. 2005, 5, 527–543. [Google Scholar] [CrossRef]
- Soong, Y.V.; Liu, N.; Yoon, S.; Lawton, C.; Xie, D. Cellular and Metabolic Engineering of Oleaginous Yeast Yarrowia lipolytica for Bioconversion of Hydrophobic Substrates into High-value Products. Eng. Life Sci. 2019, 19, 423–443. [Google Scholar] [CrossRef]
- Fontes, G.C.; Fonseca Amaral, P.F.; Nele, M.; Zarur Coelho, M.A. Factorial Design to Optimize Biosurfactant Production by Yarrowia lipolytica. BioMed Res. Int. 2010, 2010, 821306. [Google Scholar] [CrossRef]
- Fontes, G.C.; Ramos, N.M.; Amaral, P.F.F.; Nele, M.; Coelho, M.a.Z. Renewable Resources for Biosurfactant Production by Yarrowia lipolytica. Braz. J. Chem. Eng. 2012, 29, 483–494. [Google Scholar] [CrossRef]
- Amaral, P.F.F.; Da Silva, J.M.; Lehocky, M.; Barros-Timmons, A.M.V.; Coelho, M.A.Z.; Marrucho, I.M.; Coutinho, J.A.P. Production and Characterization of a Bioemulsifier from Yarrowia lipolytica. Process Biochem. 2006, 41, 1894–1898. [Google Scholar] [CrossRef]
- Coelho, M.A.Z.; Amaral, P.F.F.; Belo, I. Yarrowia lipolytica: An Industrial Workhorse. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 2, 930–940. [Google Scholar]
- Shatila, F.; Uyar, E.; Yalçın, H.T. Screening of Biosurfactant Production by Yarrowia lipolytica Strains and Evaluation of Their Antibiofilm and Anti-Adhesive Activities against Salmonella Enterica Ser. Enteritidis Biofilms. Microbiology 2021, 90, 839–847. [Google Scholar] [CrossRef]
- Fernandes, N.D.A.T.; Simões, L.A.; Dias, D.R. Biosurfactants Produced by Yeasts: Fermentation, Screening, Recovery, Purification, Characterization, and Applications. Fermentation 2023, 9, 207. [Google Scholar] [CrossRef]
- Csutak, O.; Corbu, V.; Stoica, I.; Ionescu, R.; Vassu, T. Biotechnological Applications of Yarrowia lipolytica CMGB32. Agric. Agric. Sci. Procedia 2015, 6, 545–553. [Google Scholar] [CrossRef]
- Mulligan, C.N. Environmental Applications for Biosurfactants. Environ. Pollut. 2005, 133, 183–198. [Google Scholar] [CrossRef]
- Gonçalves, C.; Lopes, M.; Ferreira, J.P.; Belo, I. Biological Treatment of Olive Mill Wastewater by Non-Conventional Yeasts. Bioresour. Technol. 2009, 100, 3759–3763. [Google Scholar] [CrossRef]
- Bouchedja, D.N.; Danthine, S.; Kar, T.; Fickers, P.; Sassi, H.; Boudjellal, A.; Blecker, C.; Delvigne, F. pH Level Has a Strong Impact on Population Dynamics of the Yeast Yarrowia lipolytica and Oil Micro-Droplets in Multiphasic Bioreactor. FEMS Microbiol. Lett. 2018, 365, fny173. [Google Scholar] [CrossRef]
- Fabiszewska, A.; Paplińska-Goryca, M.; Misiukiewicz-Stępień, P.; Wołoszynowska, M.; Nowak, D.; Zieniuk, B. Expression Profile of Selected Genes Involved in Storage Lipid Synthesis in a Model Oleaginous Yeast Species Yarrowia lipolytica. Int. J. Mol. Sci. 2022, 23, 1041. [Google Scholar] [CrossRef]
- Ledesma-Amaro, R.; Nicaud, J.-M. Yarrowia lipolytica as a Biotechnological Chassis to Produce Usual and Unusual Fatty Acids. Prog. Lipid Res. 2016, 61, 40–50. [Google Scholar] [CrossRef]
- Muniraj, I.K.; Uthandi, S.K.; Hu, Z.; Xiao, L.; Zhan, X. Microbial Lipid Production from Renewable and Waste Materials for Second-Generation Biodiesel Feedstock. Environ. Technol. Rev. 2015, 4, 1–16. [Google Scholar] [CrossRef]
- Poli, J.S.; Da Silva, M.A.N.; Siqueira, E.P.; Pasa, V.M.D.; Rosa, C.A.; Valente, P. Microbial Lipid Produced by Yarrowia lipolytica QU21 Using Industrial Waste: A Potential Feedstock for Biodiesel Production. Bioresour. Technol. 2014, 161, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Vasaki, M.; Sithan, M.; Ravindran, G.; Paramasivan, B.; Ekambaram, G.; Karri, R.R. Biodiesel Production from Lignocellulosic Biomass Using Yarrowia lipolytica. Energy Convers. Manag. X 2022, 13, 100167. [Google Scholar] [CrossRef]
- Yu, A.; Zhao, Y.; Li, J.; Li, S.; Pang, Y.; Zhao, Y.; Zhang, C.; Xiao, D. Sustainable Production of FAEE Biodiesel Using the Oleaginous Yeast Yarrowia lipolytica. MicrobiologyOpen 2020, 9, e1051. [Google Scholar] [CrossRef]
- Sayın, B.; Polat, Z.; Kaban, G. Enhanced Lipid Yield from Olive-Mill Wastewater by Yarrowia lipolytica NRRL YB-423. J. Agric. Prod. 2025, 6, 32–40. [Google Scholar] [CrossRef]
- Behera, B.C.; Mishra, R.; Mohapatra, S. Microbial Citric Acid: Production, Properties, Application, and Future Perspectives. Food Front. 2021, 2, 62–76. [Google Scholar] [CrossRef]
- Książek, E. Citric Acid: Properties, Microbial Production, and Applications in Industries. Available online: https://www.mdpi.com/1420-3049/29/1/22 (accessed on 5 November 2024).
- Cavallo, E.; Charreau, H.; Cerrutti, P.; Foresti, M.L. Yarrowia lipolytica: A Model Yeast for Citric Acid Production. FEMS Yeast Res. 2017, 17, fox084. [Google Scholar] [CrossRef]
- Hamimed, S.; Jebli, N.; Sellami, H.; Landoulsi, A.; Chatti, A. Dual Valorization of Olive Mill Wastewater by Bio-Nanosynthesis of Magnesium Oxide and Yarrowia lipolytica Biomass Production. Chem. Biodivers. 2020, 17, e1900608. [Google Scholar] [CrossRef]
- Hamimed, S.; Ben Ammar, N.E.; Slimi, H.; Asses, N.; Hamzaoui, A.H.; Chatti, A. Innovative Entrapped Yarrowia lipolytica within Polyvinylpyrrolidone (PVP)/Polyethylene Glycol (PEG)/Agar for Improving Olive Mill Wastewater Bioremediation. J. Clean. Prod. 2024, 449, 141828. [Google Scholar] [CrossRef]
- Vuppala, S.; Paulista, L.O.; Morais, D.F.S.; Pinho, I.L.; Martins, R.J.E.; Gomes, A.I.; Moreira, F.C.; Vilar, V.J.P. Multistage Treatment for Olive Mill Wastewater: Assessing Legal Compliance and Operational Costs. J. Environ. Chem. Eng. 2022, 10, 107442. [Google Scholar] [CrossRef]
- Börekçi, B.S.; Kaban, G.; Kaya, M. Citric Acid Production of Yeasts: An Overview. EuroBiotech J. 2021, 5, 79–91. [Google Scholar] [CrossRef]
- Vaz, T.; Quina, M.M.J.; Martins, R.C.; Gomes, J. Olive Mill Wastewater Treatment Strategies to Obtain Quality Water for Irrigation: A Review. Sci. Total Environ. 2024, 931, 172676. [Google Scholar] [CrossRef] [PubMed]
- Wierzchowska, K.; Pakulska, A.; Derewiaka, D.; Piasecka, I.; Zieniuk, B.; Nowak, D.; Fabiszewska, A. Concept of Batch and Fed-Batch Cultures of Yarrowia lipolytica as a Valuable Source of Sterols with Simultaneous Valorization of Molasses and Post-Frying Rapeseed Oil. Appl. Sci. 2022, 12, 12877. [Google Scholar] [CrossRef]
- Bondarenko, P.Y.; Fedorov, A.S.; Sineoky, S.P. Optimization of Repeated-Batch Fermentation of a Recombinant Strain of the Yeast Yarrowia lipolytica for Succinic Acid Production at Low pH. Appl. Biochem. Microbiol. 2017, 53, 882–887. [Google Scholar] [CrossRef]
- Fed-Batch Fermentation of Yarrowia lipolytica Using Defatted Silkworm Pupae Hydrolysate: A Dynamic Model-Based Approach for High Yield of Lipid Production|Waste and Biomass Valorization. Available online: https://link.springer.com/article/10.1007/s12649-017-0180-y (accessed on 22 May 2025).
- Vong, W.C.; Hua, X.Y.; Liu, S.-Q. Solid-State Fermentation with Rhizopus Oligosporus and Yarrowia lipolytica Improved Nutritional and Flavour Properties of Okara. LWT 2018, 90, 316–322. [Google Scholar] [CrossRef]
Parameter | Mean * | Range |
---|---|---|
Dry matter (%) | 6.72 | 6.33–7.19 |
pH | 4.84 | 4.20–5.17 |
Electrical conductivity (dS/m) | 8.36 | 5.50–12.00 |
Organic Matter (g/L) | 55.80 | 46.50–62.10 |
Density (g/mL) | 1.04 | 1.02–1.05 |
TOC (g/L) | 37.00 | 34.20–39.80 |
TN (g/L) | 0.96 | 0.62–2.10 |
C/N | 53.32 | 52.30–54.30 |
P2O5 (g/L) | 0.57 | 0.31–0.70 |
K2O (g/L) | 4.81 | 2.37–10.80 |
Na (g/L) | 0.26 | 0.11–0.42 |
Ca (g/L) | 0.35 | 0.20–0.64 |
Mg (mg/L) | 121.25 | 44.00–220.00 |
Fe (mg/L) | 81.70 | 18.30–120.00 |
Cu (mg/L) | 3.15 | 1.50–6.00 |
Mn (mg/L) | 5.15 | 1.10–12.00 |
Zn (mg/L) | 6.13 | 2.40–12.00 |
Lipids (g/L) | 6.39 | 1.64–12.20 |
Phenols (g/L) | 4.98 | 0.98–10.70 |
Carbohydrates (g/L) | 7.16 | 1.40–16.10 |
COD (g/L) | 124.67 | 67.00–178.00 |
BOD5 (g/L) | 65.00 | 46.00–94.00 |
Yeast | Culture Medium | Result | Reference |
---|---|---|---|
Y. lipolytica ATCC 20255 | Olive wastewater, ammonium sulfate (0.6%), yeast extract (0.1%), adjusted to pH 5 | Chemical oxygen demand reduced by 80%. Biomass increased from 5 to 22.45 g/L. Lipase activity at 770 U/L. Phenols and fats were metabolized, while glucose, fructose, and sucrose were consumed. | [67] |
Y. Labeled Strains RO Labeled Strains PO Labeled Strains Other strains | Two media: olive mill wastewater (OMW); sabouraud without lipase inducer | Lipase activity was moderate to low in OMW, while it was high in Sabouraud for some strains. Some strains showed no activity at all. | [53] |
Y. lipolytica W29 (ATCC 20460; CLIB89) and IMUFRJ 50682 | Batch cultures: Erlenmeyer flasks (OMW + yeast extract + ammonium sulfate 6 or 12 g/L). Double the ammonium sulfate to study nitrogen limitation. Baffled conical flasks: supplement with 6 g/L ammonium sulfate and 1 g/L yeast extract, with or without 1 g/L Tween 80. Control: without supplementation. | Erlenmeyer flasks: IMUFRJ 50 682—Good lipase producer. W29—Increased lipase synthesis potential with OMW. High ammonium—Negative effect on lipase production. Baffled conical flasks: High cell density—36% reduction in lipase activity. Tween 80—Decreased lipase production. | [66] |
Y. lipolytica W29 (ATCC 20460) | Undiluted OMW (samples from Portugal), supplemented with ammonium chloride and yeast extract (pH adjusted to 7.2). | Fed-batch mode (2 L bioreactor): Lipase activity of 5 U/mL. OMW degradation with a 50% reduction in chemical oxygen demand. 54% of sugars consumed, 55% of lipids metabolized. Growth was not inhibited by OMW. | [64] |
Y. lipolytica NRRL Y-1095 | Non-diluted OMW (samples from Libya), supplemented with Tween 80, ammonium, yeast extract, maltose, olive oil, and peptone. | Lipase activity doubled with Tween 80, reaching 850 IU/L after 4 days. Lipase yield was increased by 10-fold with olive cake pretreatment (3% NaOH). 40 IU/g of substrate in solid-state fermentation. | [65] |
Origin of Yeast | Culture Medium | Result | Reference |
---|---|---|---|
Y lipolytica ACA-DC 50109 | Two OMW batches used, with 3.5 ± 0.2 g/L and 6.4 ± 0.4 g/L of phenolics. Traces of organic acids, oil (0.3 ± 0.1 g/L), and sugars (5.5 g/L), enriched with glucose (25 or 65 g/L). Cultures with 0 to 50% OMW. | Maximum production achieved in diluted OMW media enriched with glucose (65 g/L initial sugars), yielding 28.9 g/L. | [70] |
Y. lipolytica strains ACA-YC 5028, W29, and ACA-YC 5033 | In 2011, OMW was diluted and enriched with salts and glucose (30 g/L). In 2017, authors compared aseptic and non-aseptic fermentations under the same conditions. | ACA-YC 5033: Maximum citric acid (Citmax) production of 18.9 g/L (reduced to 18.1 g/L with OMW). W29: Citmax of 18.5 g/L (reduced to <4.0 g/L with OMW). ACA-YC 5028: Lower citric acid production, less affected by OMW. Maximum citric acid of 52.0 g/L with high glucose (~80 g/L). No difference between aseptic and non-aseptic fermentations. | [19,56] |
Y. lipolytica LGAM S(7) | Diluted OMW, enriched with 50 g/L of glycerol, specific minerals, and nitrogen sources ((NH4)2SO4 and yeast extract), was cultivated in Erlenmeyer flasks and a bioreactor. | Diluted OMW (Phen0 = 2 g/L) produced 6.3 g/L of citric acid, which is low compared to its natural content of 4.7 g/L. Adding 50 g/L of glycerol increased production to 30.3 g/L in a bioreactor. Under bioreactor conditions, citric acid production reached 21 g/L. | [69] |
Y. lipolytica ACA-YC 5031 | Base medium: 70 g/L glycerol. Additives: OMW with a phenolic concentration of 2.0 ± 0.20 g/L. NaCl: 1.0%, 3.0%, 5.0%, and control (0.0%). | Glycerol + OMW: Maximum yield: 32.7 g/L. 1% NaCl: Maximum yield: 45.2 g/L. 3% NaCl: Yield after 280 h: 42.0 g/L. 5% NaCl: Maximum yield: 25.0 g/L. | [55] |
Y. lipolytica ACA-DC 5029 | Mixed media of crude glycerol (70 g/L) and OMW, prepared to achieve phenolic compound concentrations of 1.0, 2.0, and 3.5 g/L. Control trial without OMW. Tests with glycerol at 120 g/L and 170 g/L without OMW. Mineral salts and nitrogen source added to media. | Control experiment (without OMW): Citmax = 42.5 g/L. With OMW addition: Phen0 (1.0 g/L): Citmax = 28.8 g/L Phen0 (2.0 g/L): Citmax = 31.5 g/L Phen0 (3.5 g/L): Citmax = 37.4 g/L Observation: OMW addition promotes citric acid accumulation in mixed media. Excess crude glycerol media: Glc0 = 120 g/L: Citmax = 63.8 g/L Glc0 = 170 g/L: Citmax = 79.0 g/L | [54] |
Y. lipolytica ACA-YC 5033 | General fermentation: Tap water partially replaced by OMW, with phenolic compounds adjusted to 1.0 g/L. C/N ratio ≈ 114 g/g: Added 0.5 g/L (NH4)2SO4 and yeast extract, and then glucose to reach 40 g/L. Nitrogen-limited conditions: Glucose concentration of 100 g/L and a C/N ratio of ~286 g/g, with OMW addition (phenolic compounds at 1.0 g/L). | C/N ratio ≈ 114 g/g: -Good citric acid production, with maximum yield of 25.8 g/L at Phen0 = 1.0 g/L. Nitrogen-limited conditions: -Citric acid production improved under nitrogen limitation, reaching 60.2 g/L, with a yield of 0.66 g/g YCA/S. | [71] |
Y. lipolytica ACA-YC 5033 and LMBF Y-46 | Diluted OMW with phenolic concentrations of 1, 2, and 3 g/L. Crude glycerol: 77.9 ± 0.52 g/L in OMW–glycerol mixtures and mineral and nitrogen sources added. Control: same glycerol without OMW. | Citric acid production increased significantly with phenolics, i.e., ~64–65 g/L at 3 g/L phenolics for both strains. | [73] |
Product | Origin of Yeast | Culture Medium | Result | Reference |
---|---|---|---|---|
Mannitol | Y. lipolytica strain A6 | OMW enriched with crude glycerol (50 g/L) | A significant amount of mannitol was produced after 216 h: 13.4 g/L | [69] |
Y. lipolytica strain ACA-DC 5029 | Mixed media: crude glycerol (70 g/L) + OMW (phenolic compounds: 1.0, 2.0, 3.5 g/L). Control without OMW. Glycerol at 120 and 170 g/L without OMW. Minerals and nitrogen added. | Manmax: 5.3–13.1 g/L OMW effect: No significant impact except at 2.0 g/L phenolics—Manmax = 5.3 g/L At 70 g/L glycerol—10.1 g/L At 120 g/L—8.0 g/L At 170 g/L—6.5 g/L | [54] | |
Y. lipolytica ACA-YC 5031 | Glycerol 70 g/L + OMW with 2.0 ± 0.20 g/L phenolics. NaCl tested at 0%, 1%, 3%, 5% (w/v). | Without OMW and NaCl: Manmax = 13.4 g/L With OMW: 8.0 g/L With OMW and NaCl: 6.0 g/L 3% NaCl: 3.6 g/L 5% NaCl: 3.1 g/L | [55] | |
Y. lipolytica ACA-YC 5033 LMBF Y-46 | OMW diluted (phenolics: 1, 2, 3 g/L) + crude glycerol 77.9 ± 0.52 g/L nitrogen and minerals added. Control: same glycerol concentration with water, nitrogen, and minerals added. | Control: LMBF Y-46: 8.4 g/L; ACA-YC 5033: 10.8 g/L At 1 g/L phenolics: LMBF Y-46: 13.1 g/L; ACA-YC 5033: 14.4 g/L At 2 g/L: LMBF Y-46: 13.1 g/L; ACA-YC 5033: 15.9 g/L At 3 g/L: LMBF Y-46: 2.6 g/L; ACA-YC 5033: 11.6 g/L | [71] | |
Erythritol | Y. lipolytica ACA-DC 5029 | Mixed media of crude glycerol (70 g/L) and OMW, adjusted to phenolic concentrations of 1.0, 2.0, and 3.5 g/L. Control without OMW. | Without OMW: Max erythritol (Erymax) = 14.9 g/L With OMW: At Ph0 ≈ 1.0 g/L:Erymax = 8.9 g/L At Ph0 ≈ 2.0 g/L: Erymax = 13.5 g/L At Ph0 ≈ 3.5 g/L: Erymax = 2.4 g/L | [54] |
Y. lipolytica ACA-YC 5031 | Glycerol: 70.0 g/L OMW phenolics: 2.0 ± 0.2 g/L NaCl tested: 0.0%, 1.0%, 3.0%, 5.0% (w/v) | Control (no NaCl): 4.9 g/L With OMW + glycerol + NaCl: 1.0% NaCl (144 h): 2.5 g/L 3.0% NaCl: 4.9 g/L (max) 5.0% NaCl: 2.1 g/L (yield reduced) | [55] | |
Y. lipolytica ACA-YC 5033 and LMBF Y-46 | Crude glycerol: 77.9 ± 0.52 g/L in OMW–glycerol mixtures (phenolic concentrations: 1, 2, 3 g/L), Nitrogen source and mineral salts. - Control: glycerol with water (no OMW), nitrogen source and mineral salts. | Control: LMBF Y-46: 17.3 g/L; ACA-YC 5033: 16.4 g/L Phenolics = 1 g/L: LMBF Y-46: 8.3 g/L; ACA-YC 5033: 3.3 g/L Phenolics = 2 g/L: LMBF Y-46: 9.0 g/L; ACA-YC 5033: 5.4 g/L Phenolics = 3 g/L: LMBF Y-46: 5.1 g/L; ACA-YC 5033: 0.7 g/L | [71] | |
Arabitol | Y. lipolytica ACA-DC 5029 | Mixed media of crude glycerol (70 g/L) and OMW, adjusted to phenolic concentrations of 1.0, 2.0, and 3.5 g/L. Control without OMW. | Arabitol production was not significantly affected by OMW addition. Yields ranged from 2.0 to 3.2 g/L. | [54] |
Y. lipolytica ACA-YC 5033 and LMBF Y-46 | Crude glycerol: 77.9 ± 0.52 g/L in OMW–glycerol mixtures (phenolic concentrations: 1, 2, 3 g/L), Nitrogen source and mineral salts. -Control: glycerol with water (no OMW), nitrogen source and mineral salts. | Control: LMBF Y-46: 2.0 g/L; ACA-YC 5033: 3.1 g/L Phenolics = 1 g/L: LMBF Y-46: 1.2 g/L; ACA-YC 5033: 1.1 g/L Phenolics = 2 g/L: LMBF Y-46: not detected; ACA-YC 5033: 1.2 g/L Phenolics = 3 g/L: LMBF Y-46: 7.9 g/L; ACA-YC 5033: 2.8 g/L | [71] |
Fermentation Method | General Principle | Main Advantages | Main Limitations | Relevance for OMW Valorization with Y. lipolytica | Reference |
---|---|---|---|---|---|
Batch | All nutrients are supplied at the beginning of the process with no further additions. | -Simple operation and process control -Low investment cost -Lower contamination risk -Suitable for kinetic studies and strain screening | -Accumulation of inhibitory metabolites (e.g., citric acid, phenolics) -Limited yields due to lack of nutrient regulation | Well-suited for preliminary studies with OMW. Allows evaluation of strain tolerance to phenolics and assessment of baseline productivity. | [106,107] |
Fed-batch | Substrates (e.g., carbon, nitrogen) are added gradually during fermentation. | -Reduced toxicity from inhibitory compounds (e.g., phenols, sugars) -Enhanced control over cell metabolism -Higher potential yields of citric acid or lipids | -Requires sophisticated control and monitoring -Higher risk of contamination -Technically more complex | Highly suitable for scaling up OMW valorization. Enables optimization of product formation (e.g., citric acid, lipids) in the presence of phenolic inhibitors. | [106,107,108] |
Solid-State Fermentation (SSF) | Fermentation occurs on moist solid substrates without free-flowing liquid. | -Direct valorization of solid OMW fractions (e.g., olive pomace) -Low water requirement -Suitable for enzyme or biomass production | -Difficult control of pH, humidity, and aeration -Limited oxygen and nutrient diffusion -Less suitable for citric acid production | Promising for converting solid OMW residues into biomass or enzymes. Less appropriate for acid production due to limited solubilization. | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laribi, A.; Zieniuk, B.; Bouchedja, D.N.; Hafid, K.; Elmechta, L.; Becila, S. Valorization of Olive Mill Wastewater via Yarrowia lipolytica: Sustainable Production of High-Value Metabolites and Biocompounds—A Review. Fermentation 2025, 11, 326. https://doi.org/10.3390/fermentation11060326
Laribi A, Zieniuk B, Bouchedja DN, Hafid K, Elmechta L, Becila S. Valorization of Olive Mill Wastewater via Yarrowia lipolytica: Sustainable Production of High-Value Metabolites and Biocompounds—A Review. Fermentation. 2025; 11(6):326. https://doi.org/10.3390/fermentation11060326
Chicago/Turabian StyleLaribi, Amina, Bartłomiej Zieniuk, Doria Naila Bouchedja, Kahina Hafid, Lamia Elmechta, and Samira Becila. 2025. "Valorization of Olive Mill Wastewater via Yarrowia lipolytica: Sustainable Production of High-Value Metabolites and Biocompounds—A Review" Fermentation 11, no. 6: 326. https://doi.org/10.3390/fermentation11060326
APA StyleLaribi, A., Zieniuk, B., Bouchedja, D. N., Hafid, K., Elmechta, L., & Becila, S. (2025). Valorization of Olive Mill Wastewater via Yarrowia lipolytica: Sustainable Production of High-Value Metabolites and Biocompounds—A Review. Fermentation, 11(6), 326. https://doi.org/10.3390/fermentation11060326