Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,221)

Search Parameters:
Keywords = oil import

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1135 KiB  
Article
A Study on the Beneficiation of Very Fine Particle Rutile Ore Using Flotation
by Oyku Bilgin and Ilhan Ehsani
Minerals 2025, 15(8), 838; https://doi.org/10.3390/min15080838 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the beneficiation of finely grinded rutile ore utilizing a combination of flocculation and flotation methods. Rutile, a Ti-bearing mineral with industrial significance, is often associated with heavy minerals found in coastal and metamorphic environments. A rutile ore sample from Azıtepe [...] Read more.
This study investigates the beneficiation of finely grinded rutile ore utilizing a combination of flocculation and flotation methods. Rutile, a Ti-bearing mineral with industrial significance, is often associated with heavy minerals found in coastal and metamorphic environments. A rutile ore sample from Azıtepe (Alaşehir, Türkiye) was reduced to −63 µm and enriched under varying pH conditions (2.5–12) using different reagent combinations and was used for our investigation of both flocculation and flotation processes using reagents such as Aero801(SIPX), Aero825, tannic acid (TA), and pomace oil. The best results were achieved at pH: 8 using Aero801(SIPX) and pomace oil during flocculation, and Aero801(SIPX), Aero825, and Aerofroth88 during flotation, yielding a concentrate with an 8.99% TiO2 grade and an 89.5% recovery rate. Meanwhile, a 7.00% TiO2 grade concentrate was obtained with a recovery rate of 71.92% at neutral pH. This study found that pH and reagent selection had an important effect on TiO2 enrichment efficiency in fine size, low-grade rutile ores. Future research is recommended to investigate selective depressants and multi-stage cleaning to improve separation. Full article
(This article belongs to the Special Issue Particle–Bubble Interactions in the Flotation Process)
18 pages, 11439 KiB  
Article
Machine Learning-Driven Prediction of CO2 Solubility in Brine: A Hybrid Grey Wolf Optimizer (GWO)-Assisted Gaussian Process Regression (GPR) Approach
by Seyed Hossein Hashemi, Farshid Torabi and Paitoon Tontiwachwuthikul
Energies 2025, 18(15), 4205; https://doi.org/10.3390/en18154205 (registering DOI) - 7 Aug 2025
Abstract
The solubility of CO2 in brine systems is critical for both carbon storage and enhanced oil recovery (EOR) applications. In this study, Gaussian Process Regression (GPR) with eight different kernels was optimized using the Grey Wolf Optimizer (GWO) algorithm to model this [...] Read more.
The solubility of CO2 in brine systems is critical for both carbon storage and enhanced oil recovery (EOR) applications. In this study, Gaussian Process Regression (GPR) with eight different kernels was optimized using the Grey Wolf Optimizer (GWO) algorithm to model this important phase behavior. Among the tested kernels, the ARD Matern 3/2 and ARD Matern 5/2 kernels achieved the highest predictive accuracies, with R2 values of 0.9961 and 0.9960, respectively, on the test data. This demonstrates superior performance in capturing CO2 solubility trends. The GWO algorithm effectively tuned the hyperparameters for all kernel configurations, while the ARD capability successfully quantified the influence of key physicochemical parameters on CO2 solubility. The outstanding performance of the ARD Matern 3/2 and ARD Matern 5/2 kernels suggests their particular suitability for modeling complex thermodynamic behaviors in brine systems. Furthermore, this study integrates fundamental thermodynamic principles into the modeling framework, ensuring all predictions adhere to physical laws while maintaining excellent accuracy (test R2 > 0.98). These results highlight how machine learning can improve CO2 injection processes, both for underground carbon storage and enhanced oil production. Full article
Show Figures

Figure 1

21 pages, 8385 KiB  
Article
Hydraulic Fracture Propagation Behavior in Tight Conglomerates and Field Applications
by Zhenyu Wang, Wei Xiao, Shiming Wei, Zheng Fang and Xianping Cao
Processes 2025, 13(8), 2494; https://doi.org/10.3390/pr13082494 (registering DOI) - 7 Aug 2025
Abstract
The tight conglomerate oil reservoir in Xinjiang’s Mahu area is situated on the northwestern margin of the Junggar Basin. The reservoir comprises five stacked fan bodies, with the Triassic Baikouquan Formation serving as the primary pay zone. To delineate the study scope and [...] Read more.
The tight conglomerate oil reservoir in Xinjiang’s Mahu area is situated on the northwestern margin of the Junggar Basin. The reservoir comprises five stacked fan bodies, with the Triassic Baikouquan Formation serving as the primary pay zone. To delineate the study scope and conduct a field validation, the Ma-X well block was selected for investigation. Through triaxial compression tests and large-scale true triaxial hydraulic fracturing simulations, we analyzed the failure mechanisms of tight conglomerates and identified key factors governing hydraulic fracture propagation. The experimental results reveal several important points. (1) Gravel characteristics control failure modes: Larger gravel size and higher content increase inter-gravel stress concentration, promoting gravel crushing under confining pressure. At low-to-medium confining pressures, shear failure primarily occurs within the matrix, forming bypassing fractures around gravel particles. (2) Horizontal stress differential dominates fracture geometry: Fractures preferentially propagate as transverse fractures perpendicular to the wellbore, with stress anisotropy being the primary control factor. (3) Injection rate dictates fracture complexity: Weakly cemented interfaces in conglomerates lead to distinct fracture morphologies—low rates favor interface activation, while high rates enhance penetration through gravels. (4) Stimulation strategy impacts SRV: Multi-cluster perforations show limited effectiveness in enhancing fracture network complexity. In contrast, variable-rate fracturing significantly increases stimulated reservoir volume (SRV) compared to constant-rate methods, as evidenced by microseismic data demonstrating improved interface connectivity and broader fracture coverage. Full article
(This article belongs to the Special Issue Structure Optimization and Transport Characteristics of Porous Media)
Show Figures

Figure 1

19 pages, 1835 KiB  
Article
Methods for Enhancing Energy and Resource Efficiency in Sunflower Oil Production: A Case Study from Bulgaria
by Penka Zlateva, Angel Terziev, Nikolay Kolev, Martin Ivanov, Mariana Murzova and Momchil Vasilev
Eng 2025, 6(8), 195; https://doi.org/10.3390/eng6080195 - 6 Aug 2025
Abstract
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of [...] Read more.
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of vegetable fats, ranking second to butter in daily consumption. The aim of this study is to evaluate and propose methods to improve energy and resource efficiency in sunflower oil production in Bulgaria. The analysis is based on data from an energy audit conducted in 2023 at an industrial sunflower oil production facility. Reconstruction and modernization initiatives, which included the installation of high-performance, energy-efficient equipment, led to a 34% increase in energy efficiency. The findings highlight the importance of adjusting the technological parameters such as temperature, pressure, grinding level, and pressing time to reduce energy use and operational costs. Additionally, resource efficiency is improved through more effective raw material utilization and waste reduction. These strategies not only enhance the economic and environmental performance of sunflower oil production but also support sustainable development and competitiveness within the industry. The improvement reduces hexane use by approximately 2%, resulting in energy savings of 12–15 kWh/t of processed seeds and a reduction in CO2 emissions by 3–4 kg/t, thereby improving the environmental profile of sunflower oil production. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

19 pages, 8662 KiB  
Article
Synergy of Fly Ash and Surfactant on Stabilizing CO2/N2 Foam for CCUS in Energy Applications
by Jabir Dubaish Raib, Fujian Zhou, Tianbo Liang, Anas A. Ahmed and Shuai Yuan
Energies 2025, 18(15), 4181; https://doi.org/10.3390/en18154181 - 6 Aug 2025
Abstract
The stability of nitrogen gas foam hinders its applicability in petroleum applications. Fly ash nanoparticles and clay improve the N2 foam stability, and flue gas foams provide a cost-effective solution for carbon capture, utilization, and storage (CCUS). This study examines the stability, [...] Read more.
The stability of nitrogen gas foam hinders its applicability in petroleum applications. Fly ash nanoparticles and clay improve the N2 foam stability, and flue gas foams provide a cost-effective solution for carbon capture, utilization, and storage (CCUS). This study examines the stability, volume, and bubble structure of foams formed using two anionic surfactants, sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS), along with the cationic surfactant cetyltrimethylammonium bromide (CTAB), selected for their comparable interfacial tension properties. Analysis of foam stability and volume and bubble structure was conducted under different CO2/N2 mixtures, with half-life and initial foam volume serving as the evaluation criteria. The impact of fly ash and clay on SDS-N2 foam was also evaluated. The results showed that foams created with CTAB, SDBS, and SDS exhibit the greatest stability in pure nitrogen, attributed to low solubility in water and limited gas diffusion. SDS showed the highest foam strength attributable to its comparatively low surface tension. The addition of fly ash and clay significantly improved foam stability by migrating to the gas–liquid interface, creating a protective barrier that reduced drainage. Both nano fly ash and clay improved the half-life of nitrogen foam by 11.25 times and increased the foam volume, with optimal concentrations identified as 5.0 wt% for fly ash and 3.0 wt% for clay. This research emphasizes the importance of fly ash nanoparticles in stabilizing foams, therefore optimizing a foam system for enhanced oil recovery (EOR). Full article
(This article belongs to the Special Issue Subsurface Energy and Environmental Protection 2024)
Show Figures

Figure 1

27 pages, 4387 KiB  
Article
Effect of Thuja occidentalis L. Essential Oil Combined with Diatomite Against Selected Pests
by Janina Gospodarek, Elżbieta Boligłowa, Krzysztof Gondek, Krzysztof Smoroń and Iwona B. Paśmionka
Molecules 2025, 30(15), 3300; https://doi.org/10.3390/molecules30153300 - 6 Aug 2025
Abstract
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures [...] Read more.
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures of Thuja occidentalis L. essential oil and diatomite (EO + DE) compared to each substance separately in reducing economically important pests such as black bean aphid (BBA) Aphis fabae Scop., Colorado potato beetle (CPB) Leptinotarsa decemlineata Say., and pea leaf weevil (PLW) Sitona lineatus L. The effects on mortality (all pests) and foraging intensity (CPB and PLW) were tested. The improvement in effectiveness using a mixture of EO + DE versus single components against BBA was dose- and the developmental stage-dependent. The effect of enhancing CPB foraging inhibition through DE addition was obtained at a concentration of 0.2% EO (both females and males of CPB) and 0.5% EO (males) in no-choice experiments. In choice experiments, mixtures EO + DE with both 0.2% and 0.5% EO concentrations resulted in a significant reduction in CPB foraging. A significant strengthening effect of EO 0.5% through the addition of DE at a dose of 10% against PLW males was observed in the no-choice experiment, while, when the beetles had a choice, the synergistic effect of a mixture of EO 0.5% and DE 10% was also apparent in females. In conclusion, the use of DE mixtures with EO from T. occidentalis appears to be a promising strategy. The results support the idea of not using doses of EO higher than 0.5%. Full article
Show Figures

Figure 1

17 pages, 1097 KiB  
Review
Natural Feed Additives in Sub-Saharan Africa: A Systematic Review of Efficiency and Sustainability in Ruminant Production
by Zonaxolo Ntsongota, Olusegun Oyebade Ikusika and Thando Conference Mpendulo
Ruminants 2025, 5(3), 36; https://doi.org/10.3390/ruminants5030036 - 6 Aug 2025
Abstract
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed [...] Read more.
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed shortages, and climate-related stresses, all of which limit productivity and sustainability. Considering these challenges, the adoption of natural feed additives has emerged as a promising strategy to enhance animal performance, optimise nutrient utilisation, and mitigate environmental impacts, including the reduction of enteric methane emissions. This review underscores the significant potential of natural feed additives such as plant extracts, essential oils, probiotics, and mineral-based supplements such as fossil shell flour as sustainable alternatives to conventional growth promoters in ruminant production systems across the region. All available documented evidence on the topic from 2000 to 2024 was collated and synthesised through standardised methods of systematic review protocol—PRISMA. Out of 319 research papers downloaded, six were included and analysed directly or indirectly in this study. The results show that the addition of feed additives to ruminant diets in all the studies reviewed significantly (p < 0.05) improved growth parameters such as average daily growth (ADG), feed intake, and feed conversion ratio (FCR) compared to the control group. However, no significant (p > 0.05) effect was found on cold carcass weight (CCW), meat percentage, fat percentage, bone percentage, or intramuscular fat (IMF%) compared to the control. The available evidence indicates that these additives can provide tangible benefits, including improved growth performance, better feed efficiency, enhanced immune responses, and superior meat quality, while also supporting environmental sustainability by reducing nitrogen excretion and decreasing dependence on antimicrobial agents. Full article
Show Figures

Figure 1

22 pages, 2208 KiB  
Article
Macroeconomic Effects of Oil Price Shocks in the Context of Geopolitical Events: Evidence from Selected European Countries
by Mariola Piłatowska and Andrzej Geise
Energies 2025, 18(15), 4165; https://doi.org/10.3390/en18154165 - 6 Aug 2025
Abstract
For a long time, the explanation of the various determinants of oil price fluctuations and their impact on economic activity has been based on the supply and demand mechanism. However, with various volatile changes in the international situation in recent years, such as [...] Read more.
For a long time, the explanation of the various determinants of oil price fluctuations and their impact on economic activity has been based on the supply and demand mechanism. However, with various volatile changes in the international situation in recent years, such as threats to public health and an increase in regional conflicts, special attention has been paid to the geopolitical context as an additional driver of oil price fluctuations. This study examines the relationship between oil price changes and GDP growth and other macroeconomic variables from the perspective of the vulnerability of oil-importing and oil-exporting countries to unexpected oil price shocks, driven by tense geopolitical events, in three European countries (Norway, Germany, and Poland). We apply the Structural Vector Autoregressive (SVAR) model and orthogonalized impulse response functions, based on quarterly data, in regard to two samples: the first spans 1995Q1–2019Q4 (pre-2020 sample), with relatively gradual changes in oil prices, and the second spans 1995Q1–2024Q2 (whole sample), with sudden fluctuations in oil prices due to geopolitical developments. A key finding of this research is that vulnerability to unpredictable oil price shocks related to geopolitical tensions is higher than in regard to expected gradual changes in oil prices, both in oil-importing and oil-exporting countries. Different causality patterns and stronger responses in regard to GDP growth during the period, including in regard to tense geopolitical events in comparison to the pre-2020 sample, lead to the belief that economies are not more resilient to oil price shocks as has been suggested by some studies, which referred to periods that were not driven by geopolitical events. Our research also suggests that countries implementing policies to reduce oil dependency and promote investment in alternative energy sources are better equipped to mitigate the adverse effects of oil price shocks. Full article
(This article belongs to the Special Issue Energy and Environmental Economic Theory and Policy)
Show Figures

Figure 1

20 pages, 8071 KiB  
Article
Analysis of the Differences Among Camellia oleifera Grafting Combinations in Its Healing Process
by Zhilong He, Ying Zhang, Chengfeng Xun, Zhen Zhang, Yushen Ma, Xin Wei, Zhentao Wan and Rui Wang
Plants 2025, 14(15), 2432; https://doi.org/10.3390/plants14152432 - 6 Aug 2025
Abstract
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the [...] Read more.
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the scion, assessing growth traits and conducting physiological assays (enzymatic activities of SOD and POD and levels of ROS and IAA) at multiple timepoints (0–32 days post-grafting). The results demonstrated that Comb. 4 (Xianglin 27 rootstock) exhibited superior compatibility, characterized by systemic antioxidant activation (peaking at 4–8 DPG), rapid auxin accumulation (4 DPG), and efficient sugar allocation. Transcriptome sequencing and WGCNA analysis identified 3781 differentially expressed genes, with notable enrichment in stress response pathways (Hsp70, DnaJ) and auxin biosynthesis (YUCCA), while also revealing key hub genes (FKBP19) associated with graft-healing efficiency. These findings establish that successful grafting in C. oleifera depends on coordinated rapid redox regulation, auxin-mediated cell proliferation, and metabolic reprogramming, with Comb. 4 emerging as the optimal rootstock choice. The identified molecular markers not only advance our understanding of grafting mechanisms in woody plants but also provide valuable targets for future breeding programs aimed at improving grafting success rates in this important oil crop. Full article
(This article belongs to the Special Issue Advances in Planting Techniques and Production of Horticultural Crops)
Show Figures

Figure 1

43 pages, 1183 KiB  
Review
Harnessing Legume Productivity in Tropical Farming Systems by Addressing Challenges Posed by Legume Diseases
by Catherine Hazel Aguilar, David Pires, Cris Cortaga, Reynaldo Peja, Maria Angela Cruz, Joanne Langres, Mark Christian Felipe Redillas, Leny Galvez and Mark Angelo Balendres
Nitrogen 2025, 6(3), 65; https://doi.org/10.3390/nitrogen6030065 - 5 Aug 2025
Abstract
Legumes are among the most important crops globally, serving as a major food source for protein and oil. In tropical regions, the cultivation of legumes has expanded significantly due to the increasing demand for food, plant-based products, and sustainable agriculture practices. However, tropical [...] Read more.
Legumes are among the most important crops globally, serving as a major food source for protein and oil. In tropical regions, the cultivation of legumes has expanded significantly due to the increasing demand for food, plant-based products, and sustainable agriculture practices. However, tropical environments pose unique challenges, including high temperatures, erratic rainfall, soil infertility, and a high incidence of pests and diseases. Indeed, legumes are vulnerable to infections caused by bacteria, fungi, oomycetes, viruses, and nematodes. This review highlights the importance of legumes in tropical farming and discusses major diseases affecting productivity and their impact on the economy, environment, and lives of smallholder legume farmers. We emphasize the use of legume genetic resources and breeding, and biotechnology innovations to foster resistance and address the challenges posed by pathogens in legumes. However, an integrated approach that includes other cultivation techniques (e.g., crop rotation, rational fertilization, deep plowing) remains important for the prevention and control of diseases in legume crops. Finally, we highlight the contributions of plant genetic resources to smallholder resilience and food security. Full article
Show Figures

Figure 1

19 pages, 3697 KiB  
Article
Investigating the Behavior of a Natural Emulsifier in One-Pot and Standard Cosmetic Emulsions
by Mauro Battaiotto, Paolo Sonzini, Simone Conti, Miryam Chiara Malacarne and Enrico Caruso
Cosmetics 2025, 12(4), 164; https://doi.org/10.3390/cosmetics12040164 - 5 Aug 2025
Viewed by 29
Abstract
The cosmetic industry is growing at an impressive rate worldwide. In the cosmetic field, natural-origin ingredients represent the new frontier in this industry. Among the main components of cosmetics, lipids, emulsifiers, rheological modifiers, preservatives, colorants, and antioxidants can be found. These compounds form [...] Read more.
The cosmetic industry is growing at an impressive rate worldwide. In the cosmetic field, natural-origin ingredients represent the new frontier in this industry. Among the main components of cosmetics, lipids, emulsifiers, rheological modifiers, preservatives, colorants, and antioxidants can be found. These compounds form emulsions, which are among the main cosmetic formulations. An important aspect in this regard is the evaluation of emulsions’ stability over time and emulsions’ production methodology. In this paper, a comparison is made between two emulsion production technologies, the Standard and the “One-Pot” methods, through the characterization of the raw material ABWAX® Revomul, a multifunctional wax for cosmetic use which consists of a low-melting structuring wax of vegetal origin (Rhus wax) and a natural emulsifier (Polyglyceril-3 Stearate). First, we evaluated the affinity between the wax raw materials and emollients of different chemical nature; then, we analyzed the impact of the production method on the emulsions to identify similarities and differences. ABWAX® Revomul demonstrated a high level of effectiveness in regard to stabilizing water-in-oil emulsions. This study suggests that from an industrial point of view, the application of the two procedures allows products with different characteristics to be obtained, consequently allowing a specific method to be chosen to obtain the desired product. Full article
(This article belongs to the Special Issue Advanced Cosmetic Sciences: Sustainability in Materials and Processes)
Show Figures

Figure 1

20 pages, 346 KiB  
Review
Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver
by Barbara Janota, Karolina Janion, Aneta Buzek and Ewa Janczewska
Metabolites 2025, 15(8), 528; https://doi.org/10.3390/metabo15080528 - 4 Aug 2025
Viewed by 298
Abstract
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. [...] Read more.
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. This review highlights the importance of including antioxidant nutrients in the diet, such as vitamins C and E, CoQ10, and polyphenolic compounds. It also emphasizes substances that support lipid metabolism, including choline, alpha-lipoic acid, and berberine. Among food groups, it is crucial to choose those that help prevent metabolic disturbances. Among carbohydrate-rich foods, vegetables, fruits, and high-fiber products are recommended. For protein sources, eggs, fish, and white meat are preferred. Among fat sources, plant oils and fatty fish are advised due to their content of omega-3 and omega-6 fatty acids. Various dietary strategies aimed at preventing MASLD should include elements of the Mediterranean diet or be personalized to provide anti-inflammatory compounds and substances that inhibit fat accumulation in liver cells. Other recommended dietary models include the DASH diet, the flexitarian diet, intermittent fasting, and diets that limit fructose and simple sugars. Additionally, supplementing the diet with spirulina or chlorella, berberine, probiotics, or omega-3 fatty acids, as well as drinking several cups of coffee per day, may be beneficial. Full article
(This article belongs to the Special Issue Metabolic Dysregulation in Fatty Liver Disease)
Show Figures

Graphical abstract

24 pages, 6246 KiB  
Article
Anti-Herpes Simplex Virus Type 1 Activity of Rosa damascena Mill Essential Oil and Floral Water in Retinal Infection In Vitro and In Silico
by Neli Vilhelmova-Ilieva, Rayna Nenova, Kalin Kalinov, Ana Dobreva, Dimitar Peshev and Ivan Iliev
Int. J. Mol. Sci. 2025, 26(15), 7521; https://doi.org/10.3390/ijms26157521 - 4 Aug 2025
Viewed by 110
Abstract
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena [...] Read more.
Recently, essential rose oils and rose products have gained increasing importance in both the cosmetic and food industries, as well as in the composition of medicinal products. We investigated the in vitro antiviral activity of essential oil and floral water from Rosa damascena Mill against herpes simplex virus type 1 (HSV-1) infection in rabbit retinal cells (RRCs). The composition of the main chemical components in the rose essential oil was determined by means of gas chromatographic analysis. The effect on the viral replication cycle was determined using the cytopathic effect (CPE) inhibition assay. The virucidal activity, the effect on the adsorption stage of the virus to the host cell, and the protective effect on healthy cells were evaluated using the endpoint dilution method. The effects were determined as deviation in the viral titer, Δlg, for the treated cells from the one for the untreated viral control. The identified main active components of rose oil are geraniol (28.73%), citronellol (21.50%), nonadecane (13.13%), nerol (5.51%), heneicosane (4.87%), nonadecene (3.93), heptadecane (2.29), farnesol (2.11%), tricosane (1.29%), eicosane (1.01%), and eugenol (0.85%). The results demonstrated that both rose products do not have a significant effect on the virus replication but directly affect the viral particles and reduce the viral titer by Δlg = 3.25 for floral water and by Δlg = 3.0 for essential oil. Significant inhibition of the viral adsorption stage was also observed, leading to a decrease in the viral titers by Δlg = 2.25 for floral water and by Δlg = 2.0 for essential oil. When pretreating healthy cells with rose products, both samples significantly protected them from subsequent infection with HSV-1. This protective effect was more pronounced for the oil (Δlg = 2.5) compared to the one for the floral water (Δlg = 2.0). We used the in silico molecular docking method to gain insight into the mechanism of hindrance of viral adsorption by the main rose oil compounds (geraniol, citronellol, nerol). These components targeted the HSV-1 gD interaction surface with nectin-1 and HVEM (Herpesvirus Entry Mediator) host cell receptors, at N-, C-ends, and N-end, respectively. These findings could provide a structural framework for further development of anti-HSV-1 therapeutics. Full article
(This article belongs to the Special Issue Advances in Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

16 pages, 1167 KiB  
Article
Upcycling of Sunflower and Sesame Press Cakes as Functional Ingredients in Cookies
by Iwona Jasińska-Kuligowska, Maciej Kuligowski, Mateusz Wyszyński and Marcin Kidoń
Sustainability 2025, 17(15), 7056; https://doi.org/10.3390/su17157056 - 4 Aug 2025
Viewed by 177
Abstract
The aim of the study was to evaluate the use of sunflower and sesame oilseed press cakes, which are by-products of oil extraction, as functional ingredients in cookie production. The quality characteristics of these by-products were assessed, including water activity, pH, total phenolic [...] Read more.
The aim of the study was to evaluate the use of sunflower and sesame oilseed press cakes, which are by-products of oil extraction, as functional ingredients in cookie production. The quality characteristics of these by-products were assessed, including water activity, pH, total phenolic content, and antioxidant activity, and HPLC analysis of the phenolic compounds was performed. Subsequently, cookies were prepared by replacing wheat flour with 30% or 50% press cake. The addition of sunflower press cake significantly increased the total phenolic content (up to 8.6 mg GAE/g dm) and antioxidant activity (up to 75.9%) in the cookies, whereas adding sesame press cake showed a less pronounced effect, reaching 0.91 g GAE/g dm and 8.9% for total phenolic content and antioxidant activity, respectively. HPLC analysis indicated that chlorogenic acid and its derivatives dominated in sunflower-enriched cookies, while sesame samples contained lignans such as sesamol and sesamin. Our study shows that 50% substitution improves the health-promoting properties of cookies and does not differ significantly from the 30% level in consumer sensory evaluations. These findings support the use of sunflower and sesame press cakes as valuable ingredients in food applications. This represents an important step toward developing healthier and more nutritious food products while supporting the principles of the circular economy through the upcycling of valuable raw materials. Full article
(This article belongs to the Special Issue By-Products of the Agri-Food Industry: Use for Food Fortification)
Show Figures

Figure 1

22 pages, 2179 KiB  
Article
Conversion of Oil Palm Kernel Shell Wastes into Active Biocarbons by N2 Pyrolysis and CO2 Activation
by Aik Chong Lua
Clean Technol. 2025, 7(3), 66; https://doi.org/10.3390/cleantechnol7030066 - 4 Aug 2025
Viewed by 196
Abstract
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed [...] Read more.
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed by CO2 activation, was used to produce the active biocarbon. The optimum pyrolysis conditions that produced the largest BET surface area of 519.1 m2/g were a temperature of 600 °C, a hold time of 2 h, a nitrogen flow rate of 150 cm3/min, and a heating rate of 10 °C/min. The optimum activation conditions to prepare the active biocarbon with the largest micropore surface area or the best micropore/BET surface area combination were a temperature of 950 °C, a CO2 flow rate of 300 cm3/min, a heating rate of 10 °C/min, and a hold time of 3 h, yielding BET and micropore surface areas of 1232.3 and 941.0 m2/g, respectively, and consisting of 76.36% of micropores for the experimental optimisation technique adopted here. This study underscores the importance of optimising both the pyrolysis and activation conditions to produce an active biocarbon with a maximum micropore surface area for gaseous adsorption applications, especially to capture CO2 greenhouse gas, to mitigate global warming and climate change. Such a comprehensive and detailed study on the conversion of oil palm kernel shell into active biocarbon is lacking in the open literature. The research results provide a practical blueprint on the process parameters and technical know-how for the industrial production of highly microporous active biocarbons prepared from oil palm kernel shells. Full article
Show Figures

Graphical abstract

Back to TopTop