Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver
Abstract
1. Introduction
2. Methods
3. Dietary Components in MASLD Prevention
3.1. Antioxidants
3.1.1. Vitamin E
3.1.2. Vitamin C
3.1.3. Coenzyme Q10
3.1.4. Polyphenols
- •
- Resveratrol
- •
- Quercetin
- •
- Curcumin
- •
- Catechins
- •
- Silymarin
- •
- Ellagic Acid
- •
- Ginger Polyphenols
3.2. Substances That Support Lipid Metabolism
3.2.1. Choline
3.2.2. Alpha-Lipoic Acid
3.2.3. Betaine
3.2.4. Berberine
3.3. Fermented Products and Probiotics
3.4. Beta-Glucans
3.5. Spirulina and Chlorella
3.6. Coffee
4. Food Groups in MASLD Prevention
4.1. Carbohydrate-Rich Food Products
4.2. Protein-Rich Food Products
4.3. Fat-Rich Food Products
4.4. Ultra-Processed Foods
4.5. Alcohol
5. Dietary Patterns in MASLD Prevention
5.1. Mediterranean Diet
5.2. DASH Diet
5.3. High-Fiber Diet
5.4. Flexitarian Diet
5.5. Low-Fructose and Low-Sugar Diet
5.6. Intermittent Fasting (IF)
5.7. Ketogenic Diet
6. Conclusions
- •
- A variety of vegetables and fruits
- •
- Fermented products
- •
- Whole-grain cereals
- •
- Fish, eggs, legumes, white meat
- •
- Plant-based oils
- •
- Coffee
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ambroselli, D.; Masciulli, F.; Romano, E.; Catanzaro, G.; Besharat, Z.M.; Massari, M.C.; Ferretti, E.; Migliaccio, S.; Izzo, L.; Ritieni, A.; et al. New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food. Nutrients 2023, 15, 640. [Google Scholar] [CrossRef]
- Rappaport, S.M. Genetic Factors Are Not the Major Causes of Chronic Diseases. PLoS ONE 2016, 11, e0154387. [Google Scholar] [CrossRef]
- Abdelhameed, F.; Kite, C.; Lagojda, L.; Dallaway, A.; Chatha, K.K.; Chaggar, S.S.; Dalamaga, M.; Kassi, E.; Kyrou, I.; Randeva, H.S. Non-invasive Scores and Serum Biomarkers for Fatty Liver in the Era of Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD): A Comprehensive Review From NAFLD to MAFLD and MASLD. Curr. Obes. Rep. 2024, 13, 510–531. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Kalligeros, M.; Henry, L. Epidemiology of metabolic dysfunction-associated steatotic liver disease. Clin. Mol. Hepatol. 2025, 31, S32–S50. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Pouwels, S.; Sakran, N.; Graham, Y.; Leal, A.; Pintar, T.; Yang, W.; Kassir, R.; Singhal, R.; Mahawar, K.; Ramnarain, D. Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord. 2022, 22, 63. [Google Scholar] [CrossRef]
- Ma, Z.; Hummel, S.L.; Sun, N.; Chen, Y. From salt to hypertension, what is missed? J. Clin. Hypertens. (Greenwich) 2021, 23, 2033–2041. [Google Scholar] [CrossRef]
- Luna-Castillo, K.P.; Olivares-Ochoa, X.C.; Hernández-Ruiz, R.G.; Llamas-Covarrubias, I.M.; Rodríguez-Reyes, S.C.; Betancourt-Núñez, A.; Vizmanos, B.; Martínez-López, E.; Muñoz-Valle, J.F.; Márquez-Sandoval, F.; et al. The Effect of Dietary Interventions on Hypertriglyceridemia: From Public Health to Molecular Nutrition Evidence. Nutrients 2022, 14, 1104. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R.; Ahmed, S.F.; Anawalt, B.; Blackman, M.R.; Boyce, A.; Chrousos, G.; Corpas, E.; de Herder, W.W.; Dhatariya, K.; Dungan, K.; et al. The Effect of Diet on Cardiovascular Disease and Lipid and Lipoprotein Levels. In Endotext [Internet]; MDText.com: South Dartmouth, MA, USA, 2024. [Google Scholar]
- Ma, X.; Nan, F.; Liang, H.; Shu, P.; Fan, X.; Song, X.; Hou, Y.; Zhang, D. Excessive intake of sugar: An accomplice of inflammation. Front. Immunol. 2022, 13, 988481. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, Z.; Rasheed, N.; Abdulmonem, W.A.; Khan, M.I. MicroRNA-125b-5p regulates IL-1β induced inflammatory genes via targeting TRAF6-mediated MAPKs and NF-κB signaling in human osteoarthritic chondrocytes. Sci. Rep. 2019, 9, 6882, Erratum in Sci. Rep. 2019, 9, 14729. [Google Scholar] [CrossRef]
- Aghaei, S.M.; Hosseini, S.M. Inflammation-related miRNAs in obesity, CVD, and NAFLD. Cytokine 2024, 182, 156724. [Google Scholar] [CrossRef]
- Song, Y.; Ni, W.; Zheng, M.; Sheng, H.; Wang, J.; Xie, S.; Yang, Y.; Chi, X.; Chen, J.; He, F.; et al. Chinese NAFLD Clinical Research Network (CNAFLD CRN). Vitamin E (300 mg) in the treatment of MASH: A multi-center, randomized, double-blind, placebo-controlled study. Cell Rep. Med. 2025, 6, 101939. [Google Scholar] [CrossRef]
- Higgins, M.R.; Izadi, A.; Kaviani, M. Antioxidants and Exercise Performance: With a Focus on Vitamin E and C Supplementation. Int. J. Environ. Res. Public Health 2020, 17, 8452. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, E.; Stoś, K.; Woźniak, A.; Mojska, H. Normy Żywienia Dla Populacji Polski; Narodowy Instytut Zdrowia Publicznego PZH–Państwowy Instytut Badawczy: Warszawa, Poland, 2024. [Google Scholar]
- Chee, N.M.; Sinnanaidu, R.P.; Chan, W.K. Vitamin E improves serum markers and histology in adults with metabolic dysfunction-associated steatotic liver disease: Systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2024, 39, 2545–2554. [Google Scholar] [CrossRef]
- Abera, M.; Suresh, S.B.; Malireddi, A.; Boddeti, S.; Noor, K.; Ansar, M.; Malasevskaia, I. Vitamin E and Non-alcoholic Fatty Liver Disease: Investigating the Evidence Through a Systematic Review. Cureus 2024, 16, e72596. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, H. Association of serum vitamin C with liver fibrosis in adults with nonalcoholic fatty liver disease. Scand. J. Gastroenterol. 2022, 57, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.Q.; Li, H.X.; Tan, W.L.; Yang, L.; Ma, X.W.; Li, W.X.; Wang, Q.B.; Shang, C.Z.; Chen, Y.J. Association of Serum Vitamin C With NAFLD and MAFLD Among Adults in the United States. Front. Nutr. 2022, 8, 795391. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Mariscal, F.M.; Arenas-de Larriva, A.P.; Limia-Perez, L.; Romero-Cabrera, J.L.; Yubero-Serrano, E.M.; López-Miranda, J. Coenzyme Q10 Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases. Int. J. Mol. Sci. 2020, 21, 7870. [Google Scholar] [CrossRef]
- Vrentzos, E.; Ikonomidis, I.; Pavlidis, G.; Katogiannis, K.; Korakas, E.; Kountouri, A.; Pliouta, L.; Michalopoulou, E.; Pelekanou, E.; Boumpas, D.; et al. Six-month supplementation with high dose coenzyme Q10 improves liver steatosis, endothelial, vascular and myocardial function in patients with metabolic-dysfunction associated steatotic liver disease: A randomized double-blind, placebo-controlled trial. Cardiovasc. Diabetol. 2024, 23, 245. [Google Scholar] [CrossRef]
- Chen, X.; Chen, B.; Li, Z.; Ma, L.; Zhu, Q.; Liu, C.; He, H.; Zhang, Z.; Zhou, C.; Liu, G.; et al. The Extract of Camellia Seed Cake Alleviates Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Mice by Promoting Coenzyme Q Synthesis. Nutrients 2025, 17, 1032. [Google Scholar] [CrossRef]
- Iqbal, I.; Wilairatana, P.; Saqib, F.; Nasir, B.; Wahid, M.; Latif, M.F.; Iqbal, A.; Naz, R.; Mubarak, M.S. Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review. Molecules 2023, 28, 6403. [Google Scholar] [CrossRef] [PubMed]
- Markowska, J.; Kasprzak-Drozd, K.; Niziński, P.; Dragan, M.; Kondracka, A.; Gondek, E.; Oniszczuk, T.; Oniszczuk, A. Quercetin: A Promising Candidate for the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Molecules 2024, 29, 5245. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Song, J.; Zhou, K.; Zi, X.; Sun, B.; Bao, H.; Li, L. Molecular Mechanism Pathways of Natural Compounds for the Treatment of Non-Alcoholic Fatty Liver Disease. Molecules 2023, 28, 5645. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; An, Z.; Xin, X.; Gou, X.; Tian, X.; Hu, Y.; Mei, Z.; Feng, Q. The Effectiveness of Curcumin, Resveratrol, and Silymarin on MASLD: A Systematic Review and Meta-Analysis. Food Sci. Nutr. 2024, 12, 10010–10029. [Google Scholar] [CrossRef] [PubMed]
- Hefer, M.; Petrovic, A.; Roguljic, L.K.; Kolaric, T.O.; Kizivat, T.; Wu, C.H.; Tabll, A.A.; Smolic, R.; Vcev, A.; Smolic, M. Green Tea Polyphenol (-)-Epicatechin Pretreatment Mitigates Hepatic Steatosis in an In Vitro MASLD Model. Curr. Issues Mol. Biol. 2024, 46, 8981–8994. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Zhang, T.; Zi, M.; Wang, S.; Zhang, Q. Green tea epigallocatechin gallate attenuate metabolic dysfunction-associated steatotic liver disease by regulation of pyroptosis. Lipids Health Dis. 2025, 24, 180. [Google Scholar] [CrossRef]
- Hidalgo, I.; Ortiz-Flores, M.; Villarreal, F.; Fonseca-Coronado, S.; Ceballos, G.; Meaney, E.; Nájera, N. Is it possible to treat nonalcoholic liver disease using a flavanol-based nutraceutical approach? Basic and clinical data. J. Basic Clin. Physiol. Pharmacol. 2022, 33, 703–714. [Google Scholar] [CrossRef]
- Aghemo, A.; Alekseeva, O.P.; Angelico, F.; Bakulin, I.G.; Bakulina, N.V.; Bordin, D.; Bueverov, A.O.; Drapkina, O.M.; Gillessen, A.; Kagarmanova, E.M.; et al. Role of silymarin as antioxidant in clinical management of chronic liver diseases: A narrative review. Ann. Med. 2022, 54, 1548–1560. [Google Scholar] [CrossRef]
- Kim, J.S.; Song, B.J.; Cho, Y.E. Pomegranate-Derived Exosome-Like Nanovesicles Containing Ellagic Acid Alleviate Gut Leakage and Liver Injury in MASLD. Food Sci. Nutr. 2025, 13, e70088. [Google Scholar] [CrossRef] [PubMed]
- Ghoreishi, P.S.; Shams, M.; Nimrouzi, M.; Zarshenas, M.M.; Lankarani, K.B.; Fallahzadeh Abarghooei, E.; Talebzadeh, M.; Hashempur, M.H. The Effects of Ginger (Zingiber officinale Roscoe) on Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blinded Placebo-Controlled Clinical Trial. J. Diet. Suppl. 2024, 21, 294–312. [Google Scholar] [CrossRef]
- Samadi, M.; Moradinazar, M.; Khosravy, T.; Soleimani, D.; Jahangiri, P.; Kamari, N. A systematic review and meta-analysis of preclinical and clinical studies on the efficacy of ginger for the treatment of fatty liver disease. Phytother. Res. 2022, 36, 1182–1193. [Google Scholar] [CrossRef]
- Ishigure, T.; Sasase, T.; Tohma, M.; Uno, K.; Toriniwa, Y.; Saito, T.; Saigo, Y.; Edamura, K.; Miyajima, K.; Ohta, T. Choline-deficient Diet-induced NAFLD Animal Model Recaptures Core Human Pathophysiology With Similar Gene Co-expression Networks. In Vivo 2023, 37, 1517–1531. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.; Chen, L.; Deng, M.G.; Liang, Y.; Liu, F.; Nie, J.Q. Dietary choline intake and non-alcoholic fatty liver disease (NAFLD) in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2017-2018. Eur. J. Clin. Nutr. 2023, 77, 1160–1166. [Google Scholar] [CrossRef]
- DiStefano, J.K. The Role of Choline, Soy Isoflavones, and Probiotics as Adjuvant Treatments in the Prevention and Management of NAFLD in Postmenopausal Women. Nutrients 2023, 15, 2670. [Google Scholar] [CrossRef] [PubMed]
- Longhitano, L.; Tibullo, D.; Zuppelli, T.; Ronsisvalle, S.; La Spina, E.; Nicolosi, A.; Antoci, M.; Sipala, F.M.; Galvano, F.; Currenti, W.; et al. (+)Alpha-Lipoic Acid Regulates Lipid Metabolism Gene Expression and Lipidic Profile in a Cellular Model of Fatty Acid Overload. Front. Biosci. 2024, 29, 209. [Google Scholar] [CrossRef] [PubMed]
- Zwierz, M.; Chabowski, A.; Sztolsztener, K. α-Lipoic acid—A promising agent for attenuating inflammation and preventing steatohepatitis in rats fed a high-fat diet. Arch. Biochem. Biophys. 2023, 750, 109811. [Google Scholar] [CrossRef] [PubMed]
- Cano Contreras, A.D.; Del Rocío Francisco, M.; Vargas Basurto, J.L.; Gonzalez-Gomez, K.D.; Amieva-Balmori, M.; Roesch Dietlen, F.; Remes-Troche, J.M. Effect of alpha-lipoic acid and Silybum marianum supplementation with a Mediterranean diet on metabolic dysfunction-associated steatosis. World J. Hepatol. 2025, 17, 101704. [Google Scholar] [CrossRef]
- Perumal, S.K.; Arumugam, M.K.; Osna, N.A.; Rasineni, K.; Kharbanda, K.K. Betaine regulates the gut-liver axis: A therapeutic approach for chronic liver diseases. Front. Nutr. 2025, 12, 1478542. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Chen, Y.; Liu, Y.; Huang, C.; Luo, Y.; Wang, X. Betaine alleviates nonalcoholic fatty liver disease (NAFLD) via a manner involving BHMT/FTO/m6A/PGC1α signaling. J. Nutr. Biochem. 2024, 134, 109738. [Google Scholar] [CrossRef]
- Chen, W.; Xu, M.; Xu, M.; Wang, Y.; Zou, Q.; Xie, S.; Wang, L. Effects of betaine on non-alcoholic liver disease. Nutr. Res. Rev. 2022, 35, 28–38. [Google Scholar] [CrossRef]
- Vrentzos, E.; Pavlidis, G.; Korakas, E.; Kountouri, A.; Pliouta, L.; Dimitriadis, G.D.; Lambadiari, V. Nutraceutical Strategies for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Path to Liver Health. Nutrients 2025, 17, 1657. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Gao, Z.; Zhang, Q.; Gu, C. The mechanism of berberine alleviating metabolic disorder based on gut microbiome. Front. Cell. Infect. Microbiol. 2022, 12, 854885. [Google Scholar] [CrossRef]
- Ji, J.; Li, Y.; Xu, T.; Shao, Q.; Sun, Z.; Chen, S.; Zhang, D.; Wang, Q.; Wang, X.; Ma, C.; et al. Protective effects of berberine on MASLD: Regulation of glucose and lipid metabolism through PI3K/Akt and STING pathways. Naunyn Schmiedebergs Arch. Pharmacol. 2025. [Google Scholar] [CrossRef]
- Tilg, H.; Adolph, T.E.; Trauner, M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab. 2022, 34, 1700–1718. [Google Scholar] [CrossRef]
- Benedé-Ubieto, R.; Cubero, F.J.; Nevzorova, Y.A. Breaking the barriers: The role of gut homeostasis in Metabolic-Associated Steatotic Liver Disease (MASLD). Gut Microbes 2024, 16, 2331460. [Google Scholar] [CrossRef]
- Ebrahimi-Mousavi, S.; Alavian, S.M.; Sohrabpour, A.A.; Dashti, F.; Djafarian, K.; Esmaillzadeh, A. The effect of daily consumption of probiotic yogurt on liver enzymes, steatosis and fibrosis in patients with nonalcoholic fatty liver disease (NAFLD): Study protocol for a randomized clinical trial. BMC Gastroenterol. 2022, 22, 102. [Google Scholar] [CrossRef]
- Mojka, K. Probiotics, prebiotics and synbiotics—Characteristics and functions. Probl. Hig. Epidemiol. 2014, 95, 541–549. [Google Scholar]
- Xu, Y.; Wang, Y.; Zhao, Q.; Chen, B.; Wang, N.; Zhang, T.; Jiang, Y.; Wu, Y.; He, N.; Zha, G.; et al. Dairy products intake and prevalence, incidence, and recovery of non-alcoholic fatty liver disease in Chinese population. Hepatol. Int. 2024, 18, 529–539. [Google Scholar] [CrossRef]
- Maslennikov, R.; Ivashkin, V.; Efremova, I.; Poluektova, E.; Shirokova, E. Probiotics in hepatology: An update. World J. Hepatol. 2021, 13, 1154–1166. [Google Scholar] [CrossRef]
- Paul, A.K.; Lim, C.L.; Apu, M.A.I.; Dolma, K.G.; Gupta, M.; de Lourdes Pereira, M.; Wilairatana, P.; Rahmatullah, M.; Wiart, C.; Nissapatorn, V. Are Fermented Foods Effective against Inflammatory Diseases? Int. J. Environ. Res. Public Health 2023, 20, 2481. [Google Scholar] [CrossRef]
- Cywka, Ł.; Nowak, A.; Bogus, Z.K.; Nowak, A.; Baran, N.; Bielak, A.; Szwed, W.; Maksymowicz, M.; Machowiec, P. Kombucha—Fermented tea rich in nutrients and its impact on health—Review. J. Educ. Health Sport 2023, 32, 145–155. [Google Scholar] [CrossRef]
- Yun, Y.R.; Lee, J.E. Kimchi attenuates endoplasmic reticulum stress-induced hepatic steatosis in HepG2 cells and C57BL/6N mice. Nutr. Res. 2024, 124, 43–54. [Google Scholar] [CrossRef]
- Moreira, G.V.; Araujo, L.C.C.; Murata, G.M.; Matos, S.L.; Carvalho, C.R.O. Kombucha tea improves glucose tolerance and reduces hepatic steatosis in obese mice. Biomed. Pharmacother. 2022, 155, 113660. [Google Scholar] [CrossRef]
- Kei, N.; Wong, V.W.S.; Lauw, S.; You, L.; Cheung, P.C.K. Utilization of Food-Derived β-Glucans to Prevent and Treat Non-Alcoholic Fatty Liver Disease (NAFLD). Foods 2023, 12, 3279. [Google Scholar] [CrossRef]
- Jaeger, J.W.; Brandt, A.; Gui, W.; Yergaliyev, T.; Hernández-Arriaga, A.; Muthu, M.M.; Edlund, K.; Elashy, A.; Molinaro, A.; Möckel, D.; et al. Microbiota modulation by dietary oat beta-glucan prevents steatotic liver disease progression. JHEP Rep. 2024, 6, 100987. [Google Scholar] [CrossRef]
- Służały, P.; Paśko, P.; Galanty, A. Natural Products as Hepatoprotective Agents-A Comprehensive Review of Clinical Trials. Plants 2024, 13, 1985. [Google Scholar] [CrossRef]
- Fakhoury-Sayegh, N.; Hamdan, A.; Lebbos, S.; Itani, T.; Trak-Smayra, V.; Khazzaka, A.; Dagher-Hamalian, C.; Sayegh, L.N.; Mallah, M.; Obeid, O.; et al. Spirulina (Arthrospira platensis) Improved Nonalcoholic Fatty Liver Disease Characteristics and Microbiota and Did Not Affect Organ Fibrosis Induced by a Fructose-Enriched Diet in Wistar Male Rats. Nutrients 2024, 16, 1701. [Google Scholar] [CrossRef]
- Yarmohammadi, S.; Hosseini-Ghatar, R.; Foshati, S.; Moradi, M.; Hemati, N.; Moradi, S.; Kermani, M.A.H.; Farzaei, M.H.; Khan, H. Effect of Chlorella vulgaris on Liver Function Biomarkers: A Systematic Review and Meta-Analysis. Clin. Nutr. Res. 2021, 10, 83–94. [Google Scholar] [CrossRef]
- Moradi, M.N.; Behrouj, H.; Alipoor, B.; Kheiripour, N.; Ghasemi, H.; Ghasemi, H. Chlorella vulgaris is an effective supplement in counteracting non-alcoholic fatty liver disease-related complications through modulation of dyslipidemia, insulin resistance, and inflammatory pathways. J. Food Biochem. 2021, 45, e13914. [Google Scholar] [CrossRef]
- Arroyave-Ospina, J.C.; Martínez, M.; Buist-Homan, M.; Palasantzas, V.; Arrese, M.; Moshage, H. Coffee Compounds Protection Against Lipotoxicity Is Associated with Lipid Droplet Formation and Antioxidant Response in Primary Rat Hepatocytes. Antioxidants 2025, 14, 175. [Google Scholar] [CrossRef]
- Ziółkiewicz, A.; Niziński, P.; Soja, J.; Oniszczuk, T.; Combrzyński, M.; Kondracka, A.; Oniszczuk, A. Potential of Chlorogenic Acid in the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Animal Studies and Clinical Trials-A Narrative Review. Metabolites 2024, 14, 346. [Google Scholar] [CrossRef]
- Kaur, M.; Murugesan, S.; Singh, S.; Uy, K.N.; Kaur, J.; Mann, N.; Sekhon, R.K. The Influence of Coffee on Reducing Metabolic Dysfunction-Associated Steatotic Liver Disease in Patients With Type 2 Diabetes: A Review. Cureus 2023, 15, e50118. [Google Scholar] [CrossRef]
- Xin, X.; Chen, C.; Xu, X.; Lv, S.; Sun, Q.; An, Z.; Chen, Y.; Xiong, Z.; Hu, Y.; Feng, Q. Caffeine ameliorates metabolic-associated steatohepatitis by rescuing hepatic Dusp9. Redox Biol. 2025, 80, 103499. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, J.; Ahn, S.B. Different Associations of Coffee Consumption with the Risk of Incident Metabolic Dysfunction-Associated Steatotic Liver Disease and Advanced Liver Fibrosis. Nutrients 2023, 16, 140. [Google Scholar] [CrossRef]
- Vahid, F.; Rahmani, D.; Hekmatdoost, A. The association between dietary antioxidant index (DAI) and nonalcoholic fatty liver disease (NAFLD) onset; new findings from an incident case-control study. Clin. Nutr. ESPEN 2021, 41, 360–364. [Google Scholar] [CrossRef]
- Pourmontaseri, H.; Bazmi, S.; Sepehrinia, M.; Mostafavi, A.; Arefnezhad, R.; Homayounfar, R.; Vahid, F. Exploring the application of dietary antioxidant index for disease risk assessment: A comprehensive review. Front. Nutr. 2025, 11, 1497364. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Mielgo-Ayuso, J.; Martín-Rodríguez, A.; Ramos-Campo, D.J.; Redondo-Flórez, L.; Tornero-Aguilera, J.F. The Burden of Carbohydrates in Health and Disease. Nutrients 2022, 14, 3809. [Google Scholar] [CrossRef]
- Czapla, B.C.; Dalvi, A.; Hu, J.; Moran, I.J.; Wijarnpreecha, K.; Chen, V.L. Physical activity, diet, and social determinants of health associate with health related quality of life and fibrosis in MASLD. Sci. Rep. 2025, 15, 7976. [Google Scholar] [CrossRef]
- Jahromi, M.K.; Saber, N.; Norouzzadeh, M.; Daftari, G.; Pourhabibi-Zarandi, F.; Ahmadirad, H.; Farhadnejad, H.; Teymoori, F.; Salehi-Sahlabadi, A.; Mirmiran, P. Carbohydrate quality index and risk of non-alcoholic fatty liver disease in Iranian adults. BMC Endocr. Disord. 2024, 24, 195. [Google Scholar] [CrossRef]
- Paik, J.M.; Mir, S.; Alqahtani, S.A.; Younossi, Y.; Ong, J.P.; Younossi, Z.M. Dietary Risks for Liver Mortality in NAFLD: Global Burden of Disease Data. Hepatol. Commun. 2022, 6, 90–100. [Google Scholar] [CrossRef]
- Huang, X.; Gan, D.; Fan, Y.; Fu, Q.; He, C.; Liu, W.; Li, F.; Ma, L.; Wang, M.; Zhang, W. The Associations between Healthy Eating Patterns and Risk of Metabolic Dysfunction-Associated Steatotic Liver Disease: A Case-Control Study. Nutrients 2024, 16, 1956. [Google Scholar] [CrossRef]
- Guido, D.; Cerabino, N.; Di Chito, M.; Donghia, R.; Randazzo, C.; Bonfiglio, C.; Giannelli, G.; De Pergola, G. A Dose-Response Study on the Relationship between White Meat Intake and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Southern Italy: Results from the Nutrihep Study. Nutrients 2024, 16, 3094. [Google Scholar] [CrossRef]
- Donghia, R.; Tatoli, R.; Campanella, A.; Cuccaro, F.; Bonfiglio, C.; Giannelli, G. Adding a Leafy Vegetable Fraction to Diets Decreases the Risk of Red Meat Mortality in MASLD Subjects: Results from the MICOL Cohort. Nutrients 2024, 16, 1207. [Google Scholar] [CrossRef]
- Tan, L.J.; Shin, S. Effects of oily fish and its fatty acid intake on non-alcoholic fatty liver disease development among South Korean adults. Front. Nutr. 2022, 9, 876909. [Google Scholar] [CrossRef]
- He, K.; Guo, L.L.; Tang, H.; Peng, X.; Li, J.; Feng, S.; Bie, C.; Chen, W.; Li, Y.; Wang, M.; et al. A Freshwater Fish-Based Diet Alleviates Liver Steatosis by Modulating Gut Microbiota and Metabolites: A Clinical Randomized Controlled Trial in Chinese Participants With Nonalcoholic Fatty Liver Disease. Am. J. Gastroenterol. 2022, 117, 1621–1631. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, W.; Ma, X.; Ren, L.; Feng, M.; Hu, S.; Xue, C.; Chen, R. Roles and Mechanisms of Choline Metabolism in Nonalcoholic Fatty Liver Disease and Cancers. Front. Biosci. (Landmark Ed.) 2024, 29, 182. [Google Scholar] [CrossRef]
- Yiannakou, I.; Long, M.T.; Jacques, P.F.; Beiser, A.; Pickering, R.T.; Moore, L.L. Eggs, Dietary Choline, and Nonalcoholic Fatty Liver Disease in the Framingham Heart Study. J. Nutr. 2025, 155, 923–935. [Google Scholar] [CrossRef]
- Jiang, Z.; Kimura, Y.; Shirouchi, B.; Tanaka, Y.; Tsai, W.T.; Yuan, X.; Sato, M. Dietary egg white protein hydrolysate improves orotic acid-induced fatty liver in rats by promoting hepatic phospholipid synthesis and microsomal triglyceride transfer protein expression. J. Nutr. Biochem. 2021, 98, 108820. [Google Scholar] [CrossRef]
- Tirosh, O.; Verman, M.; Ivancovsky-Wajcman, D.; Grinshpan, L.S.; Fliss-Isakov, N.; Webb, M.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. Differential effects of low or high-fat dairy and fat derived from dairy products on MASLD. JHEP Rep. 2024, 6, 101194. [Google Scholar] [CrossRef]
- Langmann, F.; Ibsen, D.B.; Johnston, L.W.; Perez-Cornago, A.; Dahm, C.C. Legumes as a Substitute for Red and Processed Meat, Poultry or Fish, and the Risk of Non-Alcoholic Fatty Liver Disease in a Large Cohort. J. Hum. Nutr. Diet. 2025, 38, e70004. [Google Scholar] [CrossRef] [PubMed]
- Yki-Järvinen, H.; Luukkonen, P.K.; Hodson, L.; Moore, J.B. Dietary carbohydrates and fats in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 770–786. [Google Scholar] [CrossRef]
- Tedesco, C.C.; Bonfiglio, C.; Notarnicola, M.; Rendina, M.; Castellaneta, A.; Di Leo, A.; Giannelli, G.; Fontana, L. High Extra Virgin Olive Oil Consumption Is Linked to a Lower Prevalence of NAFLD with a Prominent Effect in Obese Subjects: Results from the MICOL Study. Nutrients 2023, 15, 4673. [Google Scholar] [CrossRef] [PubMed]
- Sokal-Dembowska, A.; Jarmakiewicz-Czaja, S.; Ferenc, K.; Filip, R. Can Nutraceuticals Support the Treatment of MASLD/MASH, and thus Affect the Process of Liver Fibrosis? Int. J. Mol. Sci. 2024, 25, 5238. [Google Scholar] [CrossRef]
- Jerab, D.; Blangero, F.; da Costa, P.C.T.; de Brito Alves, J.L.; Kefi, R.; Jamoussi, H.; Morio, B.; Eljaafari, A. Beneficial Effects of Omega-3 Fatty Acids on Obesity and Related Metabolic and Chronic Inflammatory Diseases. Nutrients 2025, 17, 1253. [Google Scholar] [CrossRef] [PubMed]
- Cansanção, K.; Citelli, M.; Leite, N.; López de Las Hazas, M.C.; Dávalos, A. Tavares do Carmo MDG, Peres WAF. Impact of Long-Term Supplementation with Fish Oil in Individuals with Non-Alcoholic Fatty Liver Disease: A Double Blind Randomized Placebo Controlled Clinical Trial. Nutrients 2020, 12, 3372. [Google Scholar] [CrossRef]
- Frankovic, I.; Djuricic, I.; Ninic, A.; Vekic, J.; Vorkapic, T.; Erceg, S.; Gojkovic, T.; Tomasevic, R.; Mamic, M.; Mitrovic, M.; et al. Increased Odds of Metabolic Dysfunction-Associated Steatotic Liver Disease Are Linked to Reduced n-6, but Not n-3 Polyunsaturated Fatty Acids in Plasma. Biomolecules 2024, 14, 902. [Google Scholar] [CrossRef] [PubMed]
- Vell, M.S.; Creasy, K.T.; Scorletti, E.; Seeling, K.S.; Hehl, L.; Rendel, M.D.; Schneider, K.M.; Schneider, C.V. Omega-3 intake is associated with liver disease protection. Front. Public Health 2023, 11, 1192099. [Google Scholar] [CrossRef]
- Commins, I.; Clayton-Chubb, D.; Fitzpatrick, J.A.; George, E.S.; Schneider, H.G.; Phyo, A.Z.Z.; Majeed, A.; Janko, N.; Vaughan, N.; Woods, R.L.; et al. Associations Between MASLD, Ultra-Processed Food and a Mediterranean Dietary Pattern in Older Adults. Nutrients 2025, 17, 1415. [Google Scholar] [CrossRef]
- Sun, N.; Prescott, B.; Ma, J.; Xanthakis, V.; Quatromoni, P.A.; Long, M.T.; Walker, M.E. The cross-sectional association between ultra-processed food intake and metabolic dysfunction-associated steatotic liver disease. Clin. Nutr. ESPEN 2025, 66, 215–220. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef] [PubMed]
- Amamah, S.; Iatcu, O.C.; Covasa, M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2025, 17, 143. [Google Scholar]
- Liu, J.; Li, C.; Yang, Y.; Li, J.; Sun, X.; Zhang, Y.; Liu, R.; Chen, F.; Li, X. Special Correlation between Diet and MASLD: Positive or Negative? Cell Biosci. 2025, 15, 44. [Google Scholar] [CrossRef]
- Steinberg, G.R.; Valvano, C.M.; De Nardo, W.; Watt, M.J. Integrative Metabolism in MASLD and MASH: Pathophysiology and Emerging Mechanisms. J. Hepatol. 2025, 82, 1–12. [Google Scholar] [CrossRef]
- Xiao, M.-L.; Lin, J.-S.; Li, Y.-H.; Liu, M.; Deng, Y.-Y.; Wang, C.-Y.; Chen, Y.-M. Adherence to the Dietary Approaches to Stop Hypertension (DASH) Diet Is Associated with Lower Presence of Non-Alcoholic Fatty Liver Disease in Middle-Aged and Elderly Adults. Public Health Nutr. 2020, 23, 674–682. [Google Scholar] [CrossRef]
- Del Bo’, C.; Perna, S.; Allehdan, S.; Rafique, A.; Saad, S.; AlGhareeb, F.; Rondanelli, M.; Tayyem, R.F.; Marino, M.; Martini, D.; et al. Does the Mediterranean Diet Have Any Effect on Lipid Profile, Central Obesity and Liver Enzymes in Non-Alcoholic Fatty Liver Disease (NAFLD) Subjects? A Systematic Review and Meta-Analysis of Randomized Control Trials. Nutrients 2023, 15, 2250. [Google Scholar] [CrossRef]
- Sualeheen, A.; Tan, S.-Y.; Georgousopoulou, E.; Daly, R.M.; Tierney, A.C.; Roberts, S.K.; George, E.S. Mediterranean Diet for the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease in Non-Mediterranean, Western Countries: What’s Known and What’s Needed? Nutr. Bull. 2024, 49, 444–462. [Google Scholar] [CrossRef] [PubMed]
- Nilghaz, M.; Sadeghi, A.; Koochakpoor, G.; Poustchi, H.; Khodadadi, N.; Narimani, B.; Ghods, M.; Shafiee, M.; Shahparvari, M.R.; Hekmatdoost, A. The Efficacy of DASH Combined with Time-Restricted Feeding (16/8) on Metabolic Associated Fatty Liver Disease Management: A Randomized Controlled Trial. Sci. Rep. 2025, 15, 7020. [Google Scholar] [CrossRef]
- Armandi, A.; Bugianesi, E. Dietary and Pharmacological Treatment in Patients with Metabolic-Dysfunction Associated Steatotic Liver Disease. Eur. J. Intern. Med. 2024, 122, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Jia, M.; Li, C. The Moderating Effect of Dietary Fiber Intake on the Association between Sleep Pattern and Liver Fibrosis in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Study from NHANES. BMC Gastroenterol. 2024, 24, 457. [Google Scholar] [CrossRef]
- Castelnuovo, G.; Perez-Diaz-del-Campo, N.; Rosso, C.; Armandi, A.; Caviglia, G.P.; Bugianesi, E. A Healthful Plant-Based Diet as an Alternative Dietary Approach in the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024, 16, 2027. [Google Scholar] [CrossRef]
- Moss, K.; Gitman, V.; Pinto Sanchez, M.I.; Oczkowski, S.; Armstrong, D.; Jayakumar, S.; Karvellas, C.J.; Selzner, N.; Dionne, J. Evidence Related to a Vegetarian Diet and Metabolic Dysfunction-Associated Steatotic Liver Disease: Protocol for a Scoping Review. BMJ Open 2024, 14, e079750. [Google Scholar] [CrossRef]
- Quesada-Vázquez, S.; Aragonès, G.; Del Bas, J.M.; Escoté, X. Diet, Gut Microbiota and Non-Alcoholic Fatty Liver Disease: Three Parts of the Same Axis. Cells 2020, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Faienza, M.F.; Cognetti, E.; Farella, I.; Antonioli, A.; Tini, S.; Antoniotti, V.; Prodam, F. Dietary Fructose: From Uric Acid to a Metabolic Switch in Pediatric Metabolic Dysfunction-Associated Steatotic Liver Disease. Crit. Rev. Food Sci. Nutr. 2024, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Faienza, M.F.; Baima, J.; Cecere, V.; Monteduro, M.; Farella, I.; Vitale, R.; Antoniotti, V.; Urbano, F.; Tini, S.; Lenzi, F.R.; et al. Fructose Intake and Unhealthy Eating Habits Are Associated with MASLD in Pediatric Obesity: A Cross-Sectional Pilot Study. Nutrients 2025, 17, 631. [Google Scholar] [CrossRef]
- Kord-Varkaneh, H.; Salehi-Sahlabadi, A.; Tinsley, G.M.; Santos, H.O.; Hekmatdoost, A. Effects of Time-Restricted Feeding (16/8) Combined with a Low-Sugar Diet on the Management of Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Trial. Nutrition 2023, 105, 111847. [Google Scholar] [CrossRef] [PubMed]
- Chirapongsathorn, S.; Rintaravitoon, W.; Tangjaturonrasme, B.; Chotsriluecha, S.; Pumsutas, Y.; Kanchanapradith, A.; Treeprasertsuk, S. Effect of a Ketogenic Diet on Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Progression: A Randomized Controlled Trial. JGH Open 2025, 9, e70099. [Google Scholar] [CrossRef]
Component | Mechanism | Daily Dosage | Dietary Sources | References |
---|---|---|---|---|
Vitamin E | Anti-inflammatory; improves liver histology; modulates liver enzymes | 800 IU [15] | Vegetable oils, nuts, seeds, sprouts | [15,17,18] |
Vitamin C | Antioxidant; prevents fibrosis | <30.9–≥67.0 umol/L [20] | Parsley, bell pepper, blackcurrant, kiwi | [16,19,20] |
Coenzyme Q10 | Anti-inflammatory; regulates lipid metabolism; reduces hepatic steatosis | 240 mg [22] | Organ meats, meat, fatty fish | [21,22] |
Polyphenols | Antioxidant and anti-inflammatory; inhibit hepatic fat accumulation; support lipolysis, lipophagy, and antifibrotic activity; improve lipid metabolism, gut barrier function, and liver enzyme profile | Quercetin 500–1000 mg Curcumin 80–3000 mg Silymarin 420 mg Ginger polyphenols 1500 mg [25,27,31,34] | Red grapes, pomegranate, blackberries, leafy greens, tomatoes, green tea, vegetable oils, strawberries, raspberries, ginger | [25,27,30,31,34] |
Choline | Prevents liver fat accumulation; reduces risk of fibrosis | Men 550 mg Women 425 mg [37] | Egg yolks, organ meats, meat, milk | [35,37] |
Alpha-lipoic acid | Anti-inflammatory; improves metabolic parameters | 500 mg/kg body weight [39] | Organ meats, spinach, broccoli | [38,39,40] |
Betaine | Strengthens gut barrier; antisteatotic; improves insulin sensitivity | Sugar beet, sprouts, whole grains | [41,42,43] | |
Berberine | Activates AMPK; improves gut barrier and insulin sensitivity; anti-inflammatory | 500–1500 mg [44] | Barberry shrub | [44,45,46] |
Fermented foods and probiotics | Modulate microbiota; improve gut barrier; anti-inflammatory; reduce steatosis and liver enzyme levels | Yogurt 300 g Kimchi 100 mg/kg [49,55] | Fermented dairy, pickled vegetables/fruits, kimchi, kombucha, sourdough, sauerkraut, beer, wine | [6,49,51,55,56] |
Beta-glucans | Antisteatotic; anti-inflammatory; reduce risk of metabolic diseases | 61.4 g/kg diet [57] | Whole grains, vegetables, fruits, legumes | [57,58] |
Spirulina and chlorella | Anti-inflammatory; lower liver enzymes; enhance insulin action | 20 g [60] | Microalgae (spirulina, chlorella) | [60,61,62] |
Coffee | Anti-inflammatory; regulates lipid metabolism; inhibits steatosis and fibrosis progression | ≥2 cups [67] | Coffee | [63,64,67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janota, B.; Janion, K.; Buzek, A.; Janczewska, E. Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver. Metabolites 2025, 15, 528. https://doi.org/10.3390/metabo15080528
Janota B, Janion K, Buzek A, Janczewska E. Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver. Metabolites. 2025; 15(8):528. https://doi.org/10.3390/metabo15080528
Chicago/Turabian StyleJanota, Barbara, Karolina Janion, Aneta Buzek, and Ewa Janczewska. 2025. "Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver" Metabolites 15, no. 8: 528. https://doi.org/10.3390/metabo15080528
APA StyleJanota, B., Janion, K., Buzek, A., & Janczewska, E. (2025). Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver. Metabolites, 15(8), 528. https://doi.org/10.3390/metabo15080528